Tau Decays Measurements

Alberto Lusiani

Scuola Normale Superiore and INFN sezione di Pisa

New Vistas in Low-Energy Precision Physics (LEPP) 4-7 April 2016, Mainz, Germany

- introduction
- tau mass, tau lifetime, other tau properties
- tau branching fractions and spectral functions
- lepton flavour violation searches
- other measurements
- elaboration of tau results
 - lepton universality
 - ► |V_{us}|

Three phases of tau experimental measurements

Tau discovery phase

- establish evidence for new heavy lepton with: $e^+e^- \rightarrow \tau^+\tau^-$, $\tau^+ \rightarrow e^+\nu_e\bar{\nu}_{\tau}$, $\tau^- \rightarrow \mu^-\bar{\nu}_{\mu}\nu_{\tau}$
- MARK I at SPEAR (SLAC), later PLUTO & DASP at DORIS (DESY)

Precision SM tests phase

- lepton universality (with leptonic BFs, tau lifetime, tau mass)
- Z couplings ($\Gamma_{Z \to \tau \tau}$, A^{FB} , A_{pol} , A^{FB}_{pol} , etc.)
- α_s and muon g-2 hadronic contribution with tau hadronic decays
- $|V_{us}|$ with $au o X_s
 u$ decays
- LEP experiments (\sim 200k tau pairs each), ARGUS, CLEO (\sim 14M tau pairs), BES

New Physics search phase

- search for Lepton Flavour Violation (LFV)
- measurement of small BFs whose previous results were statistics-limited
- B-factories BABAR (~500M tau pairs), Belle (~900M tau pairs)

Main differences between recent experiments

around charm-tau threshold (BES, BESIII)

• best for tau mass (beam energy calibration via resonant depolarization)

Z^0 peak (LEP 1)

- much smaller samples w.r.t. B-factories
- but several advantages
 - ▶ precise absolute luminosity measurements (~0.5 per-mille)
 - ► can select tau pairs on just one hemisphere with good efficiency and purity
 - stiff tracks, small amount of multiple scattering
 - ▶ large hadron $e^+e^-
 ightarrow q\bar{q}$ track multiplicity \Rightarrow high rejection of $q\bar{q}$ background
- outstanding analysis contribution by ALEPH

B-factories (CLEO, BABAR, Belle)

- much larger samples
- cannot select tau pairs on a single hemisphere with decent efficiency and purity
- lowish hadron $e^+e^- o qar q$ track multiplicity \Rightarrow difficult rejection of qar q background
- multiple scattering limits momentum resolution

- most precise measurements by e^+e^- colliders at $\tau^+\tau^-$ threshold
 - few events but very significant

Tau lifetime

- LEP experiments, many methods
 - impact parameter sum (IPS)
 - momentum dependent impact parameter sum (MIPS
 - 3D impact parameter sum (3DIP)
 - impact parameter difference (IPD)
 - decay length (DL)
- Belle
 - ► 3-prong vs. 3-prong decay length
 - largest syst. error: alignment

Mass & lifetime difference τ^+ vs. τ^- , dipole moments

$(m_{ au+}-m_{ au-})$	$)/m_{average}$ (can signal	CPT violation)
$< 2.8 \cdot 10^{-4} \ < 5.5 \cdot 10^{-4} \ < 3.0 \cdot 10^{-3}$	BELOUS 2 AUBERT 2 ABBIENDI	2007 2009AK 2000A	Belle, 414 fb ⁻¹ <i>BABAR</i> , 423 fb ⁻¹ OPAL

$(au_{ au+}- au_{ au-})/ au_{ ext{average}}$	(can signal CPT violation
---	---------------------------

 $< 7.0 \cdot 10^{-3}$ BELOUS 2014 Belle, 711 fb⁻¹

dipole moments (EDM \neq 0 can signal *CP*, *T* violation)

 $\begin{array}{ll} -0.052 < a_\tau < 0.013 \mbox{ at } 95\% \mbox{ CL} & \mbox{DELPHI } 2004 \mbox{ } [(g-2)_\tau/2] \\ -0.22 < \mbox{Re}(d_\tau)[10^{-16} \mbox{ ecm}] < 0.013 \mbox{ at } 95\% \mbox{ CL} & \mbox{Belle } 2003 \mbox{ } [\tau \mbox{ EDM}] \\ -0.25 < \mbox{Im}(d_\tau)[10^{-16} \mbox{ ecm}] < 0.008 \mbox{ at } 95\% \mbox{ CL} & \mbox{Belle } 2003 \mbox{ } [\tau \mbox{ EDM}] \\ \mbox{Re}(a_\tau^W) < 1.1 \cdot 10^{-3} \mbox{ at } 95\% \mbox{ CL} & \mbox{ALEPH } 2003 \mbox{ } [weak \mbox{ } (g-2)_\tau/2] \\ \mbox{Im}(a_\tau^W) < 2.7 \cdot 10^{-3} \mbox{ at } 95\% \mbox{ CL} & \mbox{ALEPH } 2003 \mbox{ } [weak \mbox{ } (g-2)_\tau/2] \\ \mbox{Re}(d_\tau^W)[10^{-16} \mbox{ ecm}] < 0.05 \mbox{ at } 95\% \mbox{ CL} & \mbox{ALEPH } 2003 \mbox{ } [weak \mbox{ } \tau \mbox{ EDM}] \\ \mbox{Im}(d_\tau^W)[10^{-16} \mbox{ ecm}] < 0.11 \mbox{ at } 95\% \mbox{ CL} & \mbox{ALEPH } 2003 \mbox{ } [weak \mbox{ } \tau \mbox{ EDM}] \\ \end{tabular}$

