

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

It's a kind of MAGIX

The development of the Magix experiment

Stefano Caiazza

LEPP 2016 - Mainz - Apr. 06 2016

Multi-orbit recirculator with energy recovery

Energy recovery

- •External loop of half-wave length
- •Electron energy transferred back to the cavity

Experiment on the recirculating beam (MAGIX) @105 MeV

- •External loop after two recirculation
- •Thin gas target on the beam path with a dedicated detector

Extracted beam @ 155 MeV

- After a final recirculation, then dumpedDedicated experiment (P2)
- Financed by the PRISMA Cluster of Excellence

MESA GAS **MALTARGET** EXPERIMENT

S. Caiazza - It's a kind of Magix

O LOW ENERGY ELECTRON SCATTERING

Electron scattering on fixed target below the pion threshold

Low momentum electron coincidence

 On the scale of the bunch frequency (ns timestamping)

High acceptance To improve the statistics on rare event searches

E-Nucleon scattering

- Elastic or inelastic
- Form factor measurements
- Proton radius

Pair production

• e⁺ e⁻ coincidence

• With SM or dark U(1) photons Good momentum resolution

- For high precision measurements
- Low momentum

Good angular resolution For background rejection and vertex reconstruction

Dark photon and dark matter

Good momentum resolution, off-plane angle measurement
Proton recoil

Form factors and proton radius

•Scattering angle resolution, forward angles with possibly polarized targets

Astrophysical cross-sections

•Scattering angle resolution and flexible gas target choice

Polarizabilities

• Photon detector, tagger and low-energy proton recoil

Test of chiral effective theories

•Good momentum resolution @ low momenta with polarized beam and target

Internal Gas Target

Twin ARm DIpole Spectrometer

Focal Plane Detectors

Fixed Target luminosity

• $L \cong I_b * \rho_t * l_t$

Recirculating beam

- Thin target required to recapture the beam
- Max energy loss O(10⁻³)
- Gas Density O(10²⁵)

Windowless target

- Containing the gas flow without a container
- Minimize background interaction

Foil-thin tube

- To be used with polarized gases
- Moderate gas density $O(10^{22}/m^3)$
- Length (~ 30 cm)
- Estimated luminosity with polarized beam $O(10^{32} cm^{-2} s^{-1})$

Jet Target

- Supersonic gas jet
- Higher gas density $O(10^{26}/m^3)$
- O(mm) target length
- Estimated luminosity $O(10^{35}cm^{-2}s^{-1})$

TWINARM DIPOLE SPECTROMETER

S. Caiazza - It's a kind of Magix

Momentum focusing

- Particles of different momenta at different positions
- Mapping of momenta to position

Angular focusing

- Parallel-to-point focusing
- Mapping of angles to position

Acceptance

- 200 MeV maximum momentum
- 90 MeV momentum acceptance @ 200 MeV
- \pm 3.25° θ and \pm 3.75° ϕ
- 22 cm vertex acceptance at 90°

Momentum resolution

- 10⁻⁴ relative momentum resolution
- Assuming 50 µm resolution at the focal plane

Angular range

•
$$\Delta\theta \cong 5 * 10^{-2}$$

•
$$\Delta \varphi \cong 0.2$$
 °

High resolution on low momentum electrons

•1 < p < 100 MeV

•
$$\frac{\Delta p}{p} \approx 10^{-4}$$

 $\bullet \Delta \theta \cong 5 * 10^{-2} \circ$

Material reduction

- •No window before the magnet
- •Thin detector design

Large sensitive surface

- $120 * 30 \ cm^2$ focal plane surface
- \bullet 50 μm point resolution in the focal plane
- •At least 2 points to reconstruct the full kinematics

High rate capability

With a CW operation rates up to O(1 MHz)
Count rates of O(10 KHz)

Gas detectors

- Low material budget
- Low cost for large area coverage

Micro Pattern Gas Detectors

- Modern gas amplification systems
- Resolutions of the order of 50 µm achieved by several detectors

Gas Electron Multiplier

Thin kapton foil coated with copper and pierced by microscopic holes
Gas amplification in the holes

2 Layer Hodoscope

- Simple detector to built
- Uniform and high position resolution
- Moderate material thickness
- Only 2 reconstructed points

Short drift TPC

- More delicate to optimize
- Worse single point resolution
- Minimal material thickness
- Multiple samples and full track reconstruction possible

2 Sensitive layers

- The first centered on the focal plane
- The second with a sizable lever arm to measure the angle

Reliable design

- 2 or 3 GEM
- 2D Strip readout
- Small drift
- ~ 0.7% radiation length

Optimization

- Material reduction to improve angular measurement
- Thin coated GEMs
- Foil based readout plane

Detector Characterization	Detector gain
	Gain uniformity
	Position resolution
	Rate Capability
Further developments	Increasing the detector size
	Testing a foil readout system
	Building a SD TPC prototype

Trigger	Fast scintillator fibers	
	ns timestamping, mm resolution	
Additional detectors	Recoil detector	
	Photon tagger	
Software &Simulation	Plugin based extendible framework	Slow Control
		Simulation
		DAQ
		Analysis

Versatile experiment for precision physics

• Nuclear and particle physics projects under study

Conceptual design

• Double spectrometer on a windowless target

Technical design

- Magnet simulation
- Target development
- Detector development

Prototyping and testing

- Target prototype will be used in an existing experiment
- Detector prototype tested with cosmics and test-beams

Core software

- Custom package extensible through plugin components
- Common versatile configuration system for all plugins.

Simulation

- Fast simulation plugin with special generators (rad. corrections and specific models)
- Generators linked to full simulation (GEANT or custom)

Analysis

- Directly connected with the simulation tools
- Interfaced with your favorite histogramming tool

High pressure supersonic jet

- Special gas nozzle to create a supersonic jet
- Gas catcher to evacuate the chamber

Multiple gas type usable

- Hydrogen, Oxygen, Helium already foreseen
- No polarized gases due to high recombination rate

Prototype development

- Injection development (Nozzle and cold head)
- Chamber evacuation system
- Monitoring and slow control
- Collaborative effort with Münster University

CURRENT SETUP: MAMI @ KPH High power beam dump Mainz Institut für Kernphysik MESA Hall2 (Experimental hall) • Running cutting edge experiments Shaft building for nuclear and hadron physics A2 HDSM since 1957 MESA-Hall1B MAMI - Multi-stage microtron MESA-Hall1A 10 m Shielding • 1.5 GeV @ 0.1 mA RTM2 (finished 5/2014) • Long list of scientific RTM3 accomplishments <u>http://www.kph.uni-mainz.de</u> Some limitations Statistics on rare searches Multiple-scattering @ low energy • Minimum Q^2

Using existing space

- Relevant time and money savings
- Hard space constraints
- Cannot hinder the ordinary operation of MAMI

The work is started

- Insulating shield finished
- Removal of obsolete services started
- The funding for additional space and equipment secured

ELECTRON SCATTERING SEARCHES

Parameter space coverage

- Low dark photon mass
- Relatively high coupling
- Cover the area more promising to reconcile g-2

Measurement

- Electron-nucleus scattering
- Measurement of the e⁺e⁻ invariant mass
- Bump search on the SM spectrum

Requirements

- High luminosity
- High momentum resolution
- Minimize multiple scattering
- High efficiency at low electron momenta

Fluid-dynamic simulation

- Allows to design the pump system
- Estimated luminosity $O(10^{35})$

Polarized gas injection

 Necessary for nuclear physics experiments

Target-machine integration

- Interactions with the beam-halo
- Target cooling
- Beam monitoring

Prototype testing

- Simulation validation
- On-beam test

DIFFERENTIAL PUMPING SYSTEM

• Do not pollute the beam pipe

Measurement of the Weinberg angle

- Measured with high precision only at the Z-pole
- Several measurement planned at low energy
- High statistic and exquisite accuracy required

Dedicate experiment

- 10000 hours scheduled at 10³⁹ luminosity
- Fixed target
- Polarized beam (85% @ 0.15 mA)

Measurement technique

• Measure the parity violating asymmetry in electron-nucleon scattering

2 Sensitive layer

- The first centered on the focal plane
- The second with a sizable lever arm to measure the angle

Reliable design

2 or 3 GEM
2D Strip readout
Small drift
~ 0.7% radiation length

Optimization

Material reduction to improve angular measurement
Thin coated GEMs
Foil based readout plane

Hidden assumptions

- DP only decays to electrons
- DP is the dominant contribute to the g-2 discrepancy

What if they are wrong?

- No bump
- Missing energy reconstruction if we detect the recoil nucleon
- Scenario under study
- Compatible with our detector concept
- Maybe with a complementary beam dump experiment

