Flavor Physics Part 1

Wolfgang Altmannshofer altmanwg@ucmail.uc.edu

Summer School on Symmetries, Fundamental Interactions and Cosmology 2016,

Abtei Frauenwörth, September 19, 2016

	COLORAD STR	 11111		
1.1.7 × 1 II			1115-111	파니

Benjamin Grinstein

TASI-2013 Lectures on Flavor Physics arXiv:1501.05283

Gino Isidori

Flavor physics and CP violation arXiv:1302.0661

Yossi Nir

Flavour physics and CP violation arXiv:1010.2666

Yuval Grossman

Introduction to flavor physics arXiv:1006.3534

Outline of the Lectures

- I Flavor Physics in the Standard Model
 - Flavor Symmetry and Flavor Symmetry Breaking
 - The CKM Matrix
 - Meson Mixing and CP Asymmetries
 - The Standard Model Flavor Puzzle

Outline of the Lectures

- I Flavor Physics in the Standard Model
 - Flavor Symmetry and Flavor Symmetry Breaking
 - The CKM Matrix
 - Meson Mixing and CP Asymmetries
 - The Standard Model Flavor Puzzle
- Plavor Physics Beyond the Standard Model
 - The New Physics Flavor Puzzle
 - Flavor in BSM Models
 - Flavor Anomalies

Part 1

Flavor Physics in the Standard Model

The Standard Model of Particle Physics

particlefever.com

What distinguishes the three generations/flavors of quarks and leptons?

$$\mathcal{L}_{SM} \sim \Lambda^4 + \Lambda^2 H^2 + \lambda H^4$$

 $+ \bar{\Psi} \not{D} \Psi + (D_\mu H)^2 + (F_{\mu\nu})^2$
 $+ Y H \bar{\Psi} \Psi + \frac{1}{\Lambda} (LH)^2 + \cdots$

$$\mathcal{L}_{SM} \sim \Lambda^{4} + \Lambda^{2} H^{2} + \lambda H^{4}$$

$$(+\bar{\Psi} D \Psi + (D_{\mu} H)^{2} + (F_{\mu\nu})^{2} + Y H \bar{\Psi} \Psi + \frac{1}{\Lambda} (LH)^{2} + \cdots$$
kinetic terms

The Fermion Gauge Quantum Numbers

$$\frac{SU(3)}{Q_L^i} = \begin{pmatrix} u_L \\ d_L \end{pmatrix} \begin{pmatrix} c_L \\ s_L \end{pmatrix} \begin{pmatrix} t_L \\ b_L \end{pmatrix} 3 2 \frac{1}{6}$$
$$u_R^i = u_R c_R t_R 3 1 \frac{2}{3}$$
$$d_R^i = d_R s_R b_R 3 1 -\frac{1}{3}$$
$$L_L^i = \begin{pmatrix} \nu_{eL} \\ e_L \end{pmatrix} \begin{pmatrix} \nu_{\mu L} \\ \mu_L \end{pmatrix} \begin{pmatrix} \nu_{\tau L} \\ \tau_L \end{pmatrix} 1 2 -\frac{1}{2}$$
$$e_R^i = e_R \mu_R \tau_R 1 1 -1$$

3 replica of the basic fermion family

Wolfdand	V 4 11 E	man	nsho	ter
mongang			11001100	

gauge interactions are flavor universal

$$\begin{split} \bar{\Psi} \not\!\!\!D \Psi &= \sum_{i=1}^{3} \bar{Q}_{i} \not\!\!\!D Q_{i} + \sum_{i=1}^{3} \bar{u}_{i} \not\!\!\!D u_{i} + \sum_{i=1}^{3} \bar{d}_{i} \not\!\!\!D d_{i} \\ &+ \sum_{i=1}^{3} \bar{L}_{i} \not\!\!\!D L_{i} + \sum_{i=1}^{3} \bar{e}_{i} \not\!\!\!D e_{i} \end{split}$$

gauge interactions are flavor universal

this part of the SM Lagrangian has a large $U(3)^5$ flavor symmetry

$$Q
ightarrow V_Q Q$$
 , $u
ightarrow V_u u$, $d
ightarrow V_d d$, $L
ightarrow V_L L$, $e
ightarrow V_e e$

The $U(3)^5$ flavor symmetry can be decomposed in the following way

 $U(3)^{5} =$

 $U(1)_B imes U(1)_L imes U(1)_Y imes U(1)_D imes U(1)_E \ imes SU(3)_Q imes SU(3)_U imes SU(3)_D imes SU(3)_L imes SU(3)_E$

The $U(3)^5$ flavor symmetry can be decomposed in the following way

$$U(3)^{5} =$$

 $U(1)_B imes U(1)_L imes U(1)_Y imes U(1)_D imes U(1)_E \ imes SU(3)_Q imes SU(3)_U imes SU(3)_D imes SU(3)_L imes SU(3)_E$

baryon number, lepton number, hypercharge

The $U(3)^5$ flavor symmetry can be decomposed in the following way

$$U(3)^{5} =$$

 $U(1)_B imes U(1)_L imes U(1)_Y imes U(1)_D imes U(1)_E \ imes SU(3)_Q imes SU(3)_U imes SU(3)_D imes SU(3)_L imes SU(3)_E$

baryon number, lepton number, hypercharge RH down-quark number, RH lepton number

The $U(3)^5$ flavor symmetry can be decomposed in the following way

$$U(3)^{5} =$$

 $\begin{array}{l} U(1)_B \times U(1)_L \times U(1)_Y \times U(1)_D \times U(1)_E \\ \times SU(3)_Q \times SU(3)_U \times SU(3)_D \times SU(3)_L \times SU(3)_E \end{array}$

baryon number, lepton number, hypercharge RH down-quark number, RH lepton number flavor mixing

Flavor Symmetry Breaking

the flavor symmetry is explicitly broken by the Yukawa couplings

$$\mathbf{Y} H \overline{\Psi} \Psi = \sum_{i,j} (\hat{Y}_u)_{ij} H^c \overline{Q}_i u_j + \sum_{i,j} (\hat{Y}_d)_{ij} H \overline{Q}_i d_j + \sum_{i,j} (\hat{Y}_\ell)_{ij} H \overline{L}_i e_j + \text{h.c.}$$

Flavor Symmetry Breaking

the flavor symmetry is explicitly broken by the Yukawa couplings

$$\mathbf{Y} \ \mathbf{H} \overline{\Psi} \Psi = \sum_{i,j} (\hat{Y}_u)_{ij} \mathbf{H}^c \overline{Q}_i u_j + \sum_{i,j} (\hat{Y}_d)_{ij} \mathbf{H} \overline{Q}_i d_j + \sum_{i,j} (\hat{Y}_\ell)_{ij} \mathbf{H} \overline{L}_i \mathbf{e}_j + \text{h.c.}$$

this part of the Lagrangian is only invariant under

 $U(1)_B \times U(1)_L \times U(1)_Y$

Flavor Symmetry Breaking

the flavor symmetry is explicitly broken by the Yukawa couplings

$$\mathbf{Y} H \overline{\Psi} \Psi = \sum_{i,j} (\hat{Y}_u)_{ij} H^c \overline{Q}_i u_j + \sum_{i,j} (\hat{Y}_d)_{ij} H \overline{Q}_i d_j + \sum_{i,j} (\hat{Y}_\ell)_{ij} H \overline{L}_i e_j + \text{h.c.}$$

this part of the Lagrangian is only invariant under

 $U(1)_B \times U(1)_L \times U(1)_Y$

after electro-weak symmetry breaking we get fermion masses

$$\rightarrow \sum_{i,j} (\hat{m}_u)_{ij} \bar{u}_i^L u_j^R + \sum_{i,j} (\hat{m}_d)_{ij} \bar{d}_i^L d_j^R + \sum_{i,j} (\hat{m}_\ell)_{ij} \bar{e}_i^L e_j^R + \text{h.c.}$$

Yukawa couplings and fermion masses are generic 3×3 matrices (not necessarily symmetric, hermitian, ...)

 $\bar{u}^L \hat{m}_u u^R + \bar{d}^L \hat{m}_d d^R + \text{h.c.}$

Yukawa couplings and fermion masses are generic 3×3 matrices (not necessarily symmetric, hermitian, ...)

 $\bar{u}^L \hat{m}_u u^R + \bar{d}^L \hat{m}_d d^R + \text{h.c.}$

mass matrices for the fermions can be diagonalized by bi-unitary transformations

$$u^L
ightarrow V^L_u u^L$$
 , $u^R
ightarrow V^R_u u^R$, $d^L
ightarrow V^L_d d^L$, $d^R
ightarrow V^R_d d^R$

Yukawa couplings and fermion masses are generic 3×3 matrices (not necessarily symmetric, hermitian, ...)

 $\bar{u}^L \hat{m}_u u^R + \bar{d}^L \hat{m}_d d^R + \text{h.c.}$

mass matrices for the fermions can be diagonalized by bi-unitary transformations

$$u^L
ightarrow V^L_u u^L$$
 , $u^R
ightarrow V^R_u u^R$, $d^L
ightarrow V^L_d d^L$, $d^R
ightarrow V^R_d d^R$

$$(V_u^L)^{\dagger}(\hat{m}_u)(V_u^R) = \text{diag}(m_u, m_c, m_t)$$

 $(V_d^L)^{\dagger}(\hat{m}_d)(V_d^R) = \text{diag}(m_d, m_s, m_b)$
 V_u^L, V_u^R, V_d^L , and V_d^R are unitary matrices

Yukawa couplings and fermion masses are generic 3×3 matrices (not necessarily symmetric, hermitian, ...)

 $\bar{u}^L \hat{m}_u u^R + \bar{d}^L \hat{m}_d d^R + \text{h.c.}$

mass matrices for the fermions can be diagonalized by bi-unitary transformations

$$u^L
ightarrow V^L_u u^L$$
 , $u^R
ightarrow V^R_u u^R$, $d^L
ightarrow V^L_d d^L$, $d^R
ightarrow V^R_d d^R$

$$(V_u^L)^{\dagger}(\hat{m}_u)(V_u^R) = \text{diag}(m_u, m_c, m_t)$$
$$(V_d^L)^{\dagger}(\hat{m}_d)(V_d^R) = \text{diag}(m_d, m_s, m_b)$$

 V_u^L , V_u^R , V_d^L , and V_d^R are unitary matrices

[Exercise: show that any matrix can be diagonalized by a bi-unitary transformation]

What happens to the gauge interactions in the mass eigenstate basis?

Lets start with the interactions of the W boson

$$ar{\Psi} D \Psi \supset rac{g_2}{\sqrt{2}} \Big(ar{u}_i^L \gamma^\mu d_i^L W^+_\mu + ar{d}_i^L \gamma^\mu u_i^L W^-_\mu \Big)$$

What happens to the gauge interactions in the mass eigenstate basis?

Lets start with the interactions of the W boson

$$ar{\Psi} D \Psi \supset rac{g_2}{\sqrt{2}} \Big(ar{u}_i^L \gamma^\mu d_i^L W^+_\mu + ar{d}_i^L \gamma^\mu u_i^L W^-_\mu \Big)$$

$$\rightarrow \frac{g_2}{\sqrt{2}} \Big(V_{kj} (\bar{u}_k^L \gamma^\mu d_j^L \boldsymbol{W}_\mu^+) + V_{kj}^* (\bar{d}_j^L \gamma^\mu u_k^L \boldsymbol{W}_\mu^-) \Big)$$

 $V = (V_u^L)^{\dagger}(V_d^L)$ is the Cabibbo-Kobayashi-Maskawa matrix

What happens to the gauge interactions in the mass eigenstate basis?