Branching fractions and spectral functions

Branching fractions

- leptonic BFs \Rightarrow lepton universality tests (SM EW tests)
- leptonic radiative BFs ⇒ tau dipole moments (S.Eidelman, M.Passera et.al., arXiv:1601.07987 [hep-ph])

BFs + spectral functions (hadronic invariant mass distributions)

- hadronic final states \Rightarrow
 - $\alpha_s(m_{\tau})$, running of α_s from m_{τ} to m_{Z0}
 - alternative way to determine muon g-2 hadronic contribution
- "strange" hadronic final states \Rightarrow
 - alternative |V_{us}| determination, CKM unitarity test (theory systematics different from lattice QCD systematics on kaon decays)

Branching fraction fit - HFAG 2016 prelim.

- global fit: best way to combine measurements on BFs, BF ratios, inclusive BFs
- since 2010, fit in by-yearly reports by Heavy Flavour Averaging Group (HFAG)
 - common systematic errors taken into account
 - published results improved using updated values for external parameters
 - no PDG-style automatic error-scaling, exceptions analyzed case-by-case
 - using selection of preliminary results
- less complete and less refined fit in PDG
- work in progress (A.L.): port HFAG fit to PDG 2016
 - drop preliminary results
 - ▶ investigate all differences in common set of measurements and their relations
- in the following, results labeled "HFAG 2016 preliminary" (under PDG review for PDG 2016)

of ${\sim}1\,\text{per}$ mille

Branching fraction fit - HFAG 2016 prelim.

General information	Results by exper	iment
 171 measurements (no new results since HFAG 2014) 	experiment	number of results
 fit 104 quantities (BFs or ratios of linear comb. of BFs) related by 58 constraints 	ALEPH CLEO BaBar OPAL	40 35 23 19
 χ²/d.o.f. = 134.9/125, CL = 25.73% use unitarity constraint (PDG tradition) (in HFAG no unitarity constraint enforced to reduce "pollution" from hadronic to leptonic modes) 	Belle DELPHI L3 CLEO3 TPC	15 14 11 6 3
• 5.44 error scale factor for inconsistent BABAR and Belle $K^-K^-K^+\nu_{\tau}$ • without unitarity constraint, fitted results	ARGUS HRS CELLO	2 2 1

Unitarity constraint branching fractions - HFAG 2016 prelim.

$B~(\tau \rightarrow \ldots)$	HFAG 2016 prelim	$B~(\tau \rightarrow \ldots)$	HFAG 2016 prelim.
$\mu^- \bar{\nu}_\mu \nu_\tau$	$(17.3951 \pm 0.0385) \cdot 10^{-2}$	$h^-h^-h^+3\pi^0\nu_{ au}$	$(0.0212 \pm 0.0030) \cdot 10^{-2}$
$e^- \bar{\nu}_e \nu_{\tau}$	$(17.8199 \pm 0.0399) \cdot 10^{-2}$	$\pi^- K^- K^+ \nu_{\tau}$	$(0.1437 \pm 0.0027) \cdot 10^{-2}$
$\pi^- \nu_{\tau}$	$(10.8194 \pm 0.0513) \cdot 10^{-2}$	$\pi^- K^- K^+ \pi^0 \nu_{\tau}$	$(0.0061 \pm 0.0018) \cdot 10^{-2}$
$K^- \nu_{\tau}$	$(0.6965 \pm 0.0097) \cdot 10^{-2}$	$3h^{-}2h^{+}\nu_{\tau}$ (ex. K^{0})	$(0.0822 \pm 0.0032) \cdot 10^{-2}$
$\pi^{-}\pi^{0}\nu_{\tau}$	$(25.4967 \pm 0.0893) \cdot 10^{-2}$	$3h^{-}2h^{+}\pi^{0}\nu_{\tau}$ (ex. K^{0})	$(0.0164 \pm 0.0011) \cdot 10^{-2}$
$K^{-}\pi^{0}\nu_{\tau}$	$(0.4330 \pm 0.0148) \cdot 10^{-2}$	$\pi^-\pi^0 n\nu_{\pi}$	$(0.1389 \pm 0.0072) \cdot 10^{-2}$
$\pi^{-}2\pi^{0}\nu_{\tau}$ (ex. K^{0})	$(9.2638 \pm 0.0964) \cdot 10^{-2}$	$K^- n \nu_{\tau}$	$(0.0155 \pm 0.0008) \cdot 10^{-2}$
$K^{-}2\pi^{0}\nu_{\tau}$ (ex. K^{0})	$(0.0652 \pm 0.0218) \cdot 10^{-2}$	$K^{-}\pi^{0}n\nu_{\tau}$	$(0.0048 \pm 0.0012) \cdot 10^{-2}$
$\pi^{-}3\pi^{0}\nu_{\tau}$ (ex. K^{0})	$(1.0436 \pm 0.0707) \cdot 10^{-2}$	$\pi^- \bar{K}^0 n \nu_{\tau}$	$(0.0094 \pm 0.0015) \cdot 10^{-2}$
$K^{-}3\pi^{0}\nu_{\tau}$ (ex. K^{0},η)	$(0.0483 \pm 0.0212) \cdot 10^{-2}$	$K^-\omega\nu_{\tau}$	$(0.0410 \pm 0.0092) \cdot 10^{-2}$
$h^- 4\pi^{0} \nu_{\tau}$ (ex. K^{0}, η)	$(0.1118 \pm 0.0391) \cdot 10^{-2}$	$h^{-}\pi^{0}\omega\nu_{-}$	$(0.4089 \pm 0.0420) \cdot 10^{-2}$
$\pi^- \bar{K}^{0} \nu_{\tau}$	$(0.8398 \pm 0.0140) \cdot 10^{-2}$	$\pi^-\omega\nu_{\pi}$	$(1.9499 \pm 0.0645) \cdot 10^{-2}$
$K^- K^0 \nu_{\tau}$	$(0.1479 \pm 0.0053) \cdot 10^{-2}$	$K^-\phi\nu_{\tau}(\phi\to KK)$	$(0.0037 \pm 0.0014) \cdot 10^{-2}$
$\pi^- \bar{K}^{0} \pi^{0} \nu_{\tau}$	$(0.3823 \pm 0.0129) \cdot 10^{-2}$	$K^{-}\pi^{-}\pi^{+}\nu_{-}$ (ex. K^{0} , ω)	$(0.2930 \pm 0.0069) \cdot 10^{-2}$
$K^{-}\pi^{0}K^{0}\nu_{\tau}$	$(0.1503 \pm 0.0071) \cdot 10^{-2}$	$K^{-}\pi^{-}\pi^{+}\pi^{0}\nu_{-}$ (ex $K^{0}\omega_{-}n$)	$(0.0395 \pm 0.0142) \cdot 10^{-2}$
$\pi^- \bar{K}^{0} \pi^{0} \pi^{0} \nu_{\tau}$ (ex. K^{0})	$(0.0272 \pm 0.0226) \cdot 10^{-2}$	$\pi^{-}K_{0}^{0}K_{0}^{0}\nu_{-}$	$(0.0233 \pm 0.0007) \cdot 10^{-2}$
$\pi^- K^{0}_S K^{0}_S \nu_{\tau}$	$(0.0233 \pm 0.0007) \cdot 10^{-2}$	$a^-(\rightarrow \pi^- \gamma) \nu$	$(0.0401 \pm 0.0145) \cdot 10^{-2}$
$\pi^- K^0_S K^0_I \nu_{\tau}$	$(0.1091 \pm 0.0241) \cdot 10^{-2}$	$\pi^{-}\pi^{0}K^{0}K^{0}$	$(0.0018 \pm 0.0013) \cdot 10^{-2}$
$\pi^{-}\pi^{0}K_{S}^{0}K_{S}^{0}\nu_{\tau}$	$(0.0018 \pm 0.0002) \cdot 10^{-2}$	$-\frac{\pi}{R_L} \frac{\pi}{R_L} \frac{R_L}{\nu_{\tau}}$	(0.0010 ± 0.0002) 10
$\pi^-\pi^{0}K_{S}^{0}K_{L}^{0}\nu_{\tau}$	$(0.0327 \pm 0.0119) \cdot 10^{-2}$	• 42 modes (PDG 2015 ha	as 31)
$\bar{K}^{0}h^{-}h^{-}h^{+}\nu_{\tau}$	$(0.0255 \pm 0.0199) \cdot 10^{-2}$		13 31)
$\pi^-\pi^-\pi^+\nu_{\tau}$ (ex. K^0, ω)	$(8.9911 \pm 0.0511) \cdot 10^{-2}$	 unitarity is enforced in the 	he fit
$\pi^{-}\pi^{-}\pi^{+}\pi^{0}\nu_{\tau}$ (ex. K^{0}, ω) $h^{-}h^{-}h^{+}2\pi^{0}\nu_{\tau}$ (ex. K^{0}, ω)	$(2.7384 \pm 0.0710) \cdot 10^{-2}$ (0.0070 + 0.0357) $\cdot 10^{-2}$	• w/o enforcement, $1 - \sum$	$B_i = (0.091 \pm 0.106)\%$
$n n n 2\pi \nu_{\tau} (ex. K, \omega, \eta)$	(0.0515 ± 0.0351).10		

Most recent measurements in HFAG fit, high multiplicity final states

BABAR PRD 86, 092010 (2012) Study of high-multiplicity 3-prong and 5-prong tau decays at BABAR

 $\Gamma_{811} = \pi^{-} 2\pi^{0} \omega \nu_{\tau}$ (ex. K^{0}) $(7.3 \pm 1.2 \pm 1.2) \cdot 10^{-5}$ $\Gamma_{812} = 2\pi^{-}\pi^{+}3\pi^{0}\nu_{\tau}$ (ex. $K^{0}, \eta, \omega, f_{1}$) $(0.1 \pm 0.08 \pm 0.30) \cdot 10^{-4}$ $\Gamma_{821} = 3\pi^{-}2\pi^{+}\nu_{\tau}$ (ex. K^{0}, ω, f_{1}) $(7.68 \pm 0.04 \pm 0.40) \cdot 10^{-4}$ $\Gamma_{822} = K^{-}2\pi^{-}2\pi^{+}\nu_{\tau}$ (ex. K^{0}) $(0.6 \pm 0.5 \pm 1.1) \cdot 10^{-6}$ $\Gamma_{831} = 2\pi^{-}\pi^{+}\omega\nu_{\tau}$ (ex. K^{0}) $(8.4 \pm 0.4 \pm 0.6) \cdot 10^{-5}$ $\Gamma_{832} = 3\pi^{-}2\pi^{+}\pi^{0}\nu_{\tau}$ (ex. $K^{0}, \eta, \omega, f_{1}$) $(0.36 \pm 0.03 \pm 0.09) \cdot 10^{-4}$ $\Gamma_{833} = K^{-} 2\pi^{-} 2\pi^{+} \pi^{0} \nu_{\tau}$ (ex. K^{0}) $(1.1 \pm 0.4 \pm 0.4) \cdot 10^{-6}$ $\Gamma_{910} = 2\pi^{-}\pi^{+}\eta\nu_{\tau} \ (\eta \to 3\pi^{0}) \ (\text{ex. } K^{0})$ $(8.27 \pm 0.88 \pm 0.81) \cdot 10^{-5}$ $\Gamma_{911} = \pi^{-} 2\pi^{0} \eta \nu_{\tau} \ (\eta \to \pi^{+} \pi^{-} \pi^{0}) \ (\text{ex. } K^{0})$ $(4.57 \pm 0.77 \pm 0.50) \cdot 10^{-5}$ $(5.20 \pm 0.31 \pm 0.37) \cdot 10^{-5}$ $\Gamma_{920} = \pi^{-} f_1 \nu_{\tau} (f_1 \rightarrow 2\pi^{-} 2\pi^{+})$ $\Gamma_{930} = 2\pi^{-}\pi^{+}\eta\nu_{\tau} \ (\eta \to \pi^{+}\pi^{-}\pi^{0}) \ (\text{ex. } K^{0})$ $(5.39 \pm 0.27 \pm 0.41) \cdot 10^{-5}$ $\Gamma_{944} = 2\pi^- \pi^+ \eta \nu_\tau \ (\eta \to \gamma \gamma) \ (\text{ex. } K^0)$ $(8.26 \pm 0.35 \pm 0.51) \cdot 10^{-5}$

Most recent measurements in HFAG fit, modes $au o X \ge 1 K_S^0 \nu_{ au}$

BABAR PRD 86, 092013 (2012) The branching fraction of $\tau \to \pi^- K^0_S K^0_S(\pi^0) \nu$ decays

$\Gamma_{47} = \pi^- K_S^0 K_S^0 \nu_\tau$	$(2.31 \pm 0.04 \pm 0.08) \cdot 10^{-4}$
$\Gamma_{50} = \pi^{-} \pi^{\bar{0}} K_{S}^{\bar{0}} K_{S}^{0} \nu_{\tau}$	$(1.60 \pm 0.20 \pm 0.22) \cdot 10^{-5}$

Belle PRD 89, 072009 (2014) Measurements of Branching Fractions of τ decays with $\geq 1 \ K_s^0$

$\Gamma_{35} = \pi^- \bar{K}^0 \nu_\tau$	$8.32 \cdot 10^{-3} \pm 0.3\% \pm 1.8\%$
$\Gamma_{37} = K^- K^0 \nu_{\tau}$	$14.8\cdot 10^{-4}\pm 0.9\%\pm 3.7\%$
$\Gamma_{40} = \pi^- \bar{K}^0 \pi^0 \nu_\tau$	$3.86\cdot 10^{-3}\pm 0.8\%\pm 3.5\%$
$\Gamma_{42} = K^- \pi^0 K^0 \nu_\tau$	$14.96\cdot 10^{-4}\pm 1.3\%\pm 4.9\%$
$\Gamma_{47} = \pi^{-} K_{S}^{0} K_{S}^{0} \nu_{\tau}$	$2.33\cdot 10^{-4}\pm 1.4\%\pm 4.0\%$
$\Gamma_{50} = \pi^{-} \pi^{0} K^{0}_{S} K^{0}_{S} \nu_{\tau}$	$2.00\cdot 10^{-5}\pm 10.8\%\pm 10.1\%$

Tau Decay Measurements

Improvements from recent K_S^0 BFs results

• 2 BABAR preliminary results are shown above, but not used in HFAG 2016 prelim. fit

2.5

 $B(\tau \rightarrow \pi K_r K_r v) [x 10^4]$

 2.3000 ± 0.5800

HFAG

2016 prelim.

15

 1.4500 ± 0.4100

HFAG

2016 prelim.

 $B(\tau^{\circ} \rightarrow K^{\circ} \pi^{0} K^{0} \nu)$ [x 10⁻³]

2.0000 ± 0.2200 ± 0.2000

HFAG

2016 prelim.

 $B(\tau \rightarrow \pi K_s K_s \pi^0 \nu)$ [x 10⁻⁵

Measurement pulls - HFAG 2016 prelim., no scaling

- two outliers: BABAR and Belle $B(\tau \to K^- K^- K^+ \nu_{\tau})$ results
- (probabilities expressed as n. of Gaussian sigma's)
- rightmost plot: pull probability by measurement, should that pull be the maximum of n.d.o.f. Gaussian pulls: apply scaling for $P_{\max}(\text{pull}_i) > 3\sigma$

Impact of BABAR and Belle B-factories - HFAG 2016 prelim.

B-factories improved small BFs, not large BFs

- cannot select tau events with just one hemisphere with good efficiency and purity
- lower hadronic multiplicity \Rightarrow more difficult to discriminate $\tau\tau$ vs. hadrons
- less precise knowledge of the luminosity

B-factories tend to measure lower BFs

- updated plots of feature mentioned in PDG reviews
- results with no *B*-factories inputs obtained with the HFAG fit techniques (PDG reviews use old enough PDG editions results)

New Vistas in Low-Energy Precision Physics (LEPP), 4-7 April 2016, Mainz, Germany

Leptonic branching fractions - HFAG 2016 prelim.

Tau Decay Measurements

Tau radiative leptonic decays ($E_{\gamma} > 10\,{ m MeV})$

- (see also M.Passera presentation in this workshop)
- CLEO 2000: T. Bergfeld et al., PRL 84 (2000) 830
- BABAR 2015: PRD 91, 051103 (2015)
- Fael & Passera 2015: NLO calculation, JHEP 07 (2015) 153, arXiv:1602.00457 [hep-ph]
- 3.5 σ discrepancy between BABAR 2015 and NLO calculation, to be investigated

ALEPH non-strange spectral functions, 2005, revised in 2014

• Davier, Höcker, Malaescu, Yuan, Zhang, EPJC 74 (2014)

OPAL non-strange spectral functions, 1999

• OPAL coll., EPJC 7 (1999)

ALEPH and OPAL strange V + A spectral functions

New Vistas in Low-Energy Precision Physics (LEPP), 4-7 April 2016, Mainz, Germany

B-factories $\tau \rightarrow K \pi \nu V + A$ spectral functions

Alberto Lusiani – Pisa

Tau Decay Measurements

BABAR au ightarrow hhh u spectral functions

New Vistas in Low-Energy Precision Physics (LEPP), 4-7 April 2016, Mainz, Germany

Belle $au o h {\sf K}^0_S \pi^0 u \, {\sf V} + {\sf A}$ spectral functions

Lepton Flavour Violation results

Introduction

- searches for LFV are powerful and clean probe for New Physics effects
- B-Factories are best facilities to search for LFV tau decays
- LFV tau decays are easier to detect than SM tau decays
 - typically no undetected neutrinos
 - reconstructed decay products invariant mass peaks at tau mass
 - ► reconstructed decay products energy in CM-frame peaks at half the event energy

Most recent LFV searches results from the *B*-Factories

- BaBar au
 ightarrow 3 leptons, PRD 81 (2010) 111101
- Belle au
 ightarrow 3 leptons, PLB 687 (2010) 139
- Belle $\tau \rightarrow \ell K_S^0$, $\tau \rightarrow \ell K_S^0 K_S^0$, PLB 692 (2010) 4
- Belle $au
 ightarrow \ell V$, PLB 699 (2011) 251
- Belle $au
 ightarrow \ell h h'$, PLB 719 (2013) 346

Tau LFV branching fractions upper limits

HFAG combined a subset of tau LFV upper limits

New Vistas in Low-Energy Precision Physics (LEPP), 4-7 April 2016, Mainz, Germany

Tau LFV expected upper limits for BelleII

(plot from M. Barret, FPCP 2015)

• . . .

Other measurements

- *CP* violation in $\tau \rightarrow K_S \pi \nu$
- Michel parameters (structure of EW tau decay)
- tau in decay of B, Higgs and other particles

Elaborations of tau branching fractions and spectral functions

- lepton universality tests
- + α_s (see also E.Passemar, this Workshop, and March 2016 Mainz QCD Workshop)
- muon g-2 hadronic contribution (see also March 2016 Mainz QCD Workshop)
- |V_{us}| (see also March 2016 Mainz QCD Workshop)
- fits on moments of spectral functions
 - provide uncalculable QCD predictions
 - include non-perturbative terms
 - help estimating truncated terms in OPE

Lepton universality - HFAG 2016 prelim.

Standard Model for leptons λ , $\rho = e, \mu, \tau$ (Marciano 1988)

$$\begin{split} \Gamma[\lambda \to \nu_{\lambda} \rho \overline{\nu}_{\rho}(\gamma)] &= \Gamma_{\lambda\rho} = \Gamma_{\lambda} B_{\lambda\rho} = \frac{B_{\lambda\rho}}{\tau_{\lambda}} = \frac{G_{\lambda} G_{\rho} m_{\lambda}^{5}}{192 \pi^{3}} f\left(\frac{m_{\rho}^{2}}{m_{\lambda}^{2}}\right) r_{W}^{\lambda} r_{\gamma}^{\lambda} , \\ G_{\lambda} &= \frac{g_{\lambda}^{2}}{4\sqrt{2}M_{W}^{2}} \qquad f(x) = 1 - 8x + 8x^{3} - x^{4} - 12x^{2} \ln x \quad f_{\lambda\rho} = f\left(\frac{m_{\rho}^{2}}{m_{\lambda}^{2}}\right) \end{split}$$
where
$$\begin{array}{c} & & & \\ &$$

$$r_W^\lambda = 1 + rac{3}{5}rac{m_\lambda^2}{M_W^2}$$
 $r_\gamma^\lambda = 1 + rac{lpha(m_\lambda)}{2\pi}\left(rac{25}{4} - \pi^2
ight)$

Tests of lepton universality from ratios of above partial widths:

$$\begin{pmatrix} \frac{g_{\tau}}{g_{\mu}} \end{pmatrix} = \sqrt{\frac{B_{\tau e}}{B_{\mu e}}} \frac{\tau_{\mu} m_{\tau}^{5} f_{\mu e} r_{W}^{\mu} r_{\gamma}^{\mu}}{\tau_{\tau} m_{\tau}^{5} f_{\tau e} r_{W}^{\tau} r_{\gamma}^{\tau}} = 1.0012 \pm 0.0015 = \sqrt{\frac{B_{\tau e}}{B_{\tau e}^{SM}}}$$

$$\begin{pmatrix} \frac{g_{\tau}}{g_{e}} \end{pmatrix} = \sqrt{\frac{B_{\tau \mu}}{B_{\mu e}}} \frac{\tau_{\mu} m_{\tau}^{5} f_{\mu e} r_{W}^{\mu} r_{\gamma}^{\mu}}{\tau_{\tau} m_{\tau}^{5} f_{\tau \mu} r_{W}^{\tau} r_{\gamma}^{\tau}} = 1.0030 \pm 0.0014 = \sqrt{\frac{B_{\tau \mu}}{B_{\tau \mu}^{SM}}}$$

$$\begin{pmatrix} \frac{g_{\mu}}{g_{e}} \end{pmatrix} = \sqrt{\frac{B_{\tau \mu}}{B_{\tau e}}} \frac{f_{\tau e}}{f_{\tau \mu}} = 1.0019 \pm 0.0014$$

 precision: 0.20-0.23% pre-B-Factories ⇒ 0.14-0.15% today thanks essentially to the Belle tau lifetime measurement, PRL 112 (2014) 031801

• $r_{\gamma}^{\tau} = 1 - 43.2 \cdot 10^{-4}$ and $r_{\gamma}^{\mu} = 1 - 42.4 \cdot 10^{-4}$ (Marciano 1988), M_W from PDG 2013

New Vistas in Low-Energy Precision Physics (LEPP), 4-7 April 2016, Mainz, Germany

Coupling constants ratios uncertainties contributions - HFAG 2016 prelim.

quantity	uncertainty	contribution
$ au_{ au}$	0.18%	0.090%
$B_{ au ightarrow\mu,e}$	0.23%	0.115%
$m_{ au}$	0.009%	0.022%

Universality improved $B(au o e
u ar{
u})$ and $R_{ ext{had}}$ - HFAG 2016 prelim.

Universality improved $B(au o e u ar{ u})$

- (M. Davier, 2005): assume SM lepton universality to improve $B_e = B(\tau \to e \bar{\nu}_e \nu_\tau)$ fit B_e using three determinations:
 - $B_e = B_e$
 - $B_e = B_\mu \cdot f(m_e^2/m_\tau^2)/f(m_\mu^2/m_\tau^2)$
 - $B_e = B(\mu \to e\bar{\nu}_e \nu_\mu) \cdot (\tau_\tau/\tau_\mu) \cdot (m_\tau/m_\mu)^5 \cdot f(m_e^2/m_\tau^2) / f(m_e^2/m_\mu^2) \cdot (\delta_\gamma^\tau \delta_W^\tau) / (\delta_\gamma^\mu \delta_W^\mu)$ [above we have: $B(\mu \to e\bar{\nu}_e \nu_\mu) = 1$]
- $B_e^{
 m univ} = (17.818 \pm 0.022)\%$ HFAG-PDG 2016 prelim. fit

$R_{ m had} = \Gamma(au ightarrow m hadrons) / \Gamma_{ m univ}(au ightarrow e u ar{ u})$

•
$$R_{\text{had}} = \frac{\Gamma(\tau \to \text{hadrons})}{\Gamma_{\text{univ}}(\tau \to e\nu\bar{\nu})} = \frac{B_{\text{hadrons}}}{B_e^{\text{univ}}} = \frac{1 - B_e^{\text{univ}} - f(m_{\mu}^2/m_{\tau}^2)/f(m_e^2/m_{\tau}^2) \cdot B_e^{\text{univ}}}{B_e^{\text{univ}}}$$

▶ two different determinations, second one not "contaminated" by hadronic BFs

- $\textit{R}_{had} = 3.6359 \pm 0.0074$ HFAG-PDG 2016 prelim. fit
- $R_{\text{had}}(\text{leptonic BFs only}) = 3.6397 \pm 0.0070$ HFAG-PDG 2016 prelim. fit

Lepton Universality tests with hadron decays - HFAG 2016 prelim.

Standard Model:

$$\left(\frac{g_{\tau}}{g_{\mu}}\right)^2 = \frac{B(\tau \to h\nu_{\tau})}{B(h \to \mu\bar{\nu}_{\mu})} \frac{2m_h m_{\mu}^2 \tau_h}{(1 + \delta_h) m_{\tau}^2 \tau_{\tau}} \left(\frac{1 - m_{\mu}^2/m_h^2}{1 - m_h^2/m_{\tau}^2}\right)^2 \quad (h = \pi \text{ or } K)$$

rad. corr. $\delta_{\pi} = (0.16 \pm 0.14)\%$, $\delta_{\kappa} = (0.90 \pm 0.22)\%$ (Decker 1994)

$$\left(rac{g_{ au}}{g_{\mu}}
ight)_{\pi} = 0.9966 \pm 0.0026 \;, \qquad \quad \left(rac{g_{ au}}{g_{\mu}}
ight)_{\kappa} = 0.9865 \pm 0.0071 \;.$$

(electron tests less precise because hadron two body decays to electrons are helicity-suppressed) Averaging the three g_{τ}/g_{μ} ratios:

 $\left(rac{g_{ au}}{g_{\mu}}
ight)_{ au+\pi+K} = 1.0002 \pm 0.0014$, (accounting for statistical correlations)

[recent useful contribution from BABAR $\frac{K^- \nu_{\tau}}{e^- \bar{\nu}_e \nu_{\tau}}$ measurement, PRL 105 (2010) 051602]

Determination of $|V_{us}|$ from experimental data

from kaon decays

•
$$\Gamma(K \to \pi \ell \bar{\nu}_{\ell}[\gamma]) = \frac{G_{F}^{2} m_{K}^{K}}{192\pi^{3}} C_{K}^{2} S_{\rm EW}^{K} \left(|V_{us}| f_{+}^{K\pi}(0) \right)^{2} I_{K}^{\ell} \left(1 + \delta_{\rm EM}^{K\ell} + \delta_{\rm SU(2)}^{K\pi} \right)^{2}$$

• $\frac{\Gamma(K^{\pm} \to \ell^{\pm} \nu)}{\Gamma(\pi^{\pm} \to \ell^{\pm} \nu)} = \frac{|V_{us}|^{2}}{|V_{ud}|^{2}} \frac{f_{K}^{2}}{f_{\pi}^{2}} \frac{m_{K}(1 - m_{\ell}^{2}/m_{K}^{2})^{2}}{m_{\pi}(1 - m_{\ell}^{2}/m_{\pi}^{2})^{2}} (1 + \delta_{\rm EM})$

from tau decays

•
$$\frac{R(\tau \to X_{\text{strange}})}{|V_{us}|^2} - \frac{R(\tau \to X_{\text{non-strange}})}{|V_{ud}|^2} = \delta R_{\tau,\text{SU3 breaking}}, \text{ "tau inclusive"} [R(\tau \to X) = \Gamma(\tau \to X)/\Gamma(\tau \to e\nu\overline{\nu})]$$

•
$$\frac{B(\tau^- \to K^-\nu_{\tau})}{B(\tau^- \to \pi^-\nu_{\tau})} = \frac{f_{\kappa}^2 |V_{us}|^2}{f_{\pi}^2 |V_{ud}|^2} \frac{(1 - m_{\kappa}^2/m_{\tau}^2)^2}{(1 - m_{\pi}^2/m_{\tau}^2)^2} \frac{n_{\text{LD}}(\tau^- \to K^-\nu_{\tau})}{n_{\text{LD}}(\tau^- \to \pi^-\nu_{\tau})}$$

•
$$B(\tau^- \to K^-\nu_{\tau}) = \frac{G_F^2 f_{\kappa}^2 |V_{us}|^2 m_{\tau}^3 \tau_{\tau}}{16\pi\hbar} \left(1 - \frac{m_{\kappa}^2}{m_{\tau}^2}\right)^2 S_{EW}^{\tau K}$$

•
$$\Gamma(\tau \to \bar{K}\pi\nu_{\tau}[\gamma]) = \frac{G_F^2 m_{\tau}^5}{96\pi^3} C_K^2 S_{EW}^{\tau K\pi} \left(|V_{us}|f_{+}^{K\pi}(0)\right)^2 I_K^{\tau} \left(1 + \delta_{\text{EM}}^{K\tau} + \tilde{\delta}_{\text{SU}(2)}^{K\pi}\right)^2$$

New Vistas in Low-Energy Precision Physics (LEPP), 4-7 April 2016, Mainz, Germany

"tau inclusive" $|V_{us}|$ determination

$$\frac{R(\tau \to X_{\text{strange}})}{|V_{us}|^2} - \frac{R(\tau \to X_{\text{non-strange}})}{|V_{ud}|^2} = \delta R_{\tau,\text{SU3 breaking}}$$

- $\delta R_{\tau, SU3 \text{ breaking}}$ can be computed with OPE
 - finite-energy sum rules (FESR) with either fixed-order (FOPT) or contour-improved (CIPT) prescriptions
 - strong dependence from *m_s*
 - problematic convergence requires special treatment
 - ▶ non-pert. terms fitted / estimated using tau spectral functions moments
 - assumptions on D>4 OPE contributions
- input $|V_{us}|$ and compute m_s , Pich & Prades, hep-ph/9909244
- input m_s and compute $|V_{us}|$
 - ► Gamiz, Jamin, Pich, Prades, Schwab, hep-ph/0212230, hep-ph/0408044,
 - Maltman, 1011.6391 [hep-ph]
 - ► Maltman (Lattice 2015, 1510.06954 [hep-ph], Mainz QCD Workshop in March 2016
 - fit of $|V_{us}|$ and D>4 condensates on moments of tau spectral functions
 - use QCD lattice to quantify OPE truncation error

Tau branching fractions to strange final states, HFAG 2016 prelim.

Branching fraction	HFAG-PDG 2016 prelim. fit
$\Gamma_{10} = K^- \nu_{\tau}$	$(0.6965 \pm 0.0097) \cdot 10^{-2}$
$\Gamma_{16} = K^- \pi^0 \nu_{\tau}$	$(0.4330 \pm 0.0148) \cdot 10^{-2}$
$\Gamma_{23} = K^- 2\pi^0 \nu_\tau \text{ (ex. } K^0 \text{)}$	$(0.0652 \pm 0.0218) \cdot 10^{-2}$
$\Gamma_{28} = K^{-} 3 \pi^{0} \nu_{\tau} \text{ (ex. } K^{0}, \eta)$	$(0.0483 \pm 0.0212) \cdot 10^{-2}$
$\Gamma_{35} = \pi^- \bar{K}^0 \nu_\tau$	$(0.8398 \pm 0.0140) \cdot 10^{-2}$
$\Gamma_{40} = \pi^- \bar{K}^0 \pi^0 \nu_\tau$	$(0.3823 \pm 0.0129) \cdot 10^{-2}$
$\Gamma_{44} = \pi^- \bar{K}^0 \pi^0 \pi^0 \nu_{\tau} \text{ (ex. } K^0 \text{)}$	$(0.0272 \pm 0.0226) \cdot 10^{-2}$
$\Gamma_{53} = \bar{K}^0 h^- h^- h^+ \nu_\tau$	$(0.0255 \pm 0.0199) \cdot 10^{-2}$
$\Gamma_{128} = K^- \eta \nu_{\tau}$	$(0.0155 \pm 0.0008) \cdot 10^{-2}$
$\Gamma_{130} = K^- \pi^0 \eta \nu_\tau$	$(0.0048 \pm 0.0012) \cdot 10^{-2}$
$\Gamma_{132} = \pi^- \bar{K}^0 \eta \nu_\tau$	$(0.0094 \pm 0.0015) \cdot 10^{-2}$
$\Gamma_{151} = K^- \omega \nu_\tau$	$(0.0410 \pm 0.0092) \cdot 10^{-2}$
$\Gamma_{801} = K^- \phi \nu_\tau (\phi \to KK)$	$(0.0037 \pm 0.0014) \cdot 10^{-2}$
$\Gamma_{802} = K^{-} \pi^{-} \pi^{+} \nu_{\tau} \; (\text{ex. } K^{0}, \omega)$	$(0.2930 \pm 0.0069) \cdot 10^{-2}$
$\Gamma_{803} = K^{-} \pi^{-} \pi^{+} \pi^{0} \nu_{\tau} \text{ (ex. } K^{0}, \omega, \eta)$	$(0.0395 \pm 0.0142) \cdot 10^{-2}$
$\Gamma_{822} = K^- 2\pi^- 2\pi^+ \nu_{ au}$ (ex. K^0)	$(0.0001 \pm 0.0001) \cdot 10^{-2}$
$\Gamma_{833} = K^- 2\pi^- 2\pi^+ \pi^0 \nu_{\tau}$ (ex. K^0)	$(0.0001 \pm 0.0001) \cdot 10^{-2}$
$\Gamma_{110} = X_s^- \nu_\tau$	$(2.9250 \pm 0.0443) \cdot 10^{-2}$

$|V_{us}|$ from $B(au o K\pi u)$

•
$$\Gamma(\tau \rightarrow \bar{K}\pi\nu_{\tau}[\gamma]) = \frac{G_F^2 m_{\tau}^5}{96\pi^3} C_K^2 S_{\mathsf{EW}}^{\tau} \left(|V_{us}|f_+^{K\pi}(0)\right)^2 I_K^{\tau} \left(1 + \delta_{\mathrm{EM}}^{K\pi} + \tilde{\delta}_{\mathrm{SU}(2)}^{K\pi}\right)^2$$

- M.Antonelli, V.Cirigliano, A.L., E.Passemar, arXiv:1304.8134 [hep-ph]
 - compute the phase space integrals, I_K^ℓ using $K\pi$ form factors
 - from $\tau \to K \pi \nu_{\tau}$ Belle '08 $K_S^0 \pi$ data
 - $K_{\ell 3}$ data may also be used for the low energy end of the integral
 - first estimate of the long-distance electromagnetic corrections ($\delta_{\rm EM}^{\kappa\tau}$) to $\tau \to \kappa \pi \nu_{\tau}$
 - isospin breaking corrections $(\tilde{\delta}_{SU(2)}^{\kappa\pi})$ for $\tau \to K^- \pi^0 \nu_{\tau}$ vs. $\tau \to K_S^0 \pi \nu_{\tau}$
 - ► f^{Kπ}₊(0) from FLAG 2013
 - $f_{+}^{K\pi}(0) |V_{us}| = 0.2141 \pm 0.0014_{IK\tau} \pm 0.0021_{exp}$
 - ► |V_{us}| = 0.2216 ± 0.0027 E. Passemar, CKM 2014
- V-Bernard, arXiv:1311.2569 [hep-ph]
 - First determination of $f_+(0)|V_{us}|$ from a combined analysis of
 - $au
 ightarrow K \pi
 u_{ au}$ decay and πK scattering with constraints from $K_{\ell 3}$ decays
 - global fit of tau and K data

Elaborations of tau results

Conclusions

- many useful tau measurements are available
- B-factories have large samples but
 - relatively unfavorable conditions
 - ▶ precision analyses require hard work and their results are just a piece in further elaborations (α_s , $|V_{us}|$, g-2 hadronic contribution)
- much more data will be available from Bellell in the near future
- manpower and organization are/will be essential to best exploit the available data

Backup Slides

New Vistas in Low-Energy Precision Physics (LEPP), 4-7 April 2016, Mainz, Germany