FROM COMPTON SCATTERING TO MUDNIC HY DROGEN AND BACK THE FUTURE

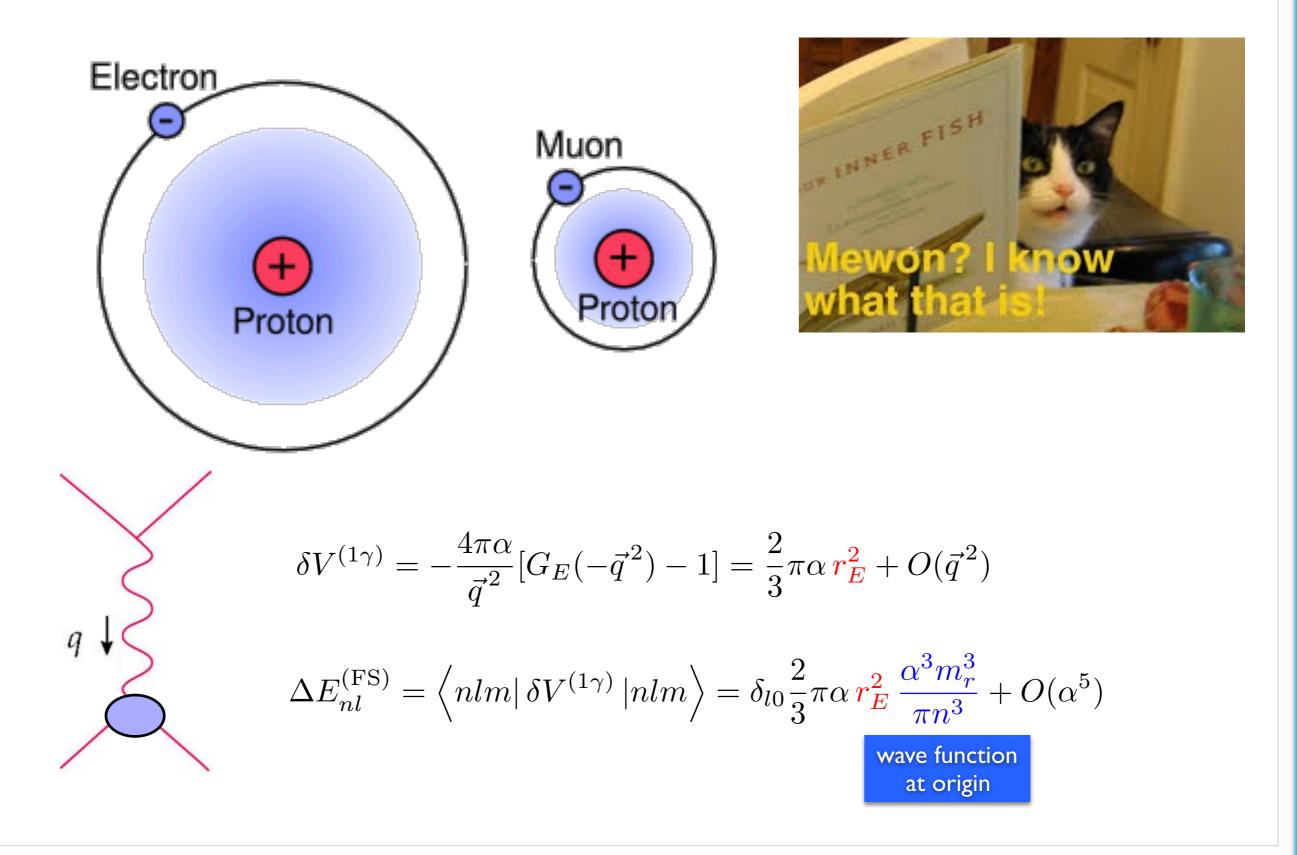
Vladimir Pascalutsa

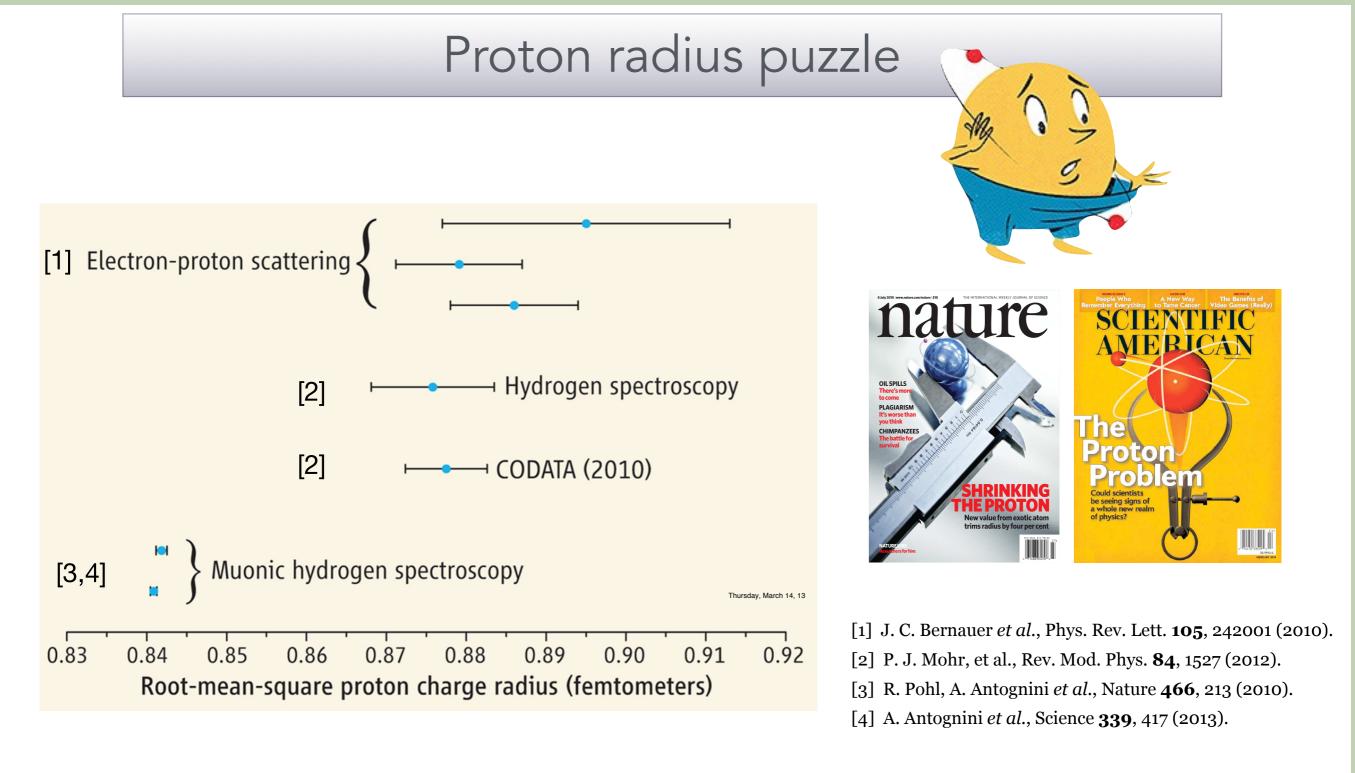
Institute for Nuclear Physics & PRISMA Cluster of Excellence University of Mainz, Germany

THE LOW-ENERGY FRONTIER OF THE STANDARD MODEL

@ Intl Workshop LEPP 2016 Mainz, Germany, Apr 4 - 7, 2016

Muonic hydrogen more sensitive to proton structure



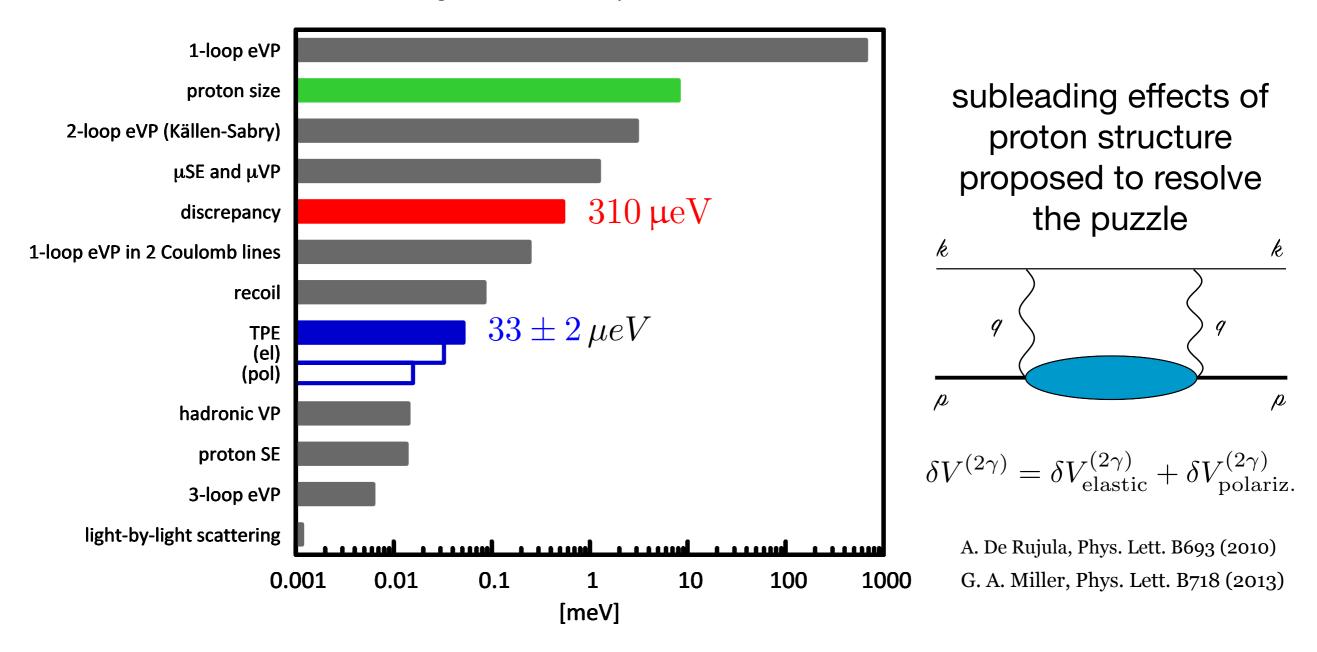


Muonic Hydrogen Lamb shift

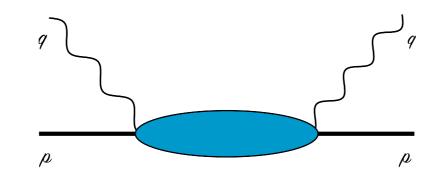
 $\Delta E_{\rm LS}^{\rm th} = 206.0668(25) - 5.2275(10) \, (R_E/{\rm fm})^2$

theory uncertainty: $2.5 \,\mu eV$

numerical values reviewed in: A. Antognini *et al.*, Annals Phys. **331**, 127-145 (2013).



Forward (doubly-virtua) Compton consocottoring required as input



Forward Compton scattering: $N(p) + \gamma(q) \rightarrow N(p) + \gamma(q)$, with either real or virtual photons.

Split into Born (elastic form factors) and non-Born (polarizabilities)

Traditional probe of the Proton — electron scattering

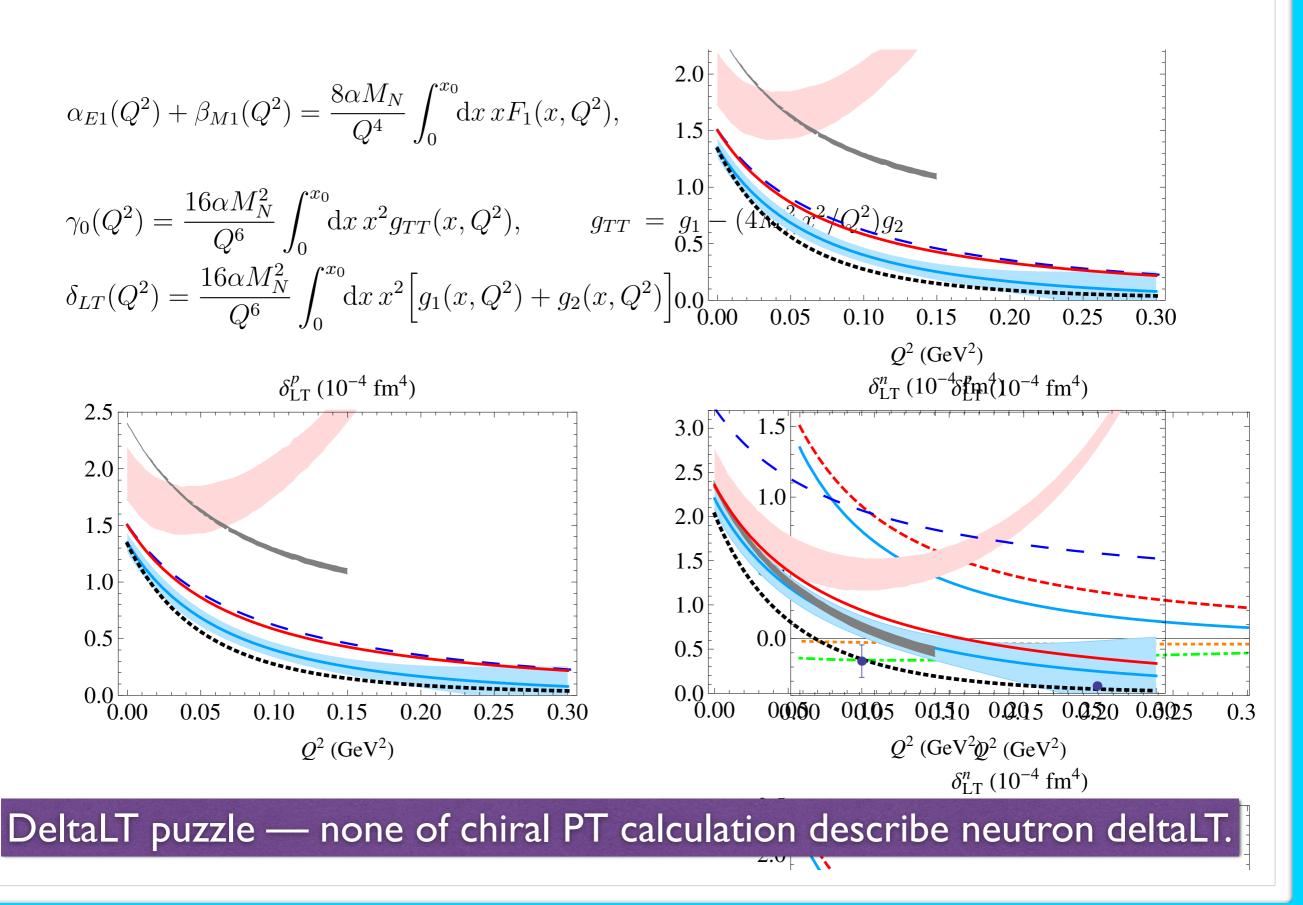
$$G_E = F_1 + \tau F_2, \quad G_M = F_1 + F_2.$$

Furthermore, δ is the Dirac delta-function, such that

 α_{rr1} (O^2 adimir Pascalate) - From Compton to multi π_1 EPP1 α_2 Mainz, Apr 6, 2016

 $O^2/2M$ 2M

Moments of the inelastic part — polarizabilities



Vladimir Pascalutsa — From Compton to muH — LEPP16 — Mainz, Apr 6, 2016

Virtual photons: 4 VVCS amplitudes

$$T_{1}(\nu, Q^{2}) = \frac{8\pi\alpha}{M} \int_{0}^{1} \frac{dx}{x} \frac{f_{1}(x, Q^{2})}{1 - x^{2}(\nu/\nu_{el})^{2} - i0^{+}} =$$

$$T_{2}(\nu, Q^{2}) = \frac{16\pi\alpha M}{Q^{2}} \int_{0}^{1} dx \frac{f_{2}(x, Q^{2})}{1 - x^{2}(\nu/\nu_{el})^{2} - i0^{+}}$$

$$S_{1}(\nu, Q^{2}) = \frac{16\pi\alpha M}{Q^{2}} \int_{0}^{1} dx \frac{g_{1}(x, Q^{2})}{1 - x^{2}(\nu/\nu_{el})^{2} - i0^{+}}$$

$$\nu S_{2}(\nu, Q^{2}) = \frac{16\pi\alpha M^{2}}{Q^{2}} \int_{0}^{1} dx \frac{g_{2}(x, Q^{2})}{1 - x^{2}(\nu/\nu_{el})^{2} - i0^{+}}$$

Real photons: 2 amplitudes, 2 photoabsorption cross sections

0.0

0.5

1.0

$$f(\nu) = -\frac{Z^2 \alpha}{M} + \frac{\nu^2}{2\pi^2} \int_0^\infty d\nu' \frac{\sigma_T(\nu')}{\nu'^2 - \nu^2 - i0^+}$$
$$g(\nu) = \frac{\nu}{2\pi^2} \int_0^\infty d\nu' \frac{\nu' \sigma_{TT}(\nu')}{\nu'^2 - \nu^2 - i0^+}.$$

600

500

400

200

100

 $\sigma_{abs}\left[\mu b\right]$

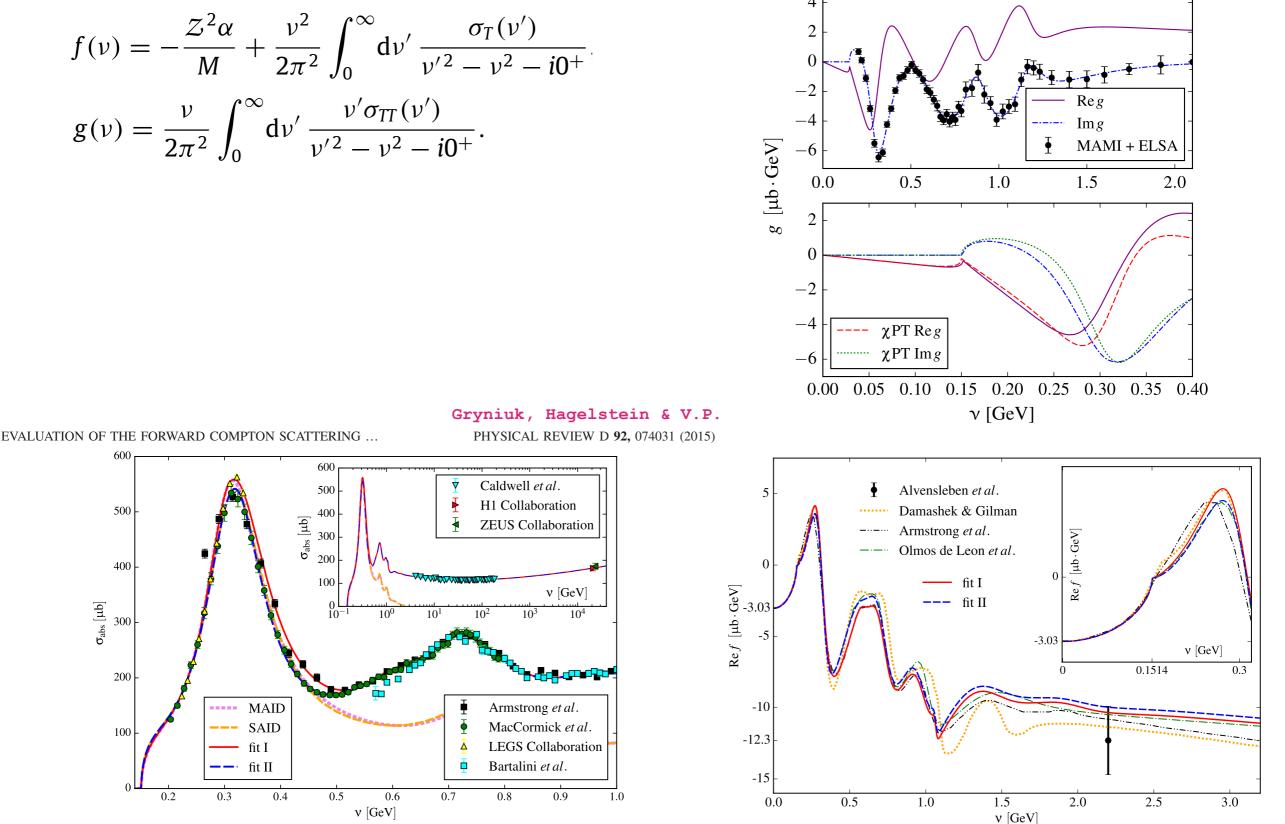
Gryniuk, Hagelstein & V.P., arXiv:1604.00789

1.5

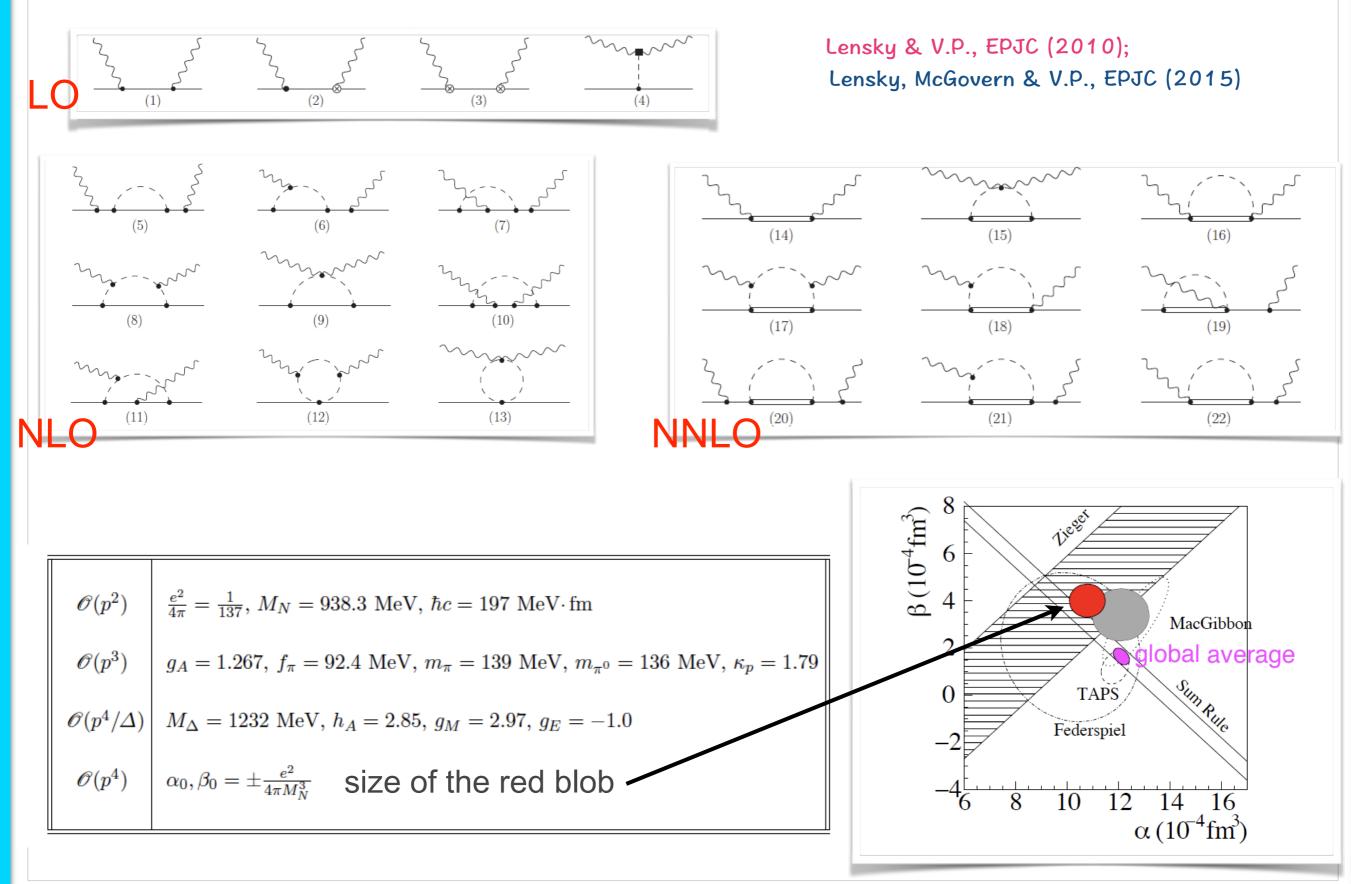
2.5

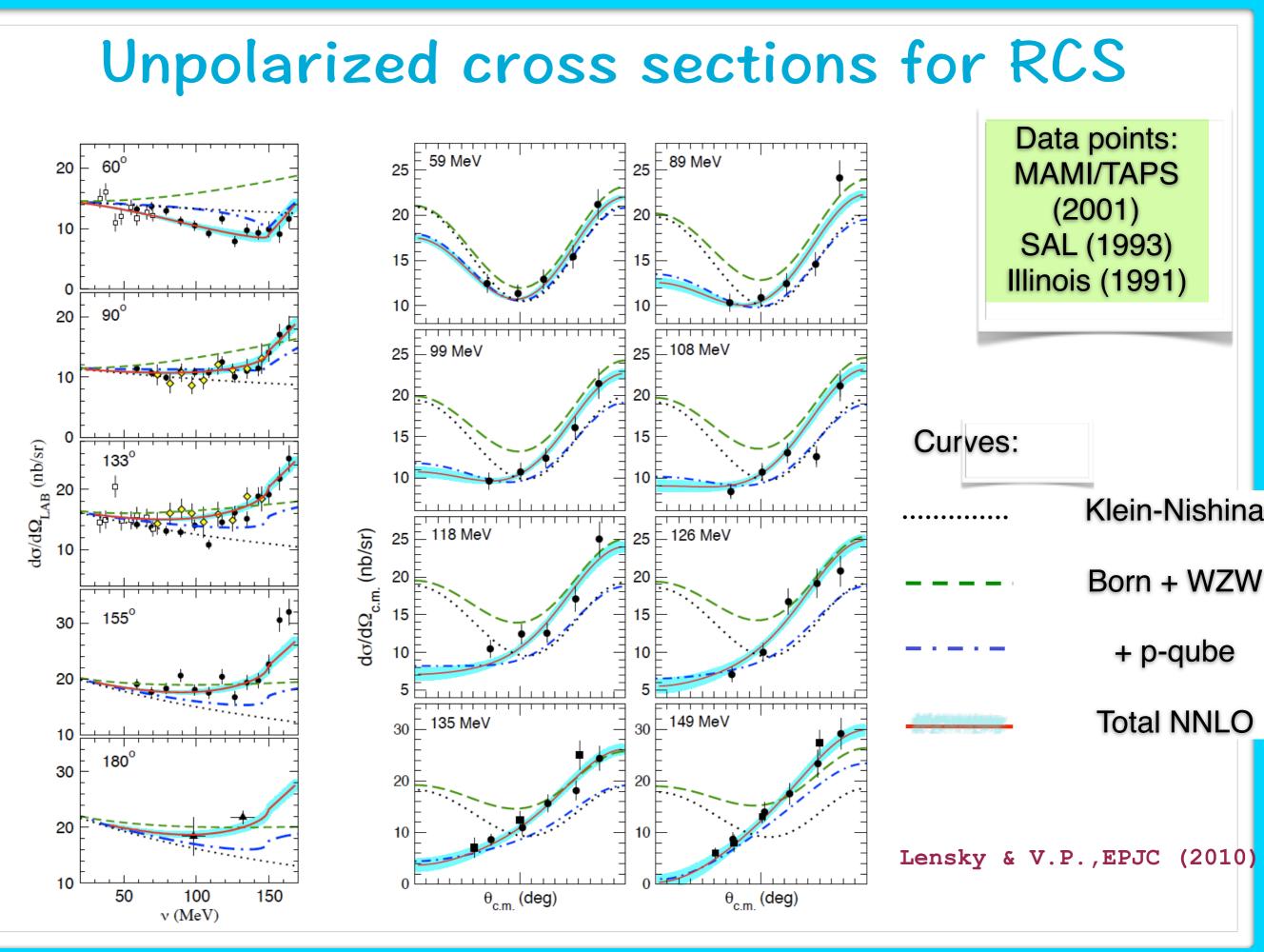
2.0

3.0



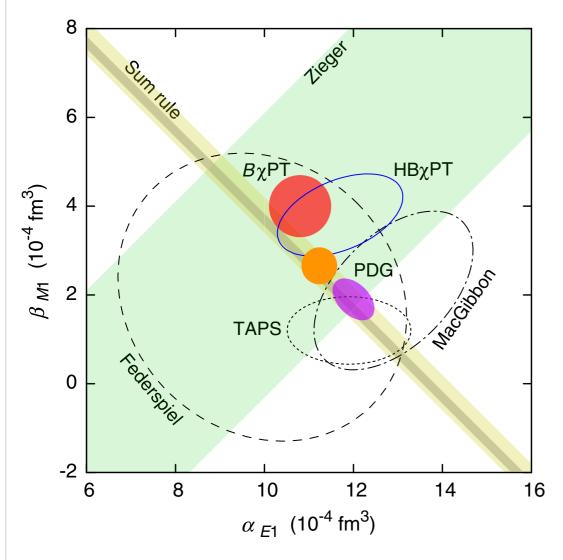
ChPT of Compton scattering off protons





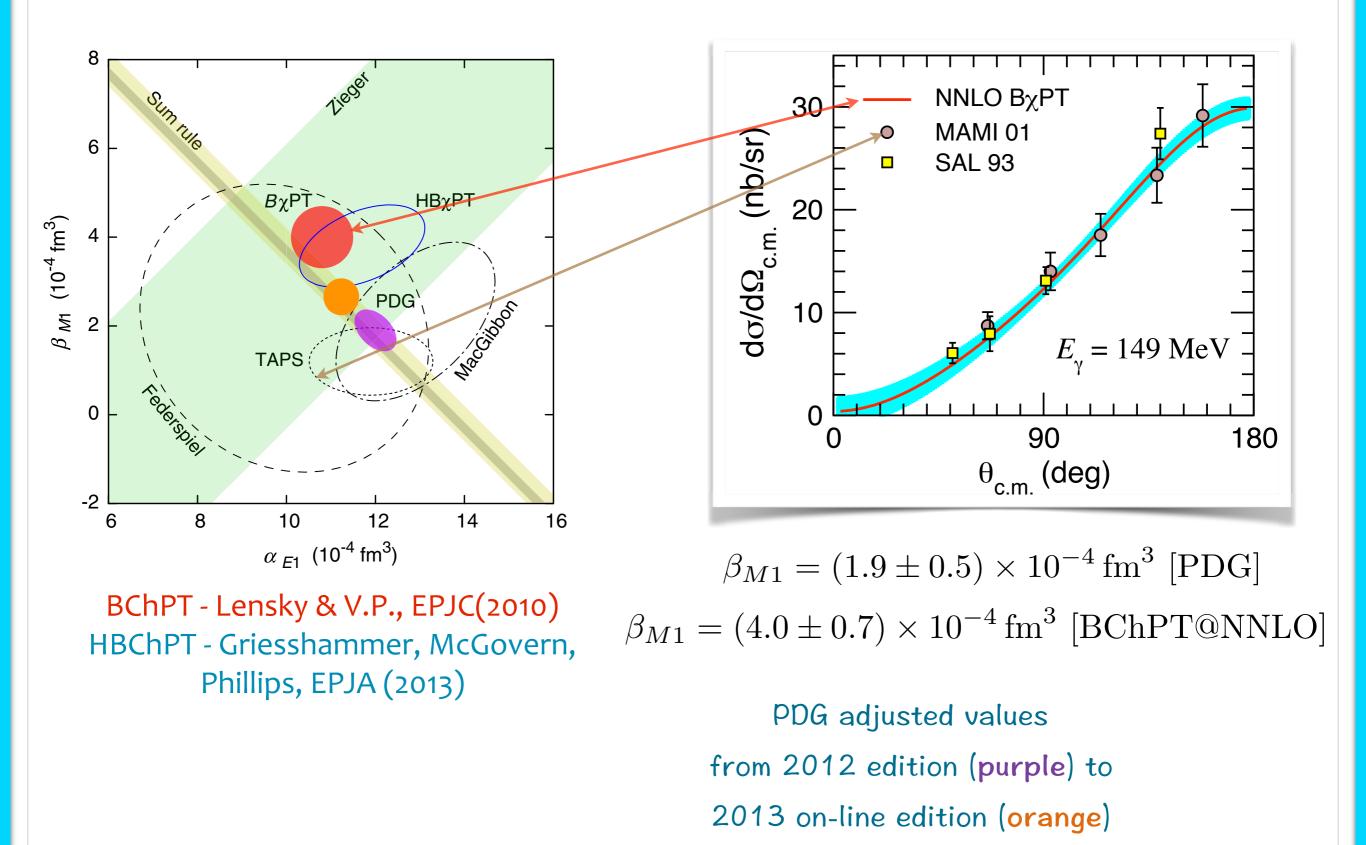
Vladimir Pascalutsa — From Compton to muH — LEPP16 — Mainz, Apr 6, 2016

Proton polarizabilities from Compton scattering

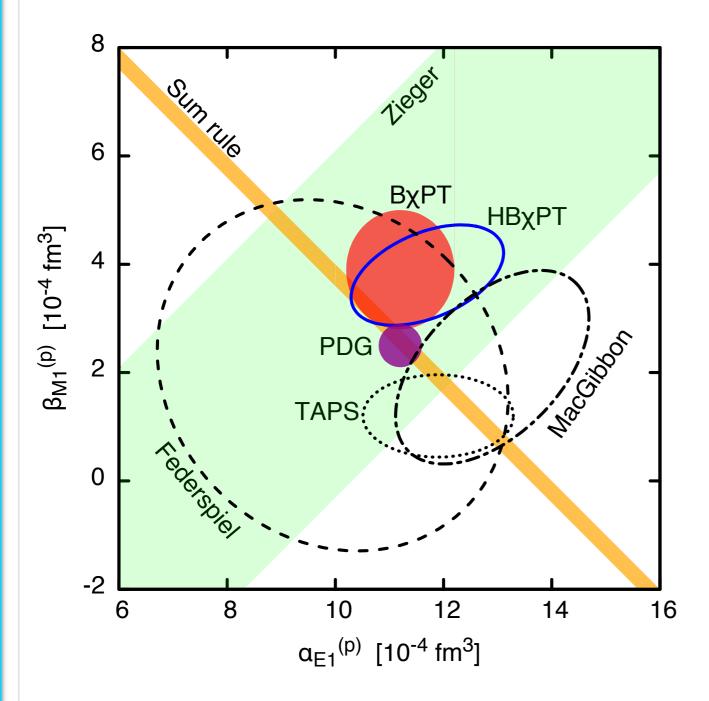


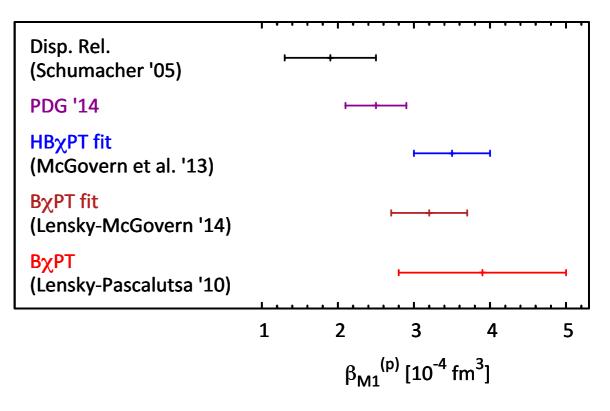
BChPT - Lensky & V.P., EPJC(2010) HBChPT - Griesshammer, McGovern, Phillips, EPJA (2013)

Proton polarizabilities from Compton scattering



Status of proton polarizabilities





Polarizability contribution in ChPT

Eur. Phys. J. C (2014) 74:2852 DOI 10.1140/epjc/s10052-014-2852-0 THE EUROPEAN PHYSICAL JOURNAL C

Regular Article - Theoretical Physics

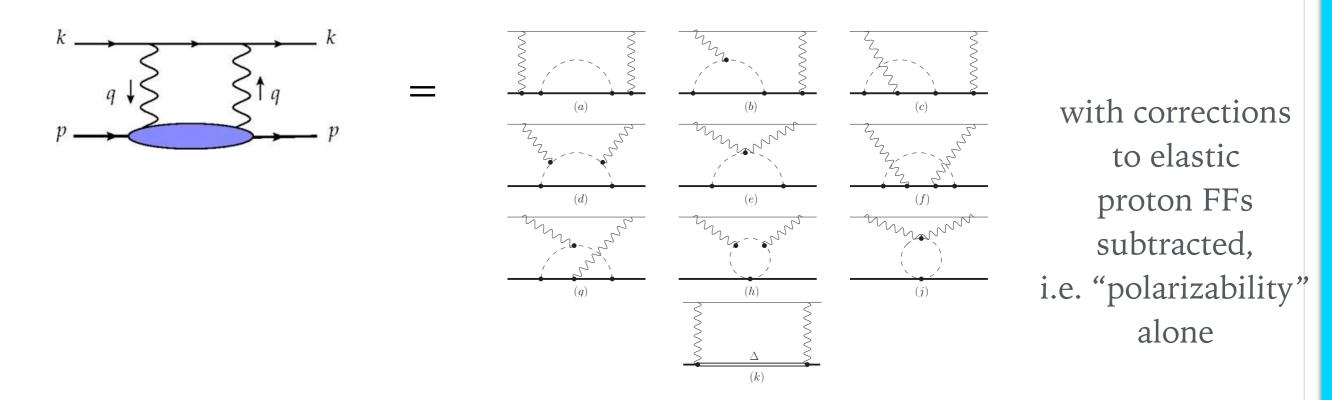
Chiral perturbation theory of muonic-hydrogen Lamb shift: polarizability contribution

Jose Manuel Alarcón^{1,a}, Vadim Lensky^{2,3}, Vladimir Pascalutsa¹

¹ Cluster of Excellence PRISMA Institut für Kernphysik, Johannes Gutenberg-Universität, Mainz 55099, Germany

² Theoretical Physics Group, School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK

³ Institute for Theoretical and Experimental Physics, Bol'shaya Cheremushkinskaya 25, 117218 Moscow, Russia



Proton polarizability effect in mu-H

[Alarcon

Heavy-Baryon (HB)ChPT							Lensky & VP, EPJC (2014)]	
(µeV)	Pachucki [9]	Martynenko [10]	Nevado and Pineda [11]	Carlson and Vanderhaeghen [12]	Birse and McGovern [13]	Gorchtein et al. [14]	LO-BχPT [this work]	
$\Delta E_{2S}^{(\mathrm{subt})}$	1.8	2.3	_	5.3 (1.9)	4.2 (1.0)	$-2.3 (4.6)^{a}$	-3.0	
$\Delta E_{2S}^{(\text{inel})}$	-13.9	-13.8	_	-12.7 (5)	-12.7 (5) ^b	-13.0 (6)	-5.2	
$\Delta E_{2S}^{(\text{pol})}$	-12 (2)	-11.5	-18.5	-7.4 (2.4)	-8.5 (1.1)	-15.3 (5.6)	$-8.2(^{+1.2}_{-2.5})$	

^a Adjusted value; the original value of Ref. [14], +3.3, is based on a different decomposition into the 'elastic' and 'polarizability' contributions
 ^b Taken from Ref. [12]

- [9] K. Pachucki, Phys. Rev. A 60, 3593 (1999).
- [10] A. P. Martynenko, Phys. Atom. Nucl. 69, 1309 (2006).
- [11] D. Nevado and A. Pineda, Phys. Rev. C 77, 035202 (2008).
- [12] C. E. Carlson and M. Vanderhaeghen, Phys. Rev. A 84, 020102 (2011).
- [13] M. C. Birse and J. A. McGovern, Eur. Phys. J. A 48, 120 (2012).
- [14] M. Gorchtein, F. J. Llanes-Estrada and A. P. Szczepaniak, Phys. Rev. A 87, 052501 (2013).

Proton polarizability effect in mu-H

[Alarcon

Heavy-Baryon (HB)ChPT							Lensky & VP, EPJC (2014)]	
(µeV)	Pachucki [9]	Martynenko [10]	Nevado and Pineda [11]	Carlson and Vanderhaeghen [12]	Birse and McGovern [13]	Gorchtein et al. [14]	LO-BχPT [this work]	
$\Delta E_{2S}^{(\mathrm{subt})}$	1.8	2.3	_	5.3 (1.9)	4.2 (1.0)	$-2.3 (4.6)^{a}$	-3.0	
$\Delta E_{2S}^{(\text{inel})}$	-13.9	-13.8	_	-12.7 (5)	-12.7 (5) ^b	-13.0 (6)	-5.2	
$\Delta E_{2S}^{(\text{pol})}$	-12 (2)	-11.5	-18.5	-7.4 (2.4)	-8.5 (1.1)	-15.3 (5.6)	$-8.2(^{+1.2}_{-2.5})$	

^a Adjusted value; the original value of Ref. [14], +3.3, is based on a different decomposition into the 'elastic' and 'polarizability' contributions
 ^b Taken from Ref. [12]

- [9] K. Pachucki, Phys. Rev. A **60**, 3593 (1999).
- [10] A. P. Martynenko, Phys. Atom. Nucl. 69, 1309 (2006).
- [11] D. Nevado and A. Pineda, Phys. Rev. C 77, 035202 (2008).
- [12] C. E. Carlson and M. Vanderhaeghen, Phys. Rev. A 84, 020102 (2011).
- [13] M. C. Birse and J. A. McGovern, Eur. Phys. J. A 48, 120 (2012).
- [14] M. Gorchtein, F. J. Llanes-Estrada and A. P. Szczepaniak, Phys. Rev. A 87, 052501 (2013).

$$\Delta E_{2S}^{(\text{pol})}(\text{LO-HB}\chi\text{PT}) \approx \frac{\alpha_{\text{em}}^5 m_r^3 g_A^2}{4(4\pi f_\pi)^2} \frac{m_\mu}{m_\pi} (1 - 10G + 6\log 2) = -16.1 \text{ }\mu\text{eV},$$

Proton polarizability effect in mu-H

[Alarcon

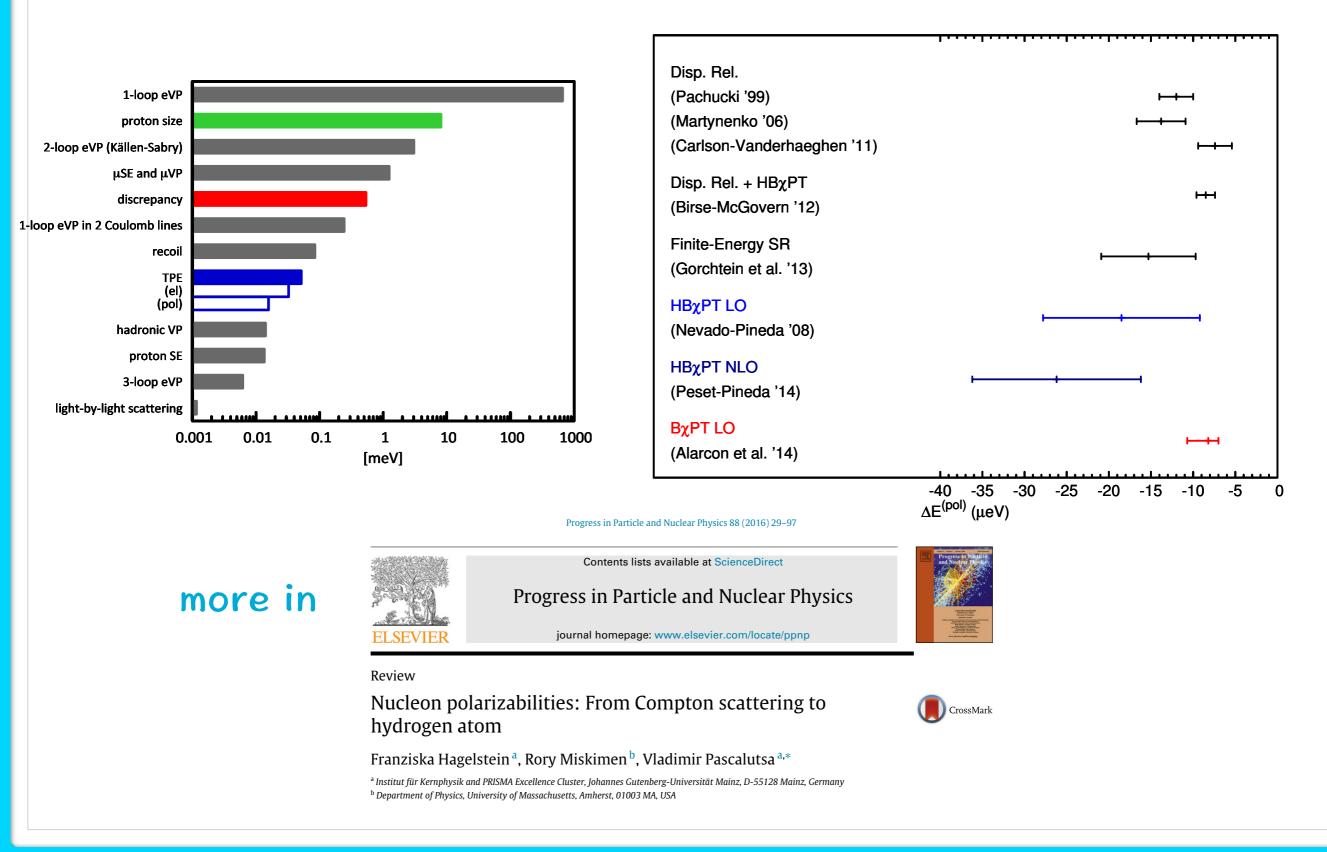
Heavy-Baryon (HB)ChPT							Lensky & VP, EPJC (2014)]	
(µeV)	Pachucki [9]	Martynenko [10]	Nevado and Pineda [11]	Carlson and Vanderhaeghen [12]	Birse and McGovern [13]	Gorchtein et al. [14]	LO-BχPT [this work]	
$\Delta E_{2S}^{(\mathrm{subt})}$	1.8	2.3	_	5.3 (1.9)	4.2 (1.0)	-2.3 (4.6) ^a	-3.0	
$\Delta E_{2S}^{(\text{inel})}$	-13.9	-13.8	_	-12.7 (5)	-12.7 (5) ^b	-13.0 (6)	-5.2	
$\Delta E_{2S}^{(\text{pol})}$	-12 (2)	-11.5	-18.5	-7.4 (2.4)	-8.5 (1.1)	-15.3 (5.6)	$-8.2(^{+1.2}_{-2.5})$	

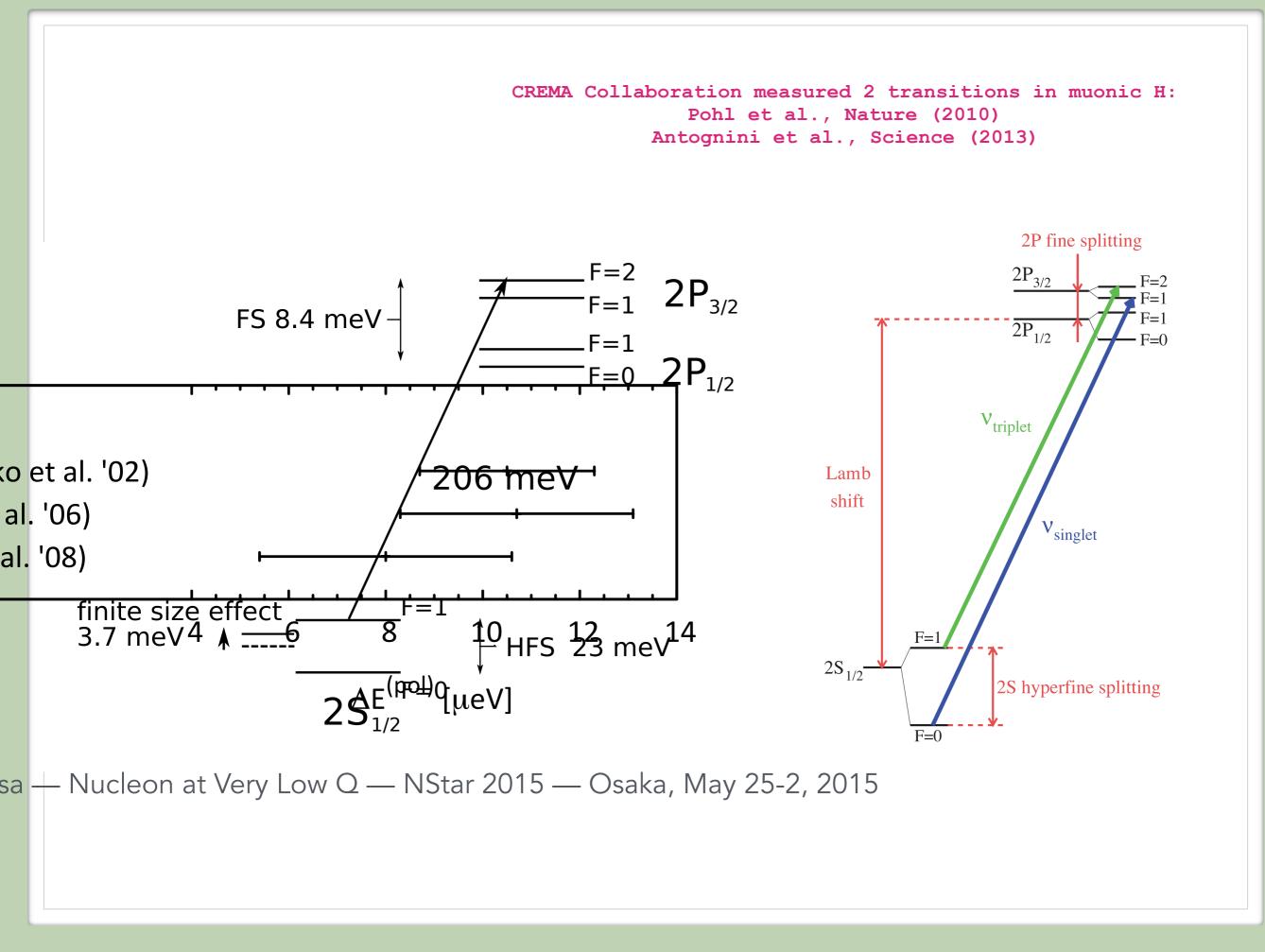
^a Adjusted value; the original value of Ref. [14], +3.3, is based on a different decomposition into the 'elastic' and 'polarizability' contributions
 ^b Taken from Ref. [12]

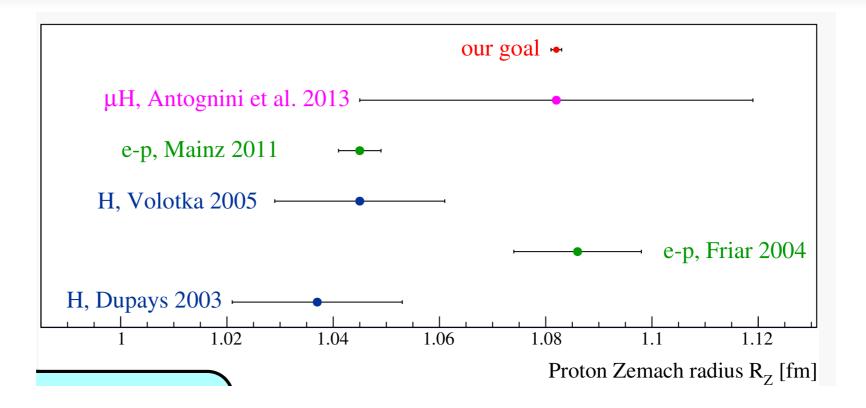
- [9] K. Pachucki, Phys. Rev. A 60, 3593 (1999).
- [10] A. P. Martynenko, Phys. Atom. Nucl. 69, 1309 (2006).
- [11] D. Nevado and A. Pineda, Phys. Rev. C 77, 035202 (2008).
- [12] C. E. Carlson and M. Vanderhaeghen, Phys. Rev. A 84, 020102 (2011).
- [13] M. C. Birse and J. A. McGovern, Eur. Phys. J. A 48, 120 (2012).
- [14] M. Gorchtein, F. J. Llanes-Estrada and A. P. Szczepaniak, Phys. Rev. A 87, 052501 (2013).

$$\Delta E_{2S}^{(\text{pol})}(\text{LO-HB}\chi\text{PT}) \approx \frac{\alpha_{\text{em}}^5 m_r^3 g_A^2}{4(4\pi f_\pi)^2} \frac{m_\mu}{m_\pi} (1 - 10G + 6\log 2) = -16.1 \text{ }\mu\text{eV}, \quad G \simeq 0.9160 \text{ is the Catalan constant.}$$

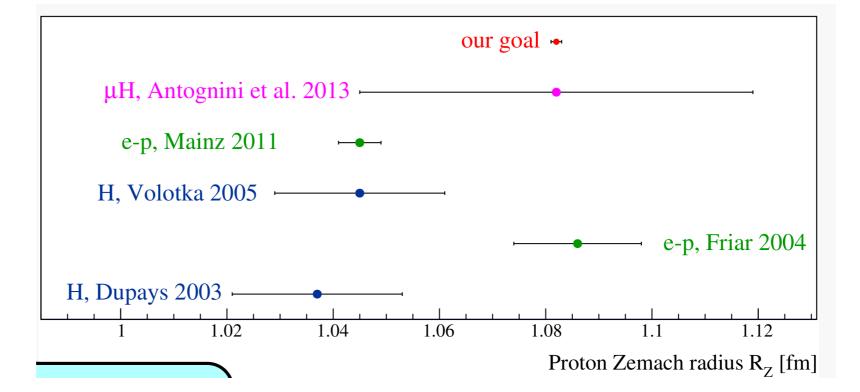
Summary of polarizability contribution to mu-H Lamb shift







$$\Delta E_{\rm HFS}^{\rm exp} = 22.8089(51) \,{\rm meV}$$



(-- -1)

n]

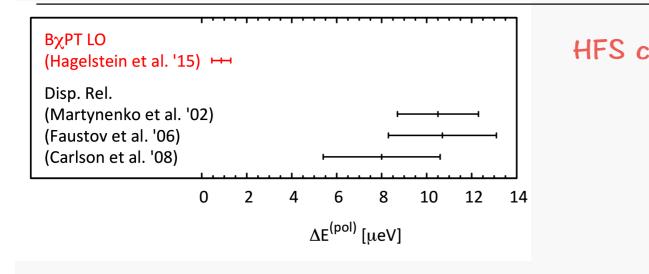
1S HFS: New experiment (approved)

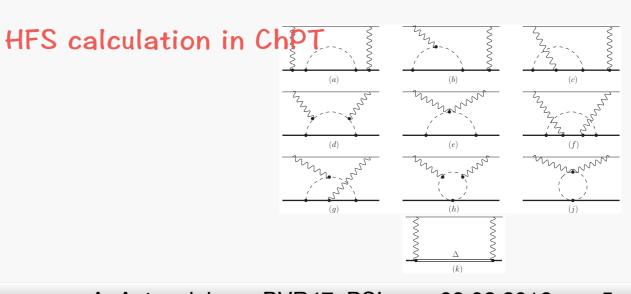
HFS theory status

 $\Delta E_{\rm HFS}(1S) = \left[1 + \Delta_{\rm QED} + \Delta_{\rm weak+hVP} + \Delta_{\rm Zemach} + \Delta_{\rm recoil} + \Delta_{\rm pol}\right] \Delta E_0^{\rm HFS}$

Phys. Rev. A 68 052503, Phys. Rev. A 83, 042509, Phys. Rev. A 71, 022506

	$\mu \mathrm{p}$		$\mu^{3}\mathrm{He^{+}}$		
	Magnitude	Uncertainty	Magnitude	Uncertainty	
$\Delta E_0^{\mathrm{HFS}}$	182.443 meV	0.1×10^{-6}	1370.725 meV	0.1×10^{-6}	
$\Delta_{\rm QED}$	1.1×10^{-3}	1×10^{-6}	1.2×10^{-3}	1×10^{-6}	
$\Delta_{\rm weak+hVP}$	2×10^{-5}	2×10^{-6}			
Δ_{Zemach}	7.5×10^{-3}	7.5×10^{-5}	3.5×10^{-2}	2.2×10^{-4}	$\leftarrow G_E(Q^2), G_M(Q^2)$
$\Delta_{ m recoil}$	1.7×10^{-3}	10^{-6}	2×10^{-4}		$\leftarrow G_E, G_M, F_1, F_2$
$\Delta_{ m pol}$	4.6×10^{-4}	8×10^{-5}	$(3.5 \times 10^{-3})^*$	$(2.5 \times 10^{-4})^*$	$\leftarrow g_1(x,Q^2), g_2(x,Q^2)$

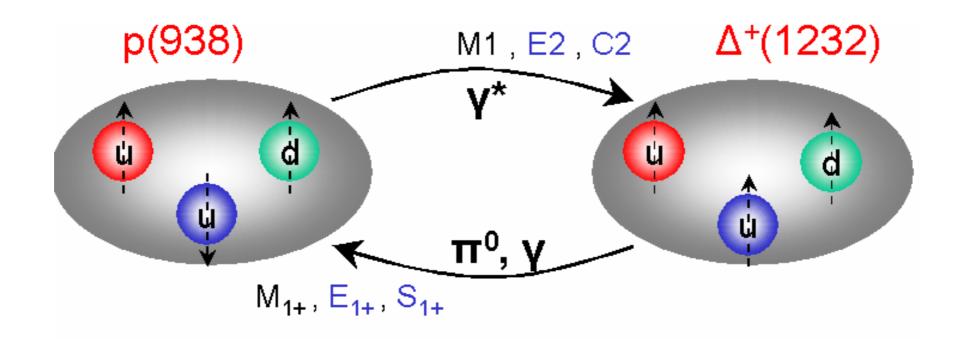




 Δ_{TPE}

A. Antognini BVR47, PSI 09.02.2016 – p. 5

Delta(1232) and proton deformation



Physica 96A (1979) 27-30 © North-Holland Publishing Co.

THE UNMELLISONANT QUARK

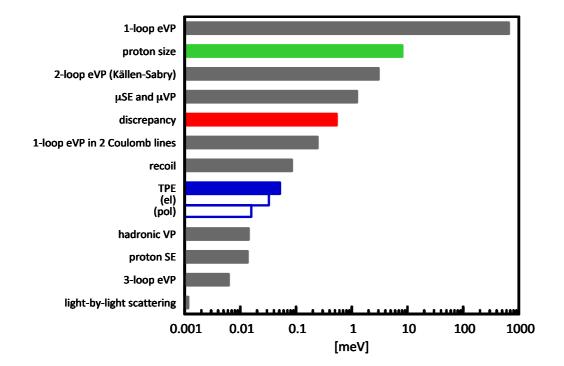
SHELDON L. GLASHOW*

Quadrupole N-> Delta transitions signatures of nucleon deformation

Summary and outlook

Proton radius puzzle not solved...

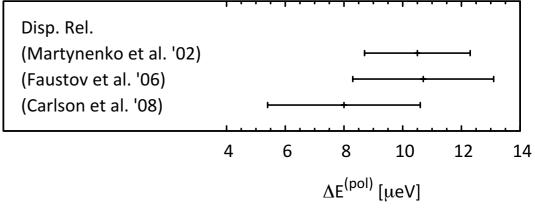
polarizability contribution to Lamb shift small but dominates the uncertainty in muH



Polarizability contribution to mu-H 2S HFS: Order of magnitude in experimental precision from from the future 1S HFS experiment

need systematic theoretical understanding of proton Compton scattering to interpret the mu-H results, better than 1% understanding of proton structure effects

Disp. Rel. (Pachucki '99) (Martynenko '06) (Carlson-Vanderhaeghen '11) Disp. Rel. + HB₂PT (Birse-McGovern '12) Finite-Energy SR (Gorchtein et al. '13) HB₂PT LO (Nevado-Pineda '08) HByPT NLO (Peset-Pineda '14) B₂PT LO (Alarcon et al. '14) -40 -35 -30 -25 -20 -15 -10 -5 0 ΔE^(pol) (μeV)



Collaborators

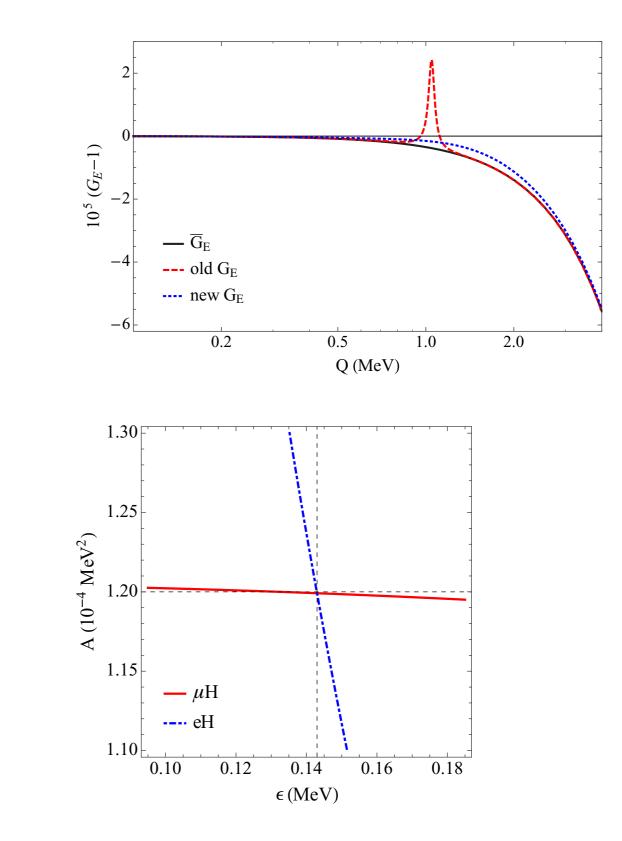
Oleksii Gryniuk (Mainz) Franziska Hagelstein (Mainz) Nadiia Krupina (Mainz)

> Jose Alarcon (Bonn) Vadim Lensky (Mainz)

Judith McGovern (Manchester) Rory Miskimen (Amherst) Marc Vanderhaeghen (Mainz)

Backup slides

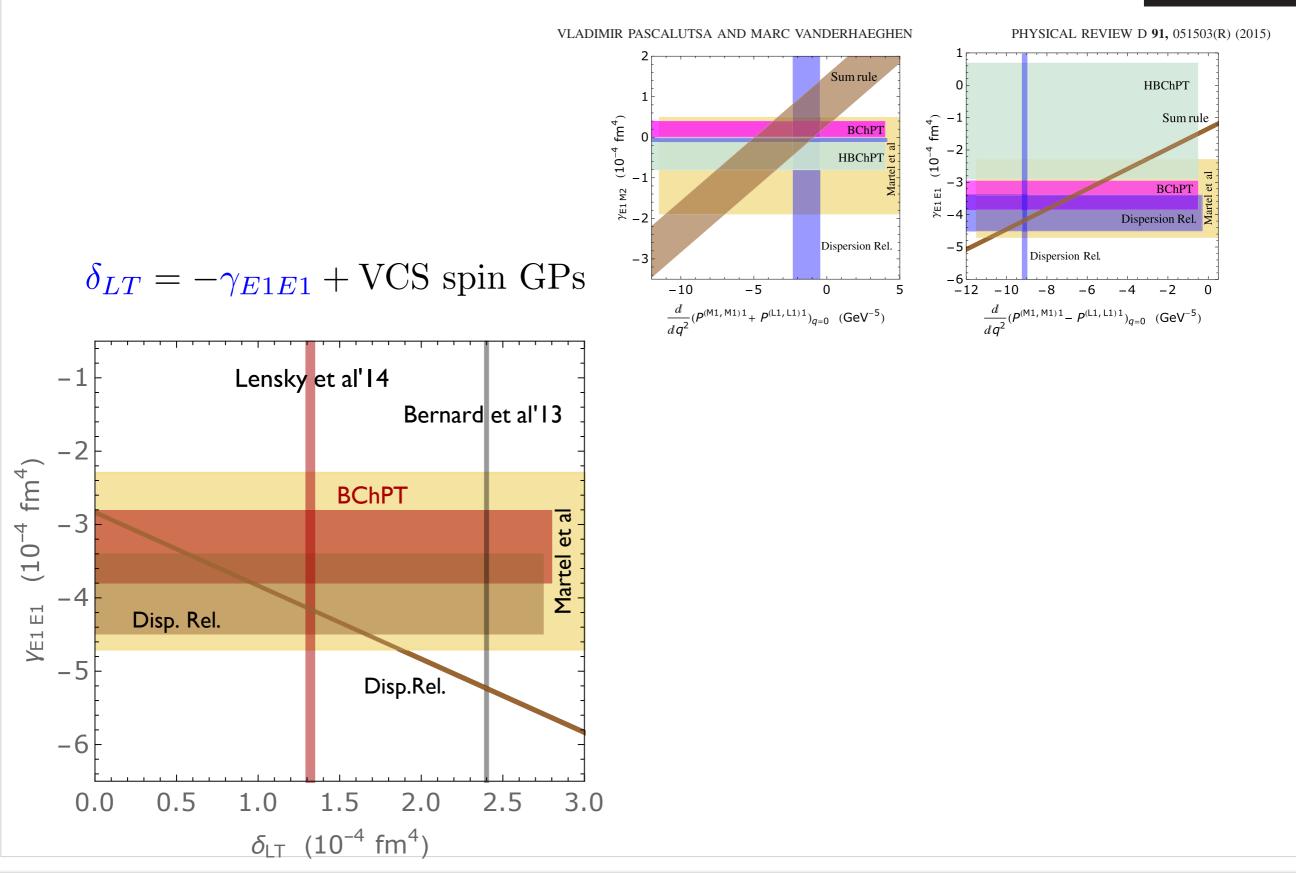
Soft effects in FFs



$$\widetilde{G}_{E}(Q^{2}) = \frac{AQ_{0}^{2}Q^{2}[Q^{2} + \epsilon^{2}]}{[Q_{0}^{2} + Q^{2}]^{4}}$$

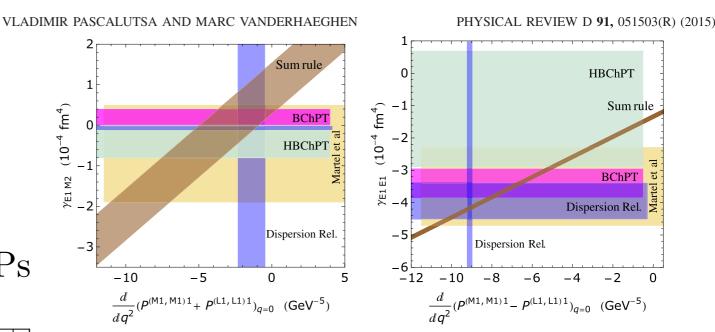
Relations among spin polarizabilities

RAPID COMMUNICATIONS



Relations among spin polarizabilities

RAPID COMMUNICATIONS



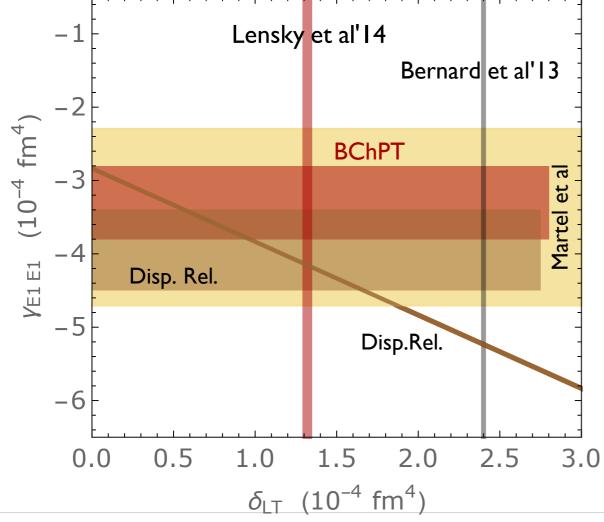
1) Disp. Rel. (Pasquini et al) uses MAID as input for RCS and VCS and is consistent with MAID value of δ_{LT}

2) Lensky, Kao, Vanderhaeghen & V.P (in progress): verify the relation

 $\delta_{LT} = -\gamma_{E1E1} + \text{VCS spin GPs}$

in baryon and heavy-baryon ChPT.

$$\delta_{LT} = -\gamma_{E1E1} + \text{VCS spin GPs}$$



$$\begin{split} H_{\text{eff}}^{(2)} &= -4\pi \left(\frac{1}{2} \alpha_{E1} \boldsymbol{E}^2 + \frac{1}{2} \beta_{M1} \boldsymbol{H}^2 \right), \\ H_{\text{eff}}^{(3)} &= -4\pi \left(\frac{1}{2} \gamma_{E1E1} \boldsymbol{\sigma} \cdot (\boldsymbol{E} \times \dot{\boldsymbol{E}}) + \frac{1}{2} \gamma_{M1M1} \boldsymbol{\sigma} \cdot (\boldsymbol{H} \times \dot{\boldsymbol{H}}) - \gamma_{M1E2} E_{ij} \sigma_i H_j + \gamma_{E1M2} H_{ij} \sigma_i E_j \right) \\ \text{where} \quad E_{ij} &= \frac{1}{2} (\nabla_i E_j + \nabla_j E_i), \qquad H_{ij} = \frac{1}{2} (\nabla_i H_j + \nabla_j H_i). \end{split}$$

PRL 114, 112501 (2015) PHYSICAL REVIEW LETTERS

week ending 20 MARCH 2015

Measurements of Double-Polarized Compton Scattering Asymmetries and Extraction of the Proton Spin Polarizabilities

P. P. Martel,^{1,2,3,*} R. Miskimen,^{1,†} P. Aguar-Bartolome,² J. Ahrens,² C. S. Akondi,⁴ J. R. M. Annand,⁵ H. J. Arends,²

 $H_{\text{eff}}^{(3)} = -4\pi \left(\frac{1}{2} \gamma_{E1E1} \boldsymbol{\sigma} \cdot (\boldsymbol{E} \times \dot{\boldsymbol{E}}) + \frac{1}{2} \gamma_{M1M1} \boldsymbol{\sigma} \cdot (\boldsymbol{H} \times \dot{\boldsymbol{H}}) - \gamma_{M1E2} E_{ij} \sigma_i H_j + \gamma_{E1M2} H_{ij} \sigma_i E_j \right)$

where $E_{ij} = \frac{1}{2}(\nabla_i E_j + \nabla_j E_i), \qquad H_{ij} = \frac{1}{2}(\nabla_i H_j + \nabla_j H_i).$

 $H_{\text{eff}}^{(2)} = -4\pi \left(\frac{1}{2}\alpha_{E1}E^2 + \frac{1}{2}\beta_{M1}H^2\right),$

PRL 114, 112501 (2015)PHYSICAL REVIEW LETTERSweek ending
20 MARCH 2015

 $H_{\text{eff}}^{(2)} = -4\pi \left(\frac{1}{2} \alpha_{E1} \boldsymbol{E}^2 + \frac{1}{2} \beta_{M1} \boldsymbol{H}^2 \right), \qquad \text{Measurements of Double-Polarized Compton Scattering Asymmetries} \\ H_{\text{eff}}^{(3)} = -4\pi \left(\frac{1}{2} \gamma_{E1E1} \boldsymbol{\sigma} \cdot (\boldsymbol{E} \times \dot{\boldsymbol{E}}) + \frac{1}{2} \gamma_{M1M1} \boldsymbol{\sigma} \cdot (\boldsymbol{H} \times \dot{\boldsymbol{H}}) - \gamma_{M1E2} E_{ij} \sigma_i H_j + \gamma_{E1M2} H_{ij} \sigma_i E_j \right) \\ \text{where} \qquad E_{ij} = \frac{1}{2} (\nabla_i E_j + \nabla_j E_i), \qquad H_{ij} = \frac{1}{2} (\nabla_i H_j + \nabla_j H_i).$

Forward spin polarizability: $\gamma_0 = -(\gamma_{E1E1} + \gamma_{M1M1} + \gamma_{E1M2} + \gamma_{M1E2})$

$$= \frac{1}{4\pi^2} \int_{\nu_0}^{\infty} d\nu \, \frac{\sigma_{1/2}(\nu) - \sigma_{3/2}(\nu)}{\nu^3}$$
$$= \lim_{Q^2 \to 0} \frac{16\alpha M_N^2}{Q^6} \int_0^{x_0} dx \, x^2 \left[g_1(x, Q^2) - \frac{4M_N^2 x^2}{Q^2} g_2(x, Q^2) \right]$$

PRL 114, 112501 (2015)PHYSICAL REVIEW LETTERSweek ending
20 MARCH 2015

 $H_{\text{eff}}^{(2)} = -4\pi \left(\frac{1}{2} \alpha_{E1} \boldsymbol{E}^2 + \frac{1}{2} \beta_{M1} \boldsymbol{H}^2 \right), \qquad \text{Measurements of Double-Polarized Compton Scattering Asymmetries} \\ H_{\text{eff}}^{(3)} = -4\pi \left(\frac{1}{2} \gamma_{E1E1} \boldsymbol{\sigma} \cdot (\boldsymbol{E} \times \dot{\boldsymbol{E}}) + \frac{1}{2} \gamma_{M1M1} \boldsymbol{\sigma} \cdot (\boldsymbol{H} \times \dot{\boldsymbol{H}}) - \gamma_{M1E2} E_{ij} \sigma_i H_j + \gamma_{E1M2} H_{ij} \sigma_i E_j \right) \\ \text{where} \qquad E_{ij} = \frac{1}{2} (\nabla_i E_j + \nabla_j E_i), \qquad H_{ij} = \frac{1}{2} (\nabla_i H_j + \nabla_j H_i).$

Forward spin polarizability: $\gamma_0 = -(\gamma_{E1E1} + \gamma_{M1M1} + \gamma_{E1M2} + \gamma_{M1E2})$

$$= \frac{1}{4\pi^2} \int_{\nu_0}^{\infty} d\nu \, \frac{\sigma_{1/2}(\nu) - \sigma_{3/2}(\nu)}{\nu^3}$$
$$= \lim_{Q^2 \to 0} \frac{16\alpha M_N^2}{Q^6} \int_0^{x_0} dx \, x^2 \left[g_1(x, Q^2) - \frac{4M_N^2 x^2}{Q^2} g_2(x, Q^2) \right]$$

$$\delta_{LT} = \gamma_0 + \lim_{Q^2 \to 0} \frac{16\alpha M_N^2}{Q^6} \int_0^{x_0} dx \, x^2 g_2(x, Q^2)$$

From beam asymmetry

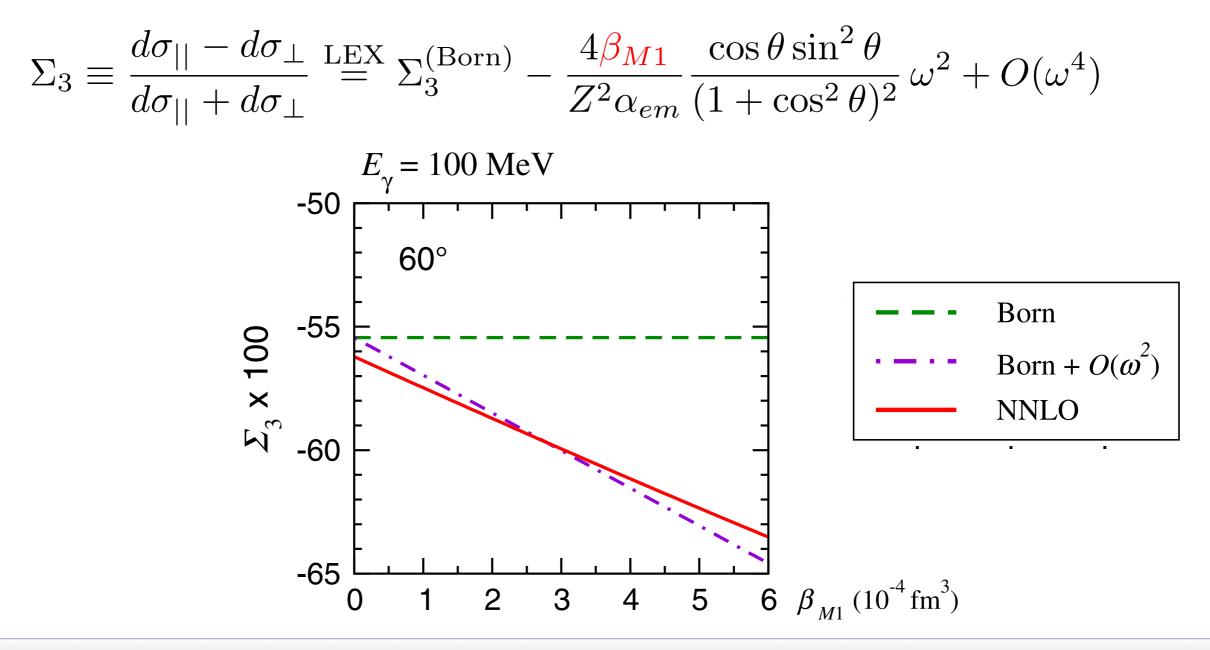
PRL 110, 262001 (2013) PHYSICAL REVIEW LETTERS

week ending 28 JUNE 2013

Separation of Proton Polarizabilities with the Beam Asymmetry of Compton Scattering

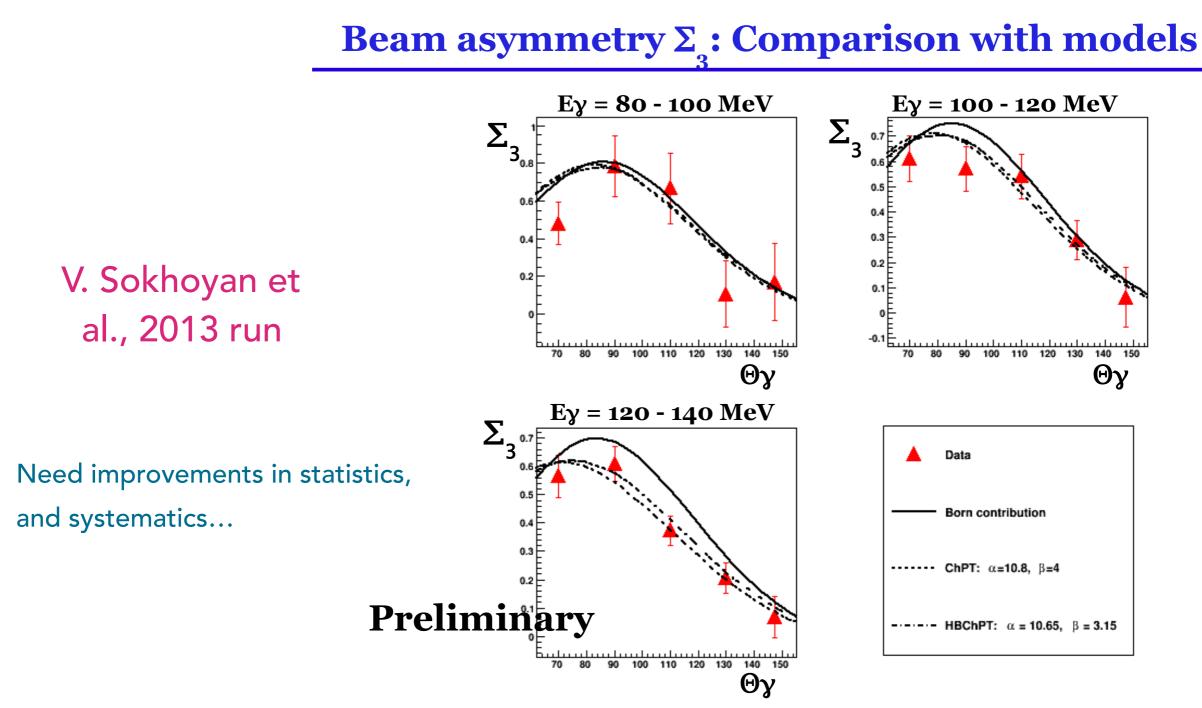
Nadiia Krupina and Vladimir Pascalutsa

PRISMA Cluster of Excellence Institut für Kernphysik, Johannes Gutenberg–Universität Mainz, 55128 Mainz, Germany (Received 3 April 2013; published 25 June 2013)

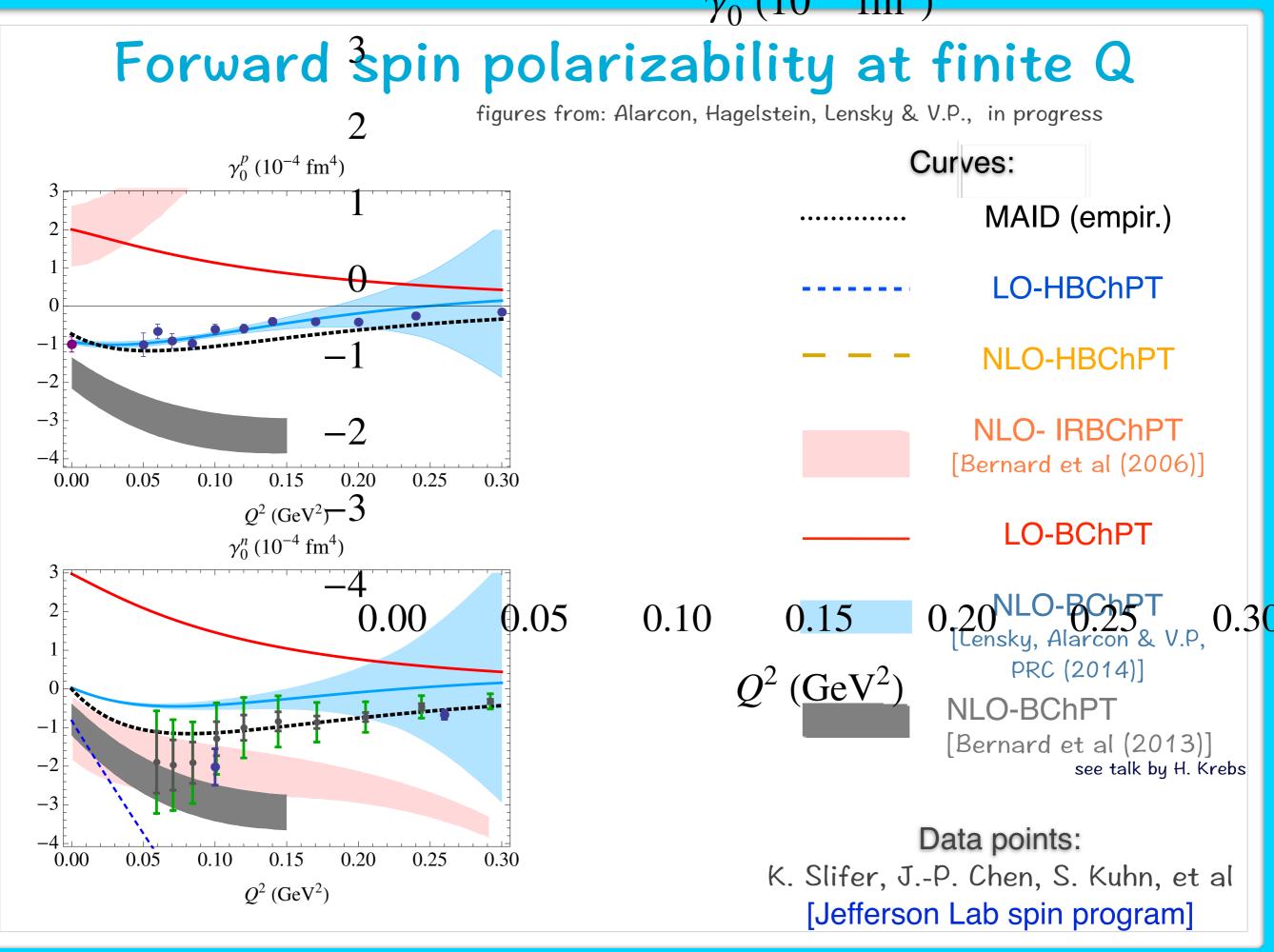


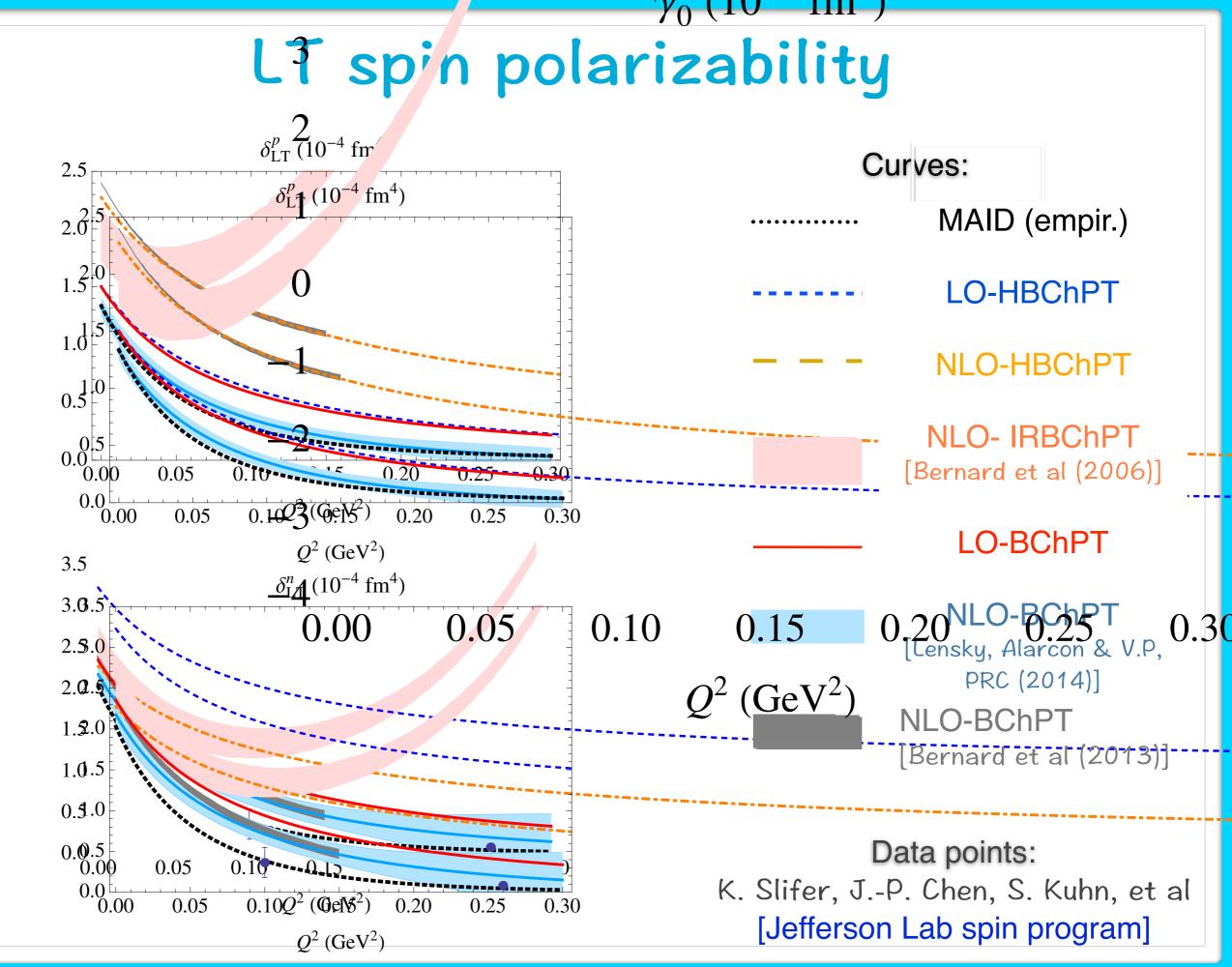
Vladimir Pascalutsa — A few moments in ChPT — Workshop on Tagged Structure Functions — JLab, Jan 16-18, 2014

A2 MAMI (preliminary) data

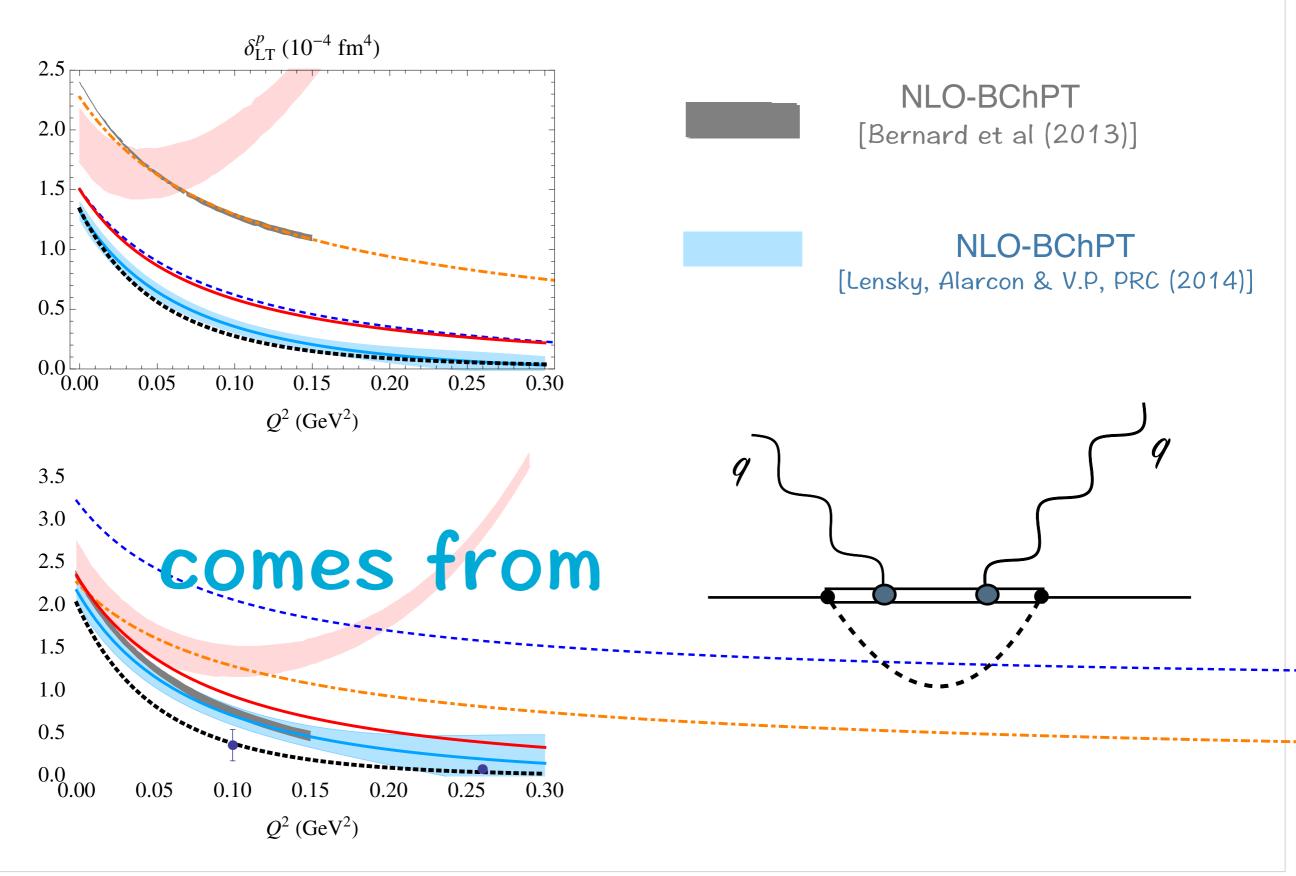


Curves: Krupina and Pascalutsa, PRL 110, 262001 (2013), J. McGovern, D. Phillips, H. Grießhammer, EPJA 49, 12 (2013)

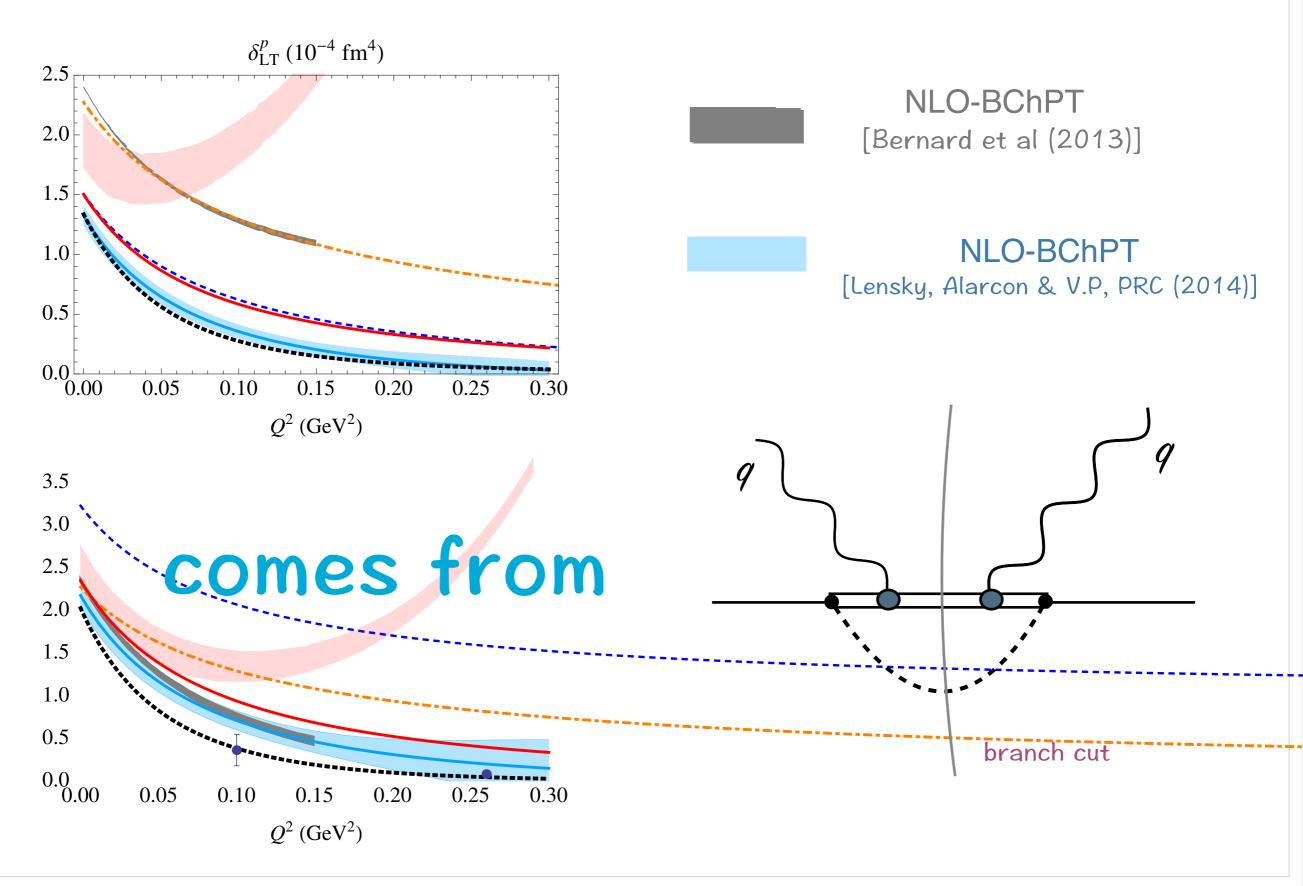




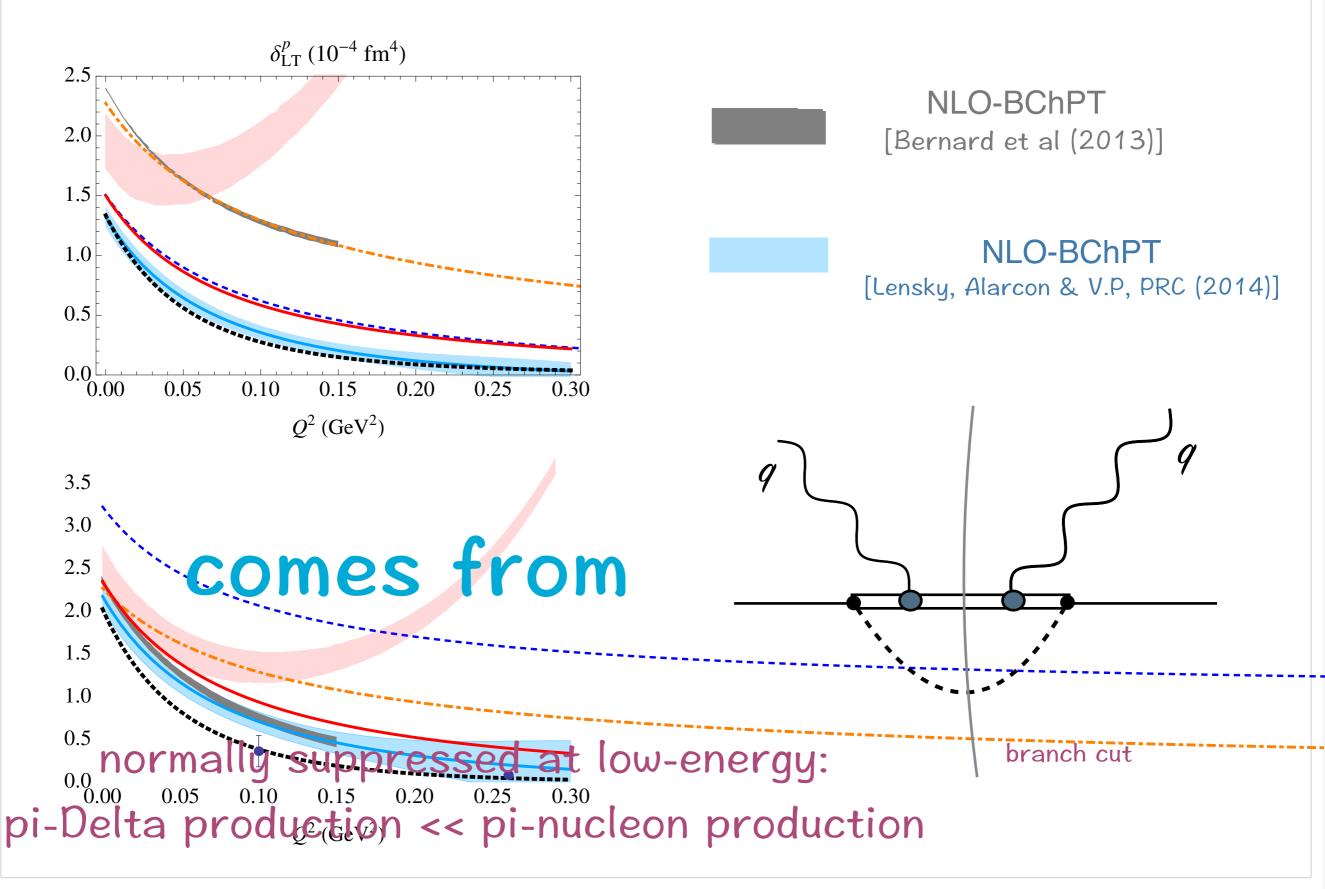
The difference

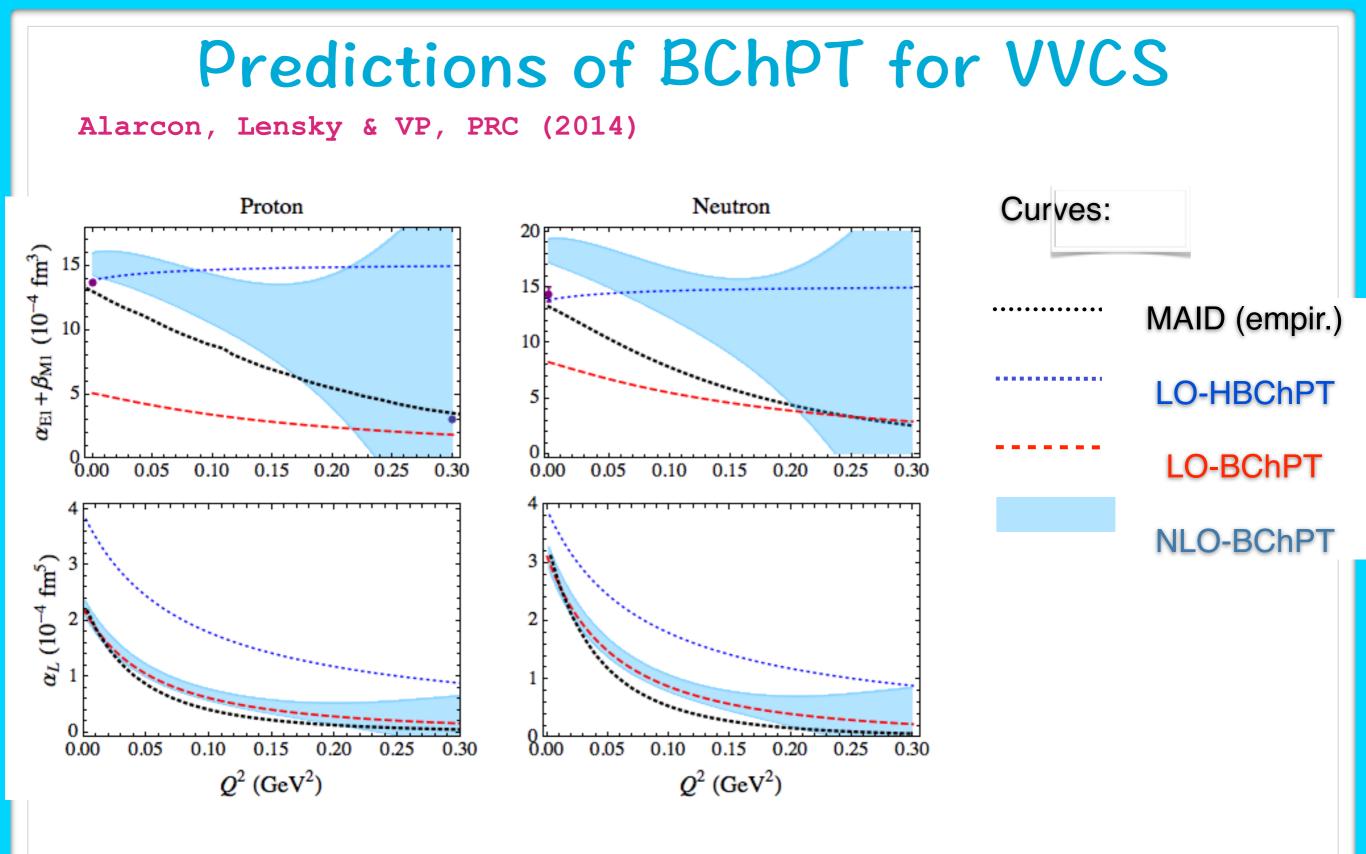


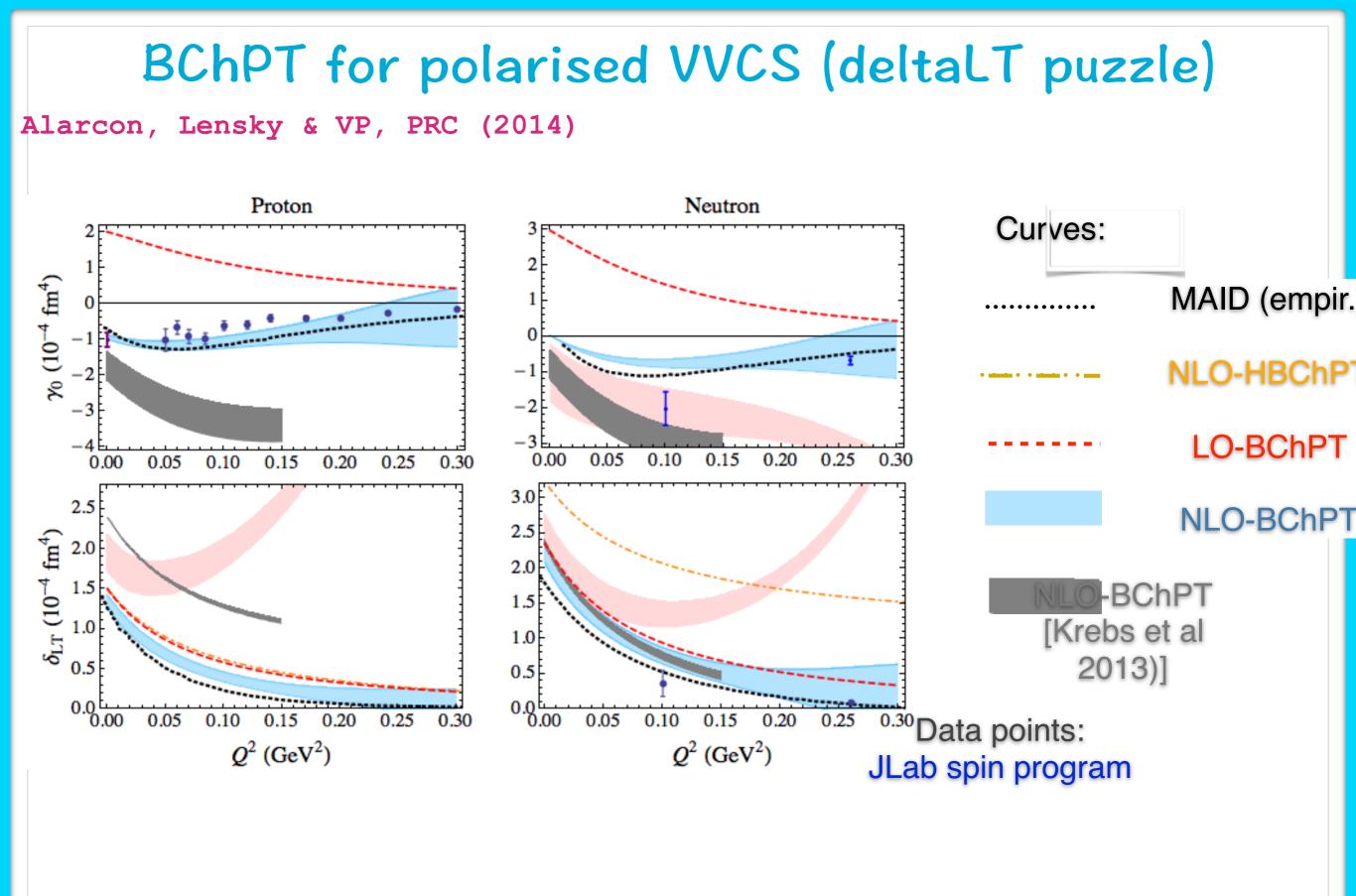
The difference

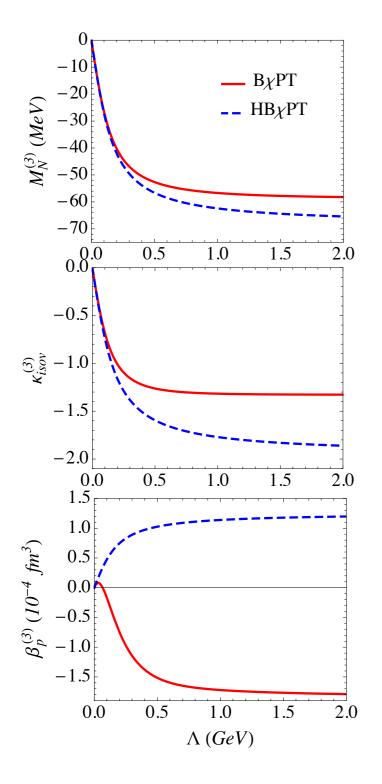


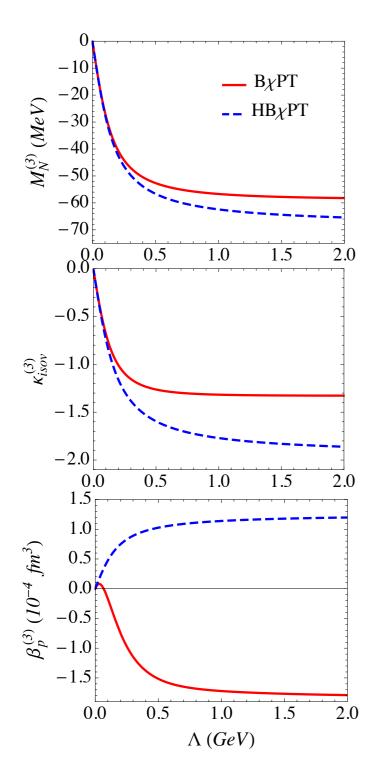
The difference

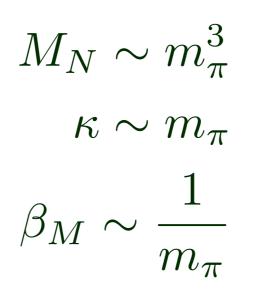


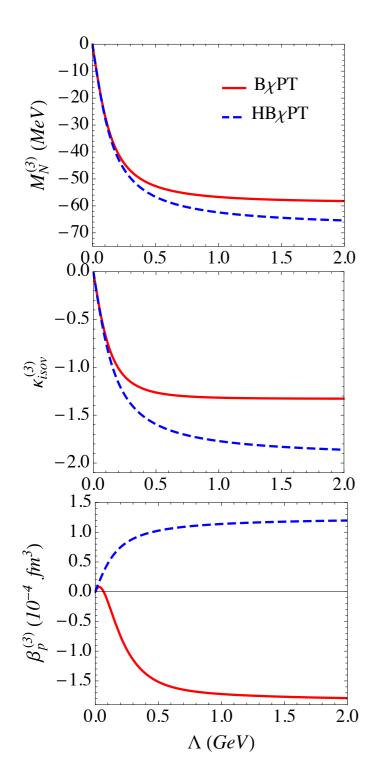






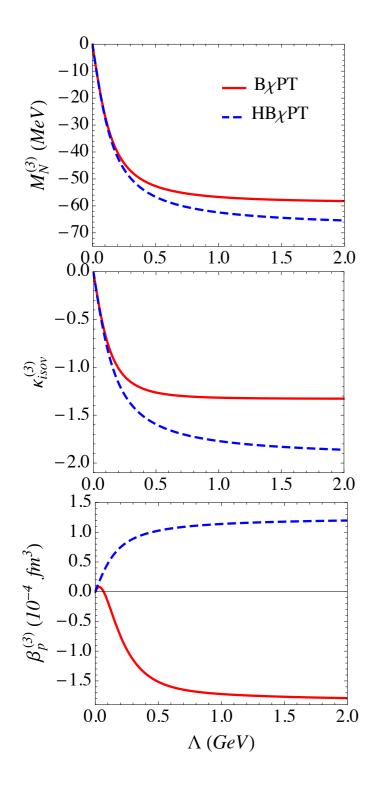






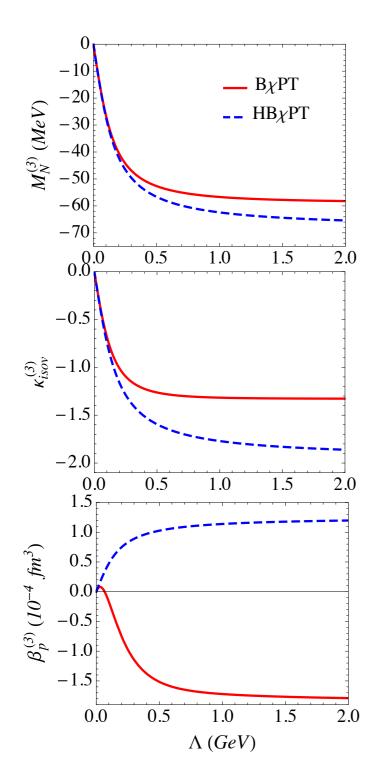
$$M_N \sim m_\pi^3$$
$$\kappa \sim m_\pi$$
$$\beta_M \sim \frac{1}{m_\pi}$$

Heavy-Baryon expansion fails for quantities where



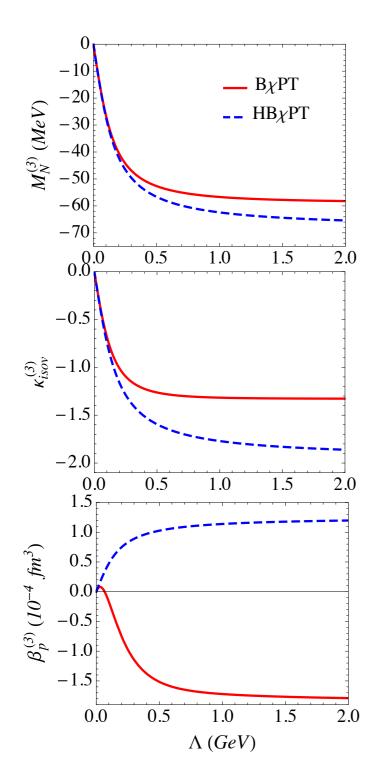
$$M_N \sim m_\pi^3$$
$$\kappa \sim m_\pi$$
$$\beta_M \sim \frac{1}{m_\pi}$$

Heavy-Baryon expansion fails for quantities where the leading chiral-loop effects scales with a negative



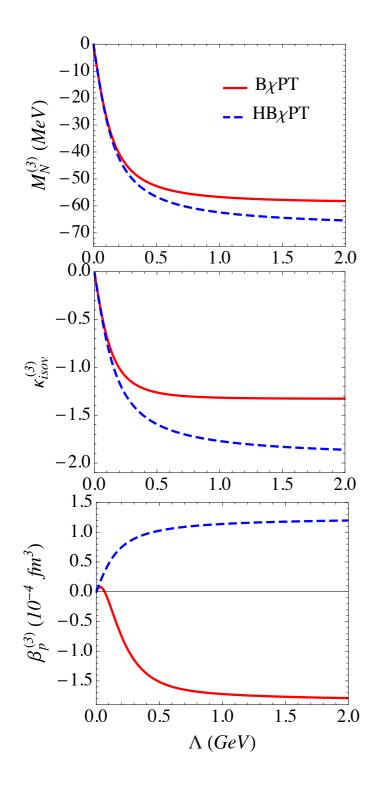
$$M_N \sim m_\pi^3$$
$$\kappa \sim m_\pi$$
$$\beta_M \sim \frac{1}{m_\pi}$$

Heavy-Baryon expansion fails for quantities where the leading chiral-loop effects scales with a negative power of pion mass



$$M_N \sim m_\pi^3$$
$$\kappa \sim m_\pi$$
$$\beta_M \sim \frac{1}{m_\pi}$$

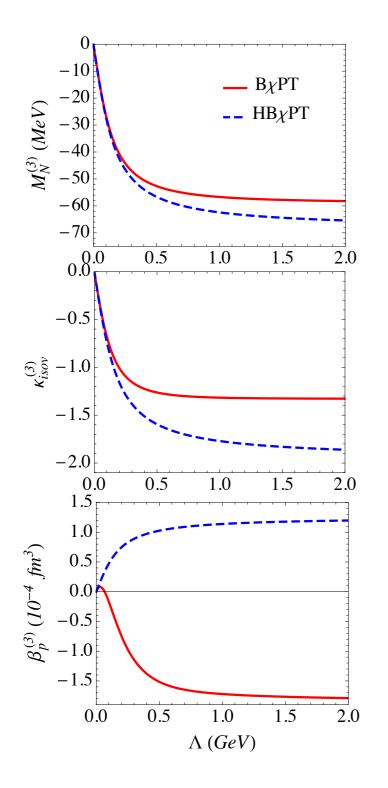
Heavy-Baryon expansion fails for quantities where the leading chiral-loop effects scales with a negative power of pion mass



$$M_N \sim m_\pi^3$$
$$\kappa \sim m_\pi$$
$$\beta_M \sim \frac{1}{m_\pi}$$

Heavy-Baryon expansion fails for quantities where the leading chiral-loop effects scales with a negative power of pion mass

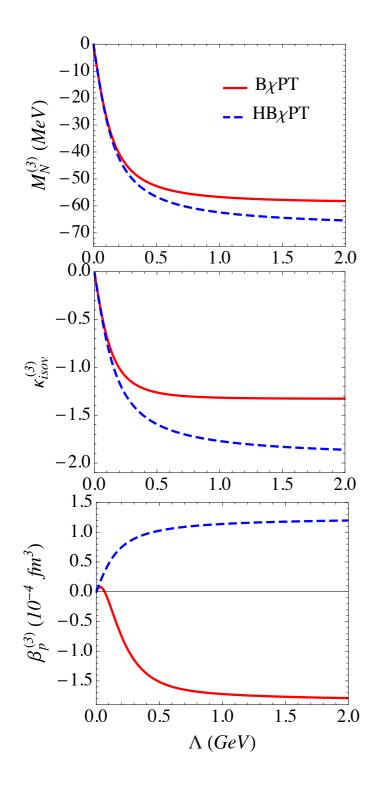
E.g.: the effective range parameters of the NN force



$$M_N \sim m_\pi^3$$
$$\kappa \sim m_\pi$$
$$\beta_M \sim \frac{1}{m_\pi}$$

Heavy-Baryon expansion fails for quantities where the leading chiral-loop effects scales with a negative power of pion mass

E.g.: the effective range parameters of the NN force are such quantities -- hope for "perturbative pions" (KSW)



$$M_N \sim m_\pi^3$$
$$\kappa \sim m_\pi$$
$$\beta_M \sim \frac{1}{m_\pi}$$

Heavy-Baryon expansion fails for quantities where the leading chiral-loop effects scales with a negative power of pion mass

E.g.: the effective range parameters of the NN force are such quantities -- hope for "perturbative pions" (KSW) in BChPT

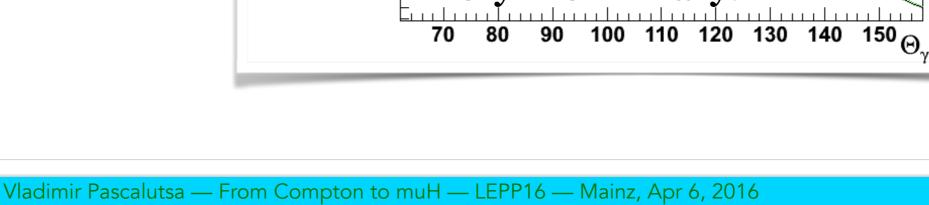
New Mainz data for Compton beam asymmetry

Data taken: 28.05. – 17.06.20

Beam asymmetry Σ_{a} : Preliminary results $E_{\chi} = 120 - 140 \text{ MeV}$ 0.8 V. Sokhoyan, E. Downie et al. ChPT:130 MeV, α=10.8, β=4 LEX, β=4 0.7 [A2 Coll.] Born contribution 0.6 0.5 first data on this 0.4 observable below pion 0.3 production threshold! 0.2

0.1

better precision needed!!



Verv Preliminarv!

HBChPT@LO

Bernard, Keiser, Meissner Int J Mod Phys(1995)

$$\alpha_p = \alpha_n = \frac{5 \pi \alpha}{6m_{\pi}} \left(\frac{g_A}{4 \pi f_{\pi}} \right)^2 = 12.2 \times 10^{-4} \text{ fm}^3,$$

$$\beta_p = \beta_n = \frac{\pi \alpha}{12m_{\pi}} \left(\frac{g_A}{4\pi f_{\pi}}\right)^2 = 1.2 \times 10^{-4} \text{ fm}^3,$$

HBChPT@LO

Bernard, Keiser, Meissner Int J Mod Phys(1995)

$$\alpha_p = \alpha_n = \frac{5 \pi \alpha}{6m_{\pi}} \left(\frac{g_A}{4 \pi f_{\pi}} \right)^2 = 12.2 \times 10^{-4} \text{ fm}^3,$$

$$\beta_p = \beta_n = \frac{\pi \alpha}{12m_{\pi}} \left(\frac{g_A}{4\pi f_{\pi}}\right)^2 = 1.2 \times 10^{-4} \text{ fm}^3,$$

BChPT@NLO

Lensky & V.P., EPJC (2010)

$$\alpha = \underbrace{6.8}_{\mathscr{O}(p^3)} + \underbrace{(-0.1) + 4.1}_{\mathscr{O}(p^4/\Delta)} = 10.8,$$

$$\beta = \underbrace{-1.8}_{\mathscr{O}(p^3)} + \underbrace{7.1 - 1.3}_{\mathscr{O}(p^4/\Delta)} = 4.0.$$

HBChPT@LO

Bernard, Keiser, Meissner Int J Mod Phys(1995)

$$\alpha_p = \alpha_n = \frac{5 \pi \alpha}{6m_{\pi}} \left(\frac{g_A}{4 \pi f_{\pi}}\right)^2 = 12.2 \times 10^{-4} \text{ fm}^3,$$

$$\beta_p = \beta_n = \frac{\pi \alpha}{12m_{\pi}} \left(\frac{g_A}{4\pi f_{\pi}}\right)^2 = 1.2 \times 10^{-4} \text{ fm}^3,$$

BChPT@NLO

Lensky & V.P., EPJC (2010)

$$\alpha = \underbrace{6.8}_{\mathscr{O}(p^3)} + \underbrace{(-0.1) + 4.1}_{\mathscr{O}(p^4/\Delta)} = 10.8,$$

$$\beta = \underbrace{-1.8}_{\mathscr{O}(p^3)} + \underbrace{7.1 - 1.3}_{\mathscr{O}(p^4/\Delta)} = 4.0.$$

$$\mu = m_{\pi}/M_N \qquad \beta = \frac{e^2 g_A^2}{192\pi^3 F^2 M_N} \left[\frac{\pi}{4\mu} + 18\log\mu + \frac{63}{2} - \frac{981\pi\mu}{32} - (100\log\mu + \frac{121}{6})\mu^2 + \mathcal{O}(\mu^3) \right]$$

HBChPT@LO
Bernard, Keiser, Meissner
Int J Mod Phys (1995)

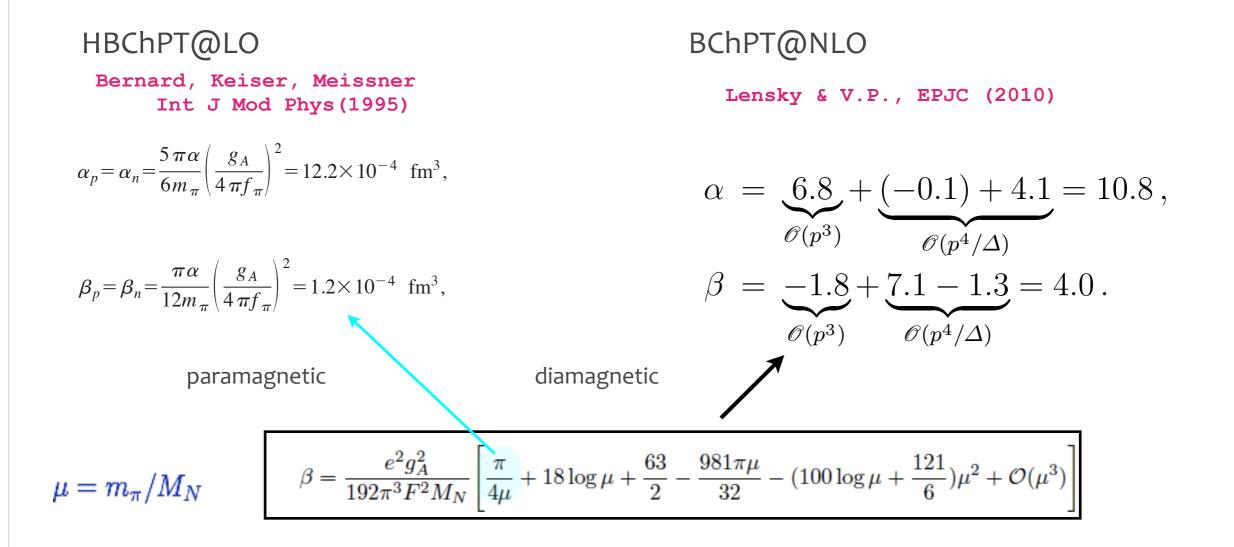
$$\alpha_{p} = \alpha_{n} = \frac{5\pi\alpha}{6m_{\pi}} \left(\frac{g_{A}}{4\pi f_{\pi}}\right)^{2} = 12.2 \times 10^{-4} \text{ fm}^{3},$$

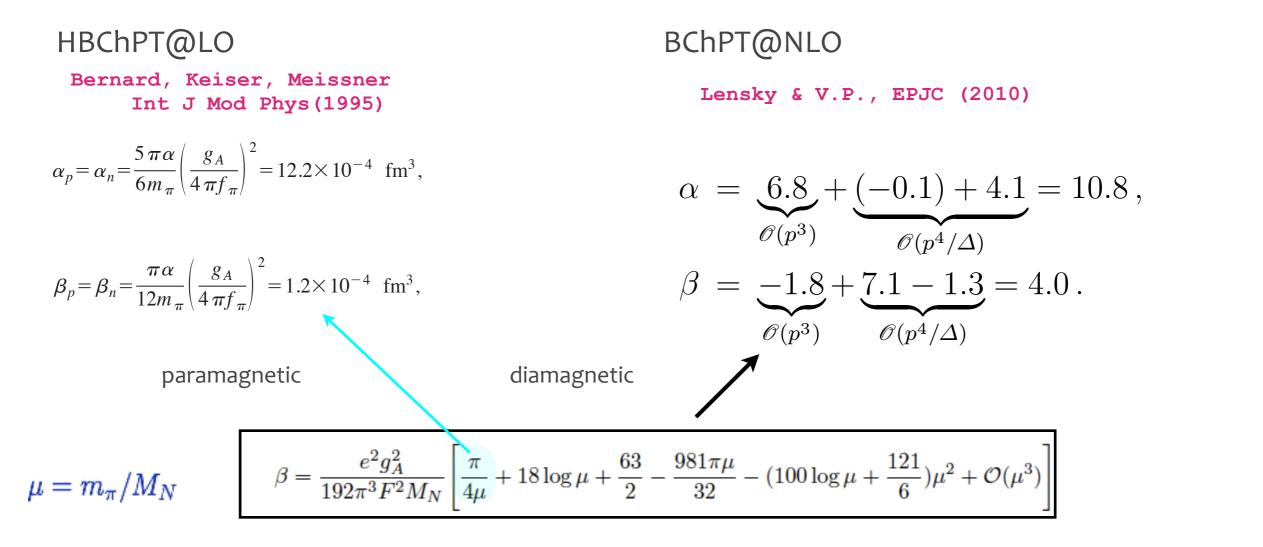
$$\beta_{p} = \beta_{n} = \frac{\pi\alpha}{12m_{\pi}} \left(\frac{g_{A}}{4\pi f_{\pi}}\right)^{2} = 1.2 \times 10^{-4} \text{ fm}^{3},$$

$$\beta = \frac{-1.8}{\rho(p^{3})} + \frac{(-0.1) + 4.1}{\rho(p^{4}/\Delta)} = 10.8,$$

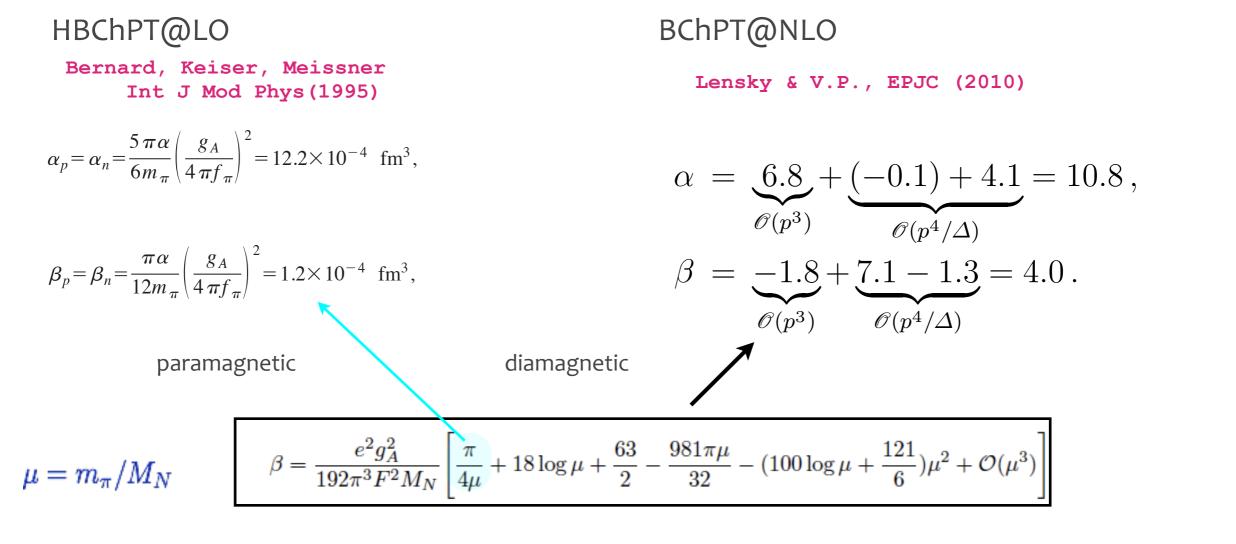
$$\beta = \frac{-1.8}{\rho(p^{3})} + \frac{7.1 - 1.3}{\rho(p^{4}/\Delta)} = 4.0.$$
diamagnetic
$$\mu = m_{\pi}/M_{N}$$

$$\beta = \frac{e^{2}g_{A}^{2}}{192\pi^{3}F^{2}M_{N}} \left[\frac{\pi}{4\mu} + 18\log\mu + \frac{63}{2} - \frac{981\pi\mu}{32} - (100\log\mu + \frac{121}{6})\mu^{2} + \mathcal{O}(\mu^{3})\right]$$





Bernard, Keiser, Meissner PRL(1991)



Bernard, Keiser, Meissner PRL(1991)

HBChPT@NLO: mmer & Hemmert (2004) McGovern, Phillips (2012)

> The Delta contribution is accompanied by "promoted" LECs, hence not predictive