The CKM matrix is unitary (product of 2 unitary matrices)

Lets look at the couplings of the photon

$$ar{\Psi}
ot\!\!\!\!/ \Psi \supset rac{2}{3} e \Big(ar{u}^L_i \gamma^\mu u^L_i + ar{u}^R_i \gamma^\mu u^R_i \Big) A_\mu - rac{1}{3} e \Big(ar{d}^L_i \gamma^\mu d^L_i + ar{d}^R_i \gamma^\mu d^R_i \Big) A_\mu$$

Lets look at the couplings of the photon

$$\bar{\Psi} \mathcal{D} \Psi \supset \frac{2}{3} e \left(\bar{u}_i^L \gamma^\mu u_i^L + \bar{u}_i^R \gamma^\mu u_i^R \right) A_\mu - \frac{1}{3} e \left(\bar{d}_i^L \gamma^\mu d_i^L + \bar{d}_i^R \gamma^\mu d_i^R \right) A_\mu$$

$$\rightarrow \frac{2}{3} e \left((V_u^L)_{ij}^* (V_u^L)_{ik} (\bar{u}_j^L \gamma^\mu u_k^L) + (V_u^R)_{ij}^* (V_u^R)_{ik} (\bar{u}_j^R \gamma^\mu u_k^R) \right) A_\mu$$

$$- \frac{1}{3} e \left((V_d^L)_{ij}^* (V_d^L)_{ik} (\bar{d}_j^L \gamma^\mu d_k^L) + (V_d^R)_{ij}^* (V_d^R)_{ik} (\bar{d}_j^R \gamma^\mu d_k^R) \right) A_\mu$$

Lets look at the couplings of the photon

$$\begin{split} \bar{\Psi} \mathcal{D} \Psi \supset &\frac{2}{3} e \Big(\bar{u}_i^L \gamma^\mu u_i^L + \bar{u}_i^R \gamma^\mu u_i^R \Big) A_\mu - \frac{1}{3} e \Big(\bar{d}_i^L \gamma^\mu d_i^L + \bar{d}_i^R \gamma^\mu d_i^R \Big) A_\mu \\ \rightarrow & \frac{2}{3} e \Big((V_u^L)_{ij}^* (V_u^L)_{ik} (\bar{u}_j^L \gamma^\mu u_k^L) + (V_u^R)_{ij}^* (V_u^R)_{ik} (\bar{u}_j^R \gamma^\mu u_k^R) \Big) A_\mu \\ & - \frac{1}{3} e \Big((V_d^L)_{ij}^* (V_d^L)_{ik} (\bar{d}_j^L \gamma^\mu d_k^L) + (V_d^R)_{ij}^* (V_d^R)_{ik} (\bar{d}_j^R \gamma^\mu d_k^R) \Big) A_\mu \\ & = \frac{2}{3} e \Big(\bar{u}_i^L \gamma^\mu u_i^L + \bar{u}_i^R \gamma^\mu u_i^R \Big) A_\mu - \frac{1}{3} e \Big(\bar{d}_i^L \gamma^\mu d_i^L + \bar{d}_i^R \gamma^\mu d_i^R \Big) A_\mu \end{split}$$

Lets look at the couplings of the photon

$$\bar{\Psi} \mathcal{D} \Psi \supset \frac{2}{3} e \left(\bar{u}_i^L \gamma^\mu u_i^L + \bar{u}_i^R \gamma^\mu u_i^R \right) A_\mu - \frac{1}{3} e \left(\bar{d}_i^L \gamma^\mu d_i^L + \bar{d}_i^R \gamma^\mu d_i^R \right) A_\mu$$

$$\rightarrow \frac{2}{3} e \left((V_u^L)_{ij}^* (V_u^L)_{ik} (\bar{u}_j^L \gamma^\mu u_k^L) + (V_u^R)_{ij}^* (V_u^R)_{ik} (\bar{u}_j^R \gamma^\mu u_k^R) \right) A_\mu$$

$$- \frac{1}{3} e \left((V_d^L)_{ij}^* (V_d^L)_{ik} (\bar{d}_j^L \gamma^\mu d_k^L) + (V_d^R)_{ij}^* (V_d^R)_{ik} (\bar{d}_j^R \gamma^\mu d_k^R) \right) A_\mu$$

$$2 \left((V_d^L)_{ij}^* (V_d^L)_{ik} (\bar{d}_j^L \gamma^\mu d_k^L) + (V_d^R)_{ij}^* (V_d^R)_{ik} (\bar{d}_j^R \gamma^\mu d_k^R) \right) A_\mu$$

$$=\frac{2}{3}e\Big(\bar{u}_i^L\gamma^{\mu}u_i^L+\bar{u}_i^R\gamma^{\mu}u_i^R\Big)A_{\mu}-\frac{1}{3}e\Big(\bar{d}_i^L\gamma^{\mu}d_i^L+\bar{d}_i^R\gamma^{\mu}d_i^R\Big)A_{\mu}$$

Completely analogous for gluon and Z couplings

[Exercise: show that also the couplings of the Higgs are flavor diagonal]

\rightarrow There are no Flavor Changing Neutral Currents (FCNCs) in the Standard Model at tree level

C C L D L			
	- Kall	11.511	olei

Flavor Transitions among Quark

no FCNCs at tree level

Flavor Transitions among Quark

no FCNCs at tree level

transitions among the generations are mediated by the W^{\pm} bosons and their relative strength is parametrized by the CKM matrix

 $V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$
Flavor Transitions among Quark

no FCNCs at tree level

transitions among the generations are mediated by the W^{\pm} bosons and their relative strength is parametrized by the CKM matrix

$$V = egin{pmatrix} V_{ud} & V_{us} & V_{ub} \ V_{cd} & V_{cs} & V_{cb} \ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

note that without the Higgs V = 11

Flavor Changing Neutral Currents at Loop Level

Flavor Changing Neutral Currents at Loop Level

FCNCs can arise at the loop level

they are suppressed by loop factors

and small CKM elements

rare B decays: $B \to X_s \gamma$, $B \to K^{(*)} \ell^+ \ell^-$, $B_{s,d} \to \ell^+ \ell^-$, ... rare Kaon decays: $K \to \pi \nu \bar{\nu}$, $K \to \pi \ell^+ \ell^-$, ...

rare B decays: $B \to X_s \gamma$, $B \to K^{(*)} \ell^+ \ell^-$, $B_{s,d} \to \ell^+ \ell^-$, ... rare Kaon decays: $K \to \pi \nu \bar{\nu}$, $K \to \pi \ell^+ \ell^-$, ...

Example: $B_s \rightarrow \mu^+ \mu^$ $b_L \qquad V_{lb} \qquad \mu^$ $b_L \qquad U_L \qquad Z \qquad U_L \qquad Z \qquad U_L \qquad U_$

rare B decays: $B \to X_s \gamma$, $B \to K^{(*)} \ell^+ \ell^-$, $B_{s,d} \to \ell^+ \ell^-$, ... rare Kaon decays: $K \to \pi \nu \bar{\nu}$, $K \to \pi \ell^+ \ell^-$, ...

Example: $B_s \rightarrow \mu^+ \mu^-$

$$A \sim G_F rac{g_2^2}{16\pi^2} \sum_{i=u,c,t} V_{is}^* V_{ib} F(m_i^2/m_W^2)$$

rare B decays: $B \to X_s \gamma$, $B \to K^{(*)} \ell^+ \ell^-$, $B_{s,d} \to \ell^+ \ell^-$, ... rare Kaon decays: $K \to \pi \nu \bar{\nu}$, $K \to \pi \ell^+ \ell^-$, ...

 $\begin{array}{c} b_L & V_{lb} & \mu^- \\ \hline B_s^0 & W & u_L \\ s_L & v_{ls} & \mu^+ \end{array}$

Example: $B_s \rightarrow \mu^+ \mu^-$

$$A \sim G_F rac{g_2^2}{16\pi^2} \sum_{i=u,c,t} V_{is}^* V_{ib} F(m_i^2/m_W^2)$$

 $V_{ts}^* V_{tb} F(m_t^2/m_W^2) + V_{cs}^* V_{cb} F(m_c^2/m_W^2) + V_{us}^* V_{ub} F(m_u^2/m_W^2)$

rare B decays: $B \to X_s \gamma$, $B \to K^{(*)} \ell^+ \ell^-$, $B_{s,d} \to \ell^+ \ell^-$, ... rare Kaon decays: $K \to \pi \nu \bar{\nu}$, $K \to \pi \ell^+ \ell^-$, ...

Example: $B_s \rightarrow \mu^+ \mu^ B_s \rightarrow \mu^+ \mu^ B_s \rightarrow \mu^+ \mu^ U_{lb} \rightarrow \mu^+$

$$A \sim G_F rac{g_2^2}{16\pi^2} \sum_{i=u,c,t} V_{is}^* V_{ib} F(m_i^2/m_W^2)$$

 $V_{ts}^* V_{tb} F(m_t^2/m_W^2) + V_{cs}^* V_{cb} F(m_c^2/m_W^2) + V_{us}^* V_{ub} F(m_u^2/m_W^2)$ = $V_{ts}^* V_{tb} (F(m_t^2/m_W^2) - F(m_c^2/m_W^2)) + V_{us}^* V_{ub} (F(m_u^2/m_W^2) - F(m_c^2/m_W^2))$

Glashow-Iliopoulos-Maiani (GIM) mechanism: FCNC amplitudes in the down-sector vanish for $m_t = m_c = m_u$

	1.1			7.1.1
1.1.1.1.1	1.5.10	-114		

rare B decays: $B \to X_s \gamma$, $B \to K^{(*)} \ell^+ \ell^-$, $B_{s,d} \to \ell^+ \ell^-$, ... rare Kaon decays: $K \to \pi \nu \bar{\nu}$, $K \to \pi \ell^+ \ell^-$, ...

Example: $B_s \rightarrow \mu^+ \mu^$ $b_L \qquad V_{lb} \qquad \mu^$ $b_L \qquad U_L \qquad Z \qquad \mu^$ $b_L \qquad V_{lb} \qquad \mu^-$

$$A \sim G_F rac{g_2^2}{16\pi^2} \sum_{i=u,c,t} V_{is}^* V_{ib} F(m_i^2/m_W^2)$$

 $V_{ts}^* V_{tb} F(m_t^2/m_W^2) + V_{cs}^* V_{cb} F(m_c^2/m_W^2) + V_{us}^* V_{ub} F(m_u^2/m_W^2)$ = $V_{ts}^* V_{tb} (F(m_t^2/m_W^2) - F(m_c^2/m_W^2)) + V_{us}^* V_{ub} (F(m_u^2/m_W^2) - F(m_c^2/m_W^2))$ $\simeq V_{ts}^* V_{tb} (F(m_t^2/m_W^2) - F(0)) = V_{ts}^* V_{tb} \tilde{F}(m_t^2/m_W^2)$

Glashow-Iliopoulos-Maiani (GIM) mechanism: FCNC amplitudes in the down-sector vanish for $m_t = m_c = m_\mu$

top loop is often dominant

111/01/01	/ 4 G 1 4 T		 aT JaTa	1 (1 2
		* # 2 1 1 1		11
		 Markets 		

Flavor Physics 1

meson mixing: example $B_s \leftrightarrow \bar{B}_s$ oscillations

meson mixing: example $B_s \leftrightarrow \bar{B}_s$ oscillations

$$M_{12} \sim G_F rac{g_2^2}{16\pi^2} \sum_{i=u,c,t} \sum_{j=u,c,t} V_{is}^* V_{ib} V_{js}^* V_{jb} F(m_i^2/m_W^2,m_j^2/m_W^2)$$

Glashow-Iliopoulos-Maiani (GIM) mechanism: FCNC amplitudes in the down-sector vanish for $m_t = m_c = m_u$

611	1.1			
	11.51	1.11		UN GU
·				

meson mixing: example $B_s \leftrightarrow \bar{B}_s$ oscillations

$$M_{12} \sim G_F rac{g_2^2}{16\pi^2} \sum_{i=u,c,t} \sum_{j=u,c,t} V_{is}^* V_{ib} V_{js}^* V_{jb} F(m_i^2/m_W^2, m_j^2/m_W^2)$$

 $\rightarrow (V_{ts}^*V_{tb})^2 (F(m_t^2/m_W^2, m_t^2/m_W^2) + F(0,0) - 2F(m_t^2/m_W^2, 0))$

Glashow-Iliopoulos-Maiani (GIM) mechanism: FCNC amplitudes in the down-sector vanish for $m_t = m_c = m_u$

top loop is often dominant

a a a A I	1111	A 7 A 1 A

Flavor Physics 1

unitary 3×3 matrix \rightarrow 9 free parameters: 3 angles + 6 phases

unitary 3×3 matrix \rightarrow 9 free parameters: 3 angles + 6 phases

but not all phases are physical!

unitary 3×3 matrix $\rightarrow 9$ free parameters: 3 angles + 6 phases but not all phases are physical!

the quark mass terms are invariant under the transformations

$$egin{aligned} &u^L o ext{diag}(e^{ilpha_1},e^{ilpha_2},e^{ilpha_3})u^L \ , & u^R o ext{diag}(e^{ilpha_1},e^{ilpha_2},e^{ilpha_3})u^R \ &d^L o ext{diag}(e^{ieta_1},e^{ieta_2},e^{ieta_3})d^L \ , & d^R o ext{diag}(e^{ieta_1},e^{ieta_2},e^{ieta_3})d^R \end{aligned}$$

unitary 3×3 matrix $\rightarrow 9$ free parameters: 3 angles + 6 phases but not all phases are physical!

the quark mass terms are invariant under the transformations

$$egin{aligned} &u^L o ext{diag}(e^{ilpha_1},e^{ilpha_2},e^{ilpha_3})u^L \ , & u^R o ext{diag}(e^{ilpha_1},e^{ilpha_2},e^{ilpha_3})u^R \ &d^L o ext{diag}(e^{ieta_1},e^{ieta_2},e^{ieta_3})d^L \ , & d^R o ext{diag}(e^{ieta_1},e^{ieta_2},e^{ieta_3})d^R \end{aligned}$$

the CKM matrix transforms as

$$V_{jk}
ightarrow V_{jk} e^{-i(lpha_j - eta_k)}$$

unitary 3×3 matrix $\rightarrow 9$ free parameters: 3 angles + 6 phases but not all phases are physical!

the quark mass terms are invariant under the transformations

$$egin{aligned} &u^L o ext{diag}(e^{ilpha_1},e^{ilpha_2},e^{ilpha_3})u^L \ , & u^R o ext{diag}(e^{ilpha_1},e^{ilpha_2},e^{ilpha_3})u^R \ &d^L o ext{diag}(e^{ieta_1},e^{ieta_2},e^{ieta_3})d^L \ , & d^R o ext{diag}(e^{ieta_1},e^{ieta_2},e^{ieta_3})d^R \end{aligned}$$

the CKM matrix transforms as

$$V_{jk}
ightarrow V_{jk} e^{-i(lpha_j - eta_k)}$$

5 independent phase differences can be absorbed in this way

	A 1 1 1 1 1 1 1		
1.1.1.6.1.1.6	/_11411		

unitary 3×3 matrix $\rightarrow 9$ free parameters: 3 angles + 6 phases but not all phases are physical!

the quark mass terms are invariant under the transformations

$$egin{aligned} &u^L o ext{diag}(e^{ilpha_1},e^{ilpha_2},e^{ilpha_3})u^L \ , & u^R o ext{diag}(e^{ilpha_1},e^{ilpha_2},e^{ilpha_3})u^R \ &d^L o ext{diag}(e^{ieta_1},e^{ieta_2},e^{ieta_3})d^L \ , & d^R o ext{diag}(e^{ieta_1},e^{ieta_2},e^{ieta_3})d^R \end{aligned}$$

the CKM matrix transforms as

$$V_{jk}
ightarrow V_{jk} e^{-i(lpha_j - eta_k)}$$

5 independent phase differences can be absorbed in this way

 \rightarrow CKM matrix is determined by 3 angles and 6-5=1 phase

WO DO DO		10.01	100
wongar	\mathbf{U} AU	115111	JIEL

Standard Parametrization: product of 3 rotation matrices

$$V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \cdot \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \cdot \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$s_{ij} = \sin(\theta_{ij}), c_{ij} = \cos(\theta_{ij})$$

Standard Parametrization: product of 3 rotation matrices

$$V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \cdot \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \cdot \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -s_{23}c_{12} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

 $s_{ij} = \sin(\theta_{ij}), c_{ij} = \cos(\theta_{ij})$

Standard Parametrization: product of 3 rotation matrices

$$V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \cdot \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \cdot \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -s_{23}c_{12} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

 $s_{ij} = \sin(\theta_{ij}), c_{ij} = \cos(\theta_{ij})$

(many equivalent parametrizations possible)

MUG I		161	/ A 11 E E	man		<u> </u>
	10 L. UI	3.C III				

Wolfenstein Parametrization: introduce the parameters λ , A, ρ , η

$$s_{12} = \lambda$$
, $s_{23} = A\lambda^2$, $s_{13}e^{i\delta} = A\lambda^3(\rho + i\eta)$

Wolfenstein Parametrization: introduce the parameters λ , A, ρ , η

$$s_{12} = \lambda$$
 , $s_{23} = A\lambda^2$, $s_{13}e^{i\delta} = A\lambda^3(\rho + i\eta)$

measurements show that $\lambda \simeq 0.2 \ll 1$ is a good expansion parameter

$$V = \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{1}{2}\lambda^2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + O(\lambda^4)$$

Wolfenstein Parametrization: introduce the parameters λ , A, ρ , η

$$s_{12} = \lambda$$
 , $s_{23} = A\lambda^2$, $s_{13}e^{i\delta} = A\lambda^3(\rho + i\eta)$

measurements show that $\lambda \simeq 0.2 \ll 1$ is a good expansion parameter

$$V = \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{1}{2}\lambda^2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + O(\lambda^4)$$

[Exercise: Demonstrate the above expansion of the CKM matrix]

MAGE REFE	101 1	1 Total Control		
MACHINER I	11.4 10 - 1		1115-1119	

Unitarity Triangles

The CKM matrix is unitary \rightarrow relations between CKM elements

 $V_{ud} V_{ub}^* + V_{cd} V_{cb}^* + V_{td} V_{tb}^* = 0$

three complex numbers adding up to 0

Unitarity Triangles

The CKM matrix is unitary \rightarrow relations between CKM elements

 $V_{ud} V_{ub}^* + V_{cd} V_{cb}^* + V_{td} V_{tb}^* = 0$

three complex numbers adding up to 0

It is convenient to normalize one side to 1

$$ar{
ho}+iar{\eta}=-rac{V_{ud}\,V_{ub}^*}{V_{cd}\,V_{cb}^*}$$

$$ar{
ho}=
ho(1+O(\lambda^2))\,,\ ar{\eta}=\eta(1+O(\lambda^2))$$

The Angles of the Unitarity Triangle

Exercise: Show that

$$\begin{split} \alpha &= \mathrm{Arg}\left(-\frac{V_{td}\,V_{tb}^*}{V_{ud}\,V_{ub}^*}\right) \quad, \qquad \beta &= \mathrm{Arg}\left(-\frac{V_{cd}\,V_{cb}^*}{V_{td}\,V_{tb}^*}\right) \\ \gamma &= \mathrm{Arg}\left(-\frac{V_{ud}\,V_{ub}^*}{V_{cd}\,V_{cb}^*}\right) \end{split}$$

A non-zero phase in the CKM matrix signals CP violation.

A non-zero phase in the CKM matrix signals CP violation.

Lets proof this statement starting from the charged current interaction in the SM Lagrangian

$$\mathcal{L}_{\mathsf{SM}} \supset rac{g_2}{\sqrt{2}} V_{td} \overline{t}_L \gamma^\mu d_L W^+_\mu + rac{g_2}{\sqrt{2}} V^*_{td} \overline{d}_L \gamma^\mu t_L W^-_\mu$$

A non-zero phase in the CKM matrix signals CP violation.

Lets proof this statement starting from the charged current interaction in the SM Lagrangian

$$\mathcal{L}_{\mathsf{SM}} \supset rac{g_2}{\sqrt{2}} V_{td} \overline{t}_L \gamma^\mu d_L W^+_\mu + rac{g_2}{\sqrt{2}} V^*_{td} \overline{d}_L \gamma^\mu t_L W^-_\mu$$

under a CP transformation

$$\rightarrow \frac{g_2}{\sqrt{2}} V_{td} \bar{d}_L \gamma^\mu t_L W^-_\mu + \frac{g_2}{\sqrt{2}} V^*_{td} \bar{t}_L \gamma^\mu d_L W^+_\mu$$

A non-zero phase in the CKM matrix signals CP violation.

Lets proof this statement starting from the charged current interaction in the SM Lagrangian

$$\mathcal{L}_{\mathsf{SM}} \supset rac{g_2}{\sqrt{2}} V_{td} \overline{t}_L \gamma^\mu d_L W^+_\mu + rac{g_2}{\sqrt{2}} V^*_{td} \overline{d}_L \gamma^\mu t_L W^-_\mu$$

under a CP transformation

$$\rightarrow \frac{g_2}{\sqrt{2}} V_{td} \bar{d}_L \gamma^\mu t_L W^-_\mu + \frac{g_2}{\sqrt{2}} V^*_{td} \bar{t}_L \gamma^\mu d_L W^+_\mu$$

This part of the Lagrangian is CP invariant only if $V_{td} = V_{td}^*$, and analogous for the other CKM elements.

A non-zero phase in the CKM matrix signals CP violation.

Lets proof this statement starting from the charged current interaction in the SM Lagrangian

$$\mathcal{L}_{\mathsf{SM}} \supset rac{g_2}{\sqrt{2}} V_{td} \overline{t}_L \gamma^\mu d_L W^+_\mu + rac{g_2}{\sqrt{2}} V^*_{td} \overline{d}_L \gamma^\mu t_L W^-_\mu$$

under a CP transformation

$$\rightarrow \frac{g_2}{\sqrt{2}} V_{td} \bar{d}_L \gamma^\mu t_L W^-_\mu + \frac{g_2}{\sqrt{2}} V^*_{td} \bar{t}_L \gamma^\mu d_L W^+_\mu$$

This part of the Lagrangian is CP invariant only if $V_{td} = V_{td}^*$, and analogous for the other CKM elements.

> CP Violation $\Leftrightarrow V \neq V^* \Leftrightarrow \bar{\eta} \neq 0$ \Leftrightarrow unitarity triangles do not collapse to a line

Measuring CKM Parameters

Measuring CKM Parameters

need to know meson decay constants and form factors from lattice \rightarrow lectures by Andreas Kronfeld

11/21/2	101210		
	***	 +	
and the second second	· Junishilad ···		

Flavor Physics 1

Neutral Meson Mixing

1

There are 4 neutral meson anti-meson systems in nature

$$B_s - \overline{B}_s$$
 mixing $b\overline{s} \leftrightarrow \overline{b}s$

Neutral Meson Mixing

There are 4 neutral meson anti-meson systems in nature

$$B_s - \bar{B}_s$$
 mixing $b\bar{s} \leftrightarrow \bar{b}s$
 $B_d - \bar{B}_d$ mixing $b\bar{d} \leftrightarrow \bar{b}d$
Neutral Meson Mixing

There are 4 neutral meson anti-meson systems in nature

$$B_s - \bar{B}_s$$
 mixing $b\bar{s} \leftrightarrow \bar{b}s$
 $B_d - \bar{B}_d$ mixing $b\bar{d} \leftrightarrow \bar{b}d$
 $K^0 - \bar{K}^0$ mixing $s\bar{d} \leftrightarrow \bar{s}d$

Neutral Meson Mixing

There are 4 neutral meson anti-meson systems in nature

$$B_s - \bar{B}_s$$
 mixing $b\bar{s} \leftrightarrow \bar{b}s$
 $B_d - \bar{B}_d$ mixing $b\bar{d} \leftrightarrow \bar{b}d$
 $K^0 - \bar{K}^0$ mixing $s\bar{d} \leftrightarrow \bar{s}d$
 $D^0 - \bar{D}^0$ mixing $c\bar{u} \leftrightarrow \bar{c}u$

Neutral Meson Mixing

There are 4 neutral meson anti-meson systems in nature

$$B_s - \bar{B}_s$$
 mixing $b\bar{s} \leftrightarrow \bar{b}s$
 $B_d - \bar{B}_d$ mixing $b\bar{d} \leftrightarrow \bar{b}d$
 $K^0 - \bar{K}^0$ mixing $s\bar{d} \leftrightarrow \bar{s}d$
 $D^0 - \bar{D}^0$ mixing $c\bar{u} \leftrightarrow \bar{c}u$

 B_d and B_s mixing allow to access the CKM elements V_{td} and V_{ts}

Time Evolution of Neutral Meson Systems

$$i\partial_t \begin{pmatrix} B(t)\\ \bar{B}(t) \end{pmatrix} = \left(\hat{M} + \frac{i}{2}\hat{\Gamma}\right) \begin{pmatrix} B(t)\\ \bar{B}(t) \end{pmatrix}$$

mass matrix
$$\hat{M} = \hat{M}^{\dagger} = \begin{pmatrix} M & M_{12} \\ M_{12}^* & M \end{pmatrix}$$
, decay matrix $\hat{\Gamma} = \hat{\Gamma}^{\dagger} = \begin{pmatrix} \Gamma & \Gamma_{12} \\ \Gamma_{12}^* & \Gamma \end{pmatrix}$

Time Evolution of Neutral Meson Systems

$$i\partial_t \begin{pmatrix} B(t)\\ \bar{B}(t) \end{pmatrix} = \left(\hat{M} + \frac{i}{2}\hat{\Gamma}\right) \begin{pmatrix} B(t)\\ \bar{B}(t) \end{pmatrix}$$

mass matrix
$$\hat{M} = \hat{M}^{\dagger} = \begin{pmatrix} M & M_{12} \\ M_{12}^* & M \end{pmatrix}$$
, decay matrix $\hat{\Gamma} = \hat{\Gamma}^{\dagger} = \begin{pmatrix} \Gamma & \Gamma_{12} \\ \Gamma_{12}^* & \Gamma \end{pmatrix}$

diagonalize the Hamiltonian

$$B_H = pB + q\bar{B}$$
, $B_L = pB - q\bar{B}$, $\left(\frac{q}{p}\right)^2 = \frac{2M_{12}^* - i\Gamma_{12}^*}{2M_{12} - i\Gamma_{12}}$

$$\Delta M_s = M_s^H - M_s^L \simeq 2|M_{12}^s| \propto |V_{ts}|^2$$
$$\Delta M_d = M_d^H - M_d^L \simeq 2|M_{12}^d| \propto |V_{td}|^2$$

need lattice input to extract the CKM elements

Mixing Frequencies

$$\Gamma(B_s(t) \to D_s^+ \pi^-) \sim e^{-\Gamma_s t} \Big(\cosh(\frac{\Delta \Gamma_s t}{2}) + \cos(\Delta M_s t) \Big)$$

Mixing Frequencies

$$\Gamma(B_s(t) \to D_s^+ \pi^-) \sim e^{-\Gamma_s t} \Big(\cosh(\frac{\Delta \Gamma_s t}{2}) + \cos(\Delta M_s t) \Big)$$

 $\Delta M_s = (17.757 \pm 0.021)/ps$, $\Delta M_d = (0.5064 \pm 0.0019)/ps$

(Heavy Flavor Averaging Group)

Three Types of CP Violation

1) CP Violation in Mixing

probability to oscillate from meson to anti-meson \neq probability to oscillate from anti-meson to meson

Three Types of CP Violation

1) CP Violation in Mixing

probability to oscillate from meson to anti-meson \neq probability to oscillate from anti-meson to meson

2) CP Violation in the Decay

decay rate of a meson to a final state \neq decay rate of the anti-meson to the CP conjugated final state

Three Types of CP Violation

1) CP Violation in Mixing

probability to oscillate from meson to anti-meson \neq probability to oscillate from anti-meson to meson

2) CP Violation in the Decay

decay rate of a meson to a final state \neq decay rate of the anti-meson to the CP conjugated final state

 CP Violation in the Interference of Mixing and Decay

can occur in decays of meson and anti-meson to a common final state

CP Violation in Mixing

CP Violation in Mixing

Look at decays to "wrong sign" final states, e.g.

$$a_{\mathsf{SL}}^d = \frac{\Gamma(\bar{B}_d(t) \to \ell^+ \nu X) - \Gamma(B_d(t) \to \ell^- \bar{\nu} X)}{\Gamma(\bar{B}_d(t) \to \ell^+ \nu X) + \Gamma(B_d(t) \to \ell^- \bar{\nu} X)} = \frac{1 - |q/\rho|^4}{1 + |q/\rho|^4}$$

CP Violation in Mixing

CP Violation in the Decay

$$\begin{array}{c}
\hline M \\
\hline f \\
\hline \hline A_{\overline{f}} \\
\hline \end{bmatrix} = \left| \frac{\sum_{k} A_{k} e^{i(\delta_{k} - \phi_{k})}}{\sum_{k} A_{k} e^{i(\delta_{k} + \phi_{k})}} \right| \neq 1
\end{array}$$

requires more than one interfering amplitude with different strong phase and weak phase

CP Violation in the Decay

$$\begin{array}{c}
\overbrace{\mathbf{M}} & \overbrace{\mathbf{f}} \\
\overbrace{\mathbf{A}_{\bar{f}}} \\
\overbrace{\mathbf{K}_{k}} A_{k} e^{i(\delta_{k} - \phi_{k})} \\
\overbrace{\mathbf{K}_{k}} A_{k} e^{i(\delta_{k} + \phi_{k})} \\
\downarrow \neq 1
\end{array}$$

requires more than one interfering amplitude with different strong phase and weak phase

look e.g. at decays of charged B mesons:

$$a_{f\pm} = \frac{\Gamma(B^+ \to f^+) - \Gamma(B^- \to f^-)}{\Gamma(B^+ \to f^+) + \Gamma(B^- \to f^-)} = \frac{1 - |\bar{A}_{f^-}/A_{f^+}|^2}{1 + |\bar{A}_{f^-}/A_{f^+}|^2}$$

$$\operatorname{Im}\left(\frac{q}{p}\frac{\bar{A}_{f}}{A_{f}}\right)\neq0$$

look at time dependent CP asymmetries in decays to final CP eigenstates

$$a_{f_{CP}}(t) = rac{\Gamma(ar{B}(t) o f_{CP}) - \Gamma(B(t) o f_{CP})}{\Gamma(ar{B}(t) o f_{CP}) + \Gamma(B(t) o f_{CP})} \simeq$$

look at time dependent CP asymmetries in decays to final CP eigenstates

$$a_{f_{CP}}(t) = \frac{\Gamma(\bar{B}(t) \to f_{CP}) - \Gamma(B(t) \to f_{CP})}{\Gamma(\bar{B}(t) \to f_{CP}) + \Gamma(B(t) \to f_{CP})} \simeq \operatorname{Im}\left(\frac{q}{p}\frac{\bar{A}_{f}}{A_{f}}\right) \operatorname{sin}(\Delta M t)$$

(if $\Delta\Gamma \simeq 0$ and if there is no direct CP violation i.e. $|A_f| = |\bar{A}_f|$)

Golden channel to determine the angle β : $B_d \rightarrow J/\psi K_S$

Golden channel to determine the angle β : $B_d \rightarrow J/\psi K_S$

$$\begin{split} \mathcal{A}(B_d \to J/\psi \mathcal{K}_S) &\simeq \mathcal{A}(\bar{B}_d \to J/\psi \mathcal{K}_S) \simeq \text{ real }, \quad \frac{q}{p} \simeq -\frac{V_{tb}^* V_{td}}{V_{tb} V_{td}^*} \simeq e^{-i2\beta} \\ &\Rightarrow \quad a_{J/\phi \mathcal{K}_S}(t) \simeq \sin(2\beta) \sin(\Delta M_d \ t) \end{split}$$

Golden channel to determine the angle β : $B_d \rightarrow J/\psi K_S$

HFAG average

 $\sin(2\beta) = 0.691 \pm 0.017$

Experimental Situation of the CKM Matrix

overall consistent picture within O(10%) uncertainties

$$\begin{split} \lambda &= 0.2254^{+0.0004}_{-0.0003}\\ A &= 0.823^{+0.007}_{-0.014}\\ \bar{\rho} &= 0.150^{+0.012}_{-0.006}\\ \bar{\eta} &= 0.354^{+0.007}_{-0.008} \end{split}$$

http://ckmfitter.in2p3.fr/ http://www.utfit.org/ http://latticeaverages.org/

Flavor Hierarchies

Flavor Hierarchies

The Standard Model Flavor Puzzle

The Standard Model gives a reasonable description of all flavor transitions measured up to now, but it does not explain its mysteries

- Why are there three generations of quarks and leptons?
- ► What is the origin of the hierarchies in the fermion spectrum?
- What is the origin of the hierarchies in the quark mixing?

Addressing the SM Flavor Puzzle

Hierarchy from Symmetry

(Froggatt, Nielsen '79; ...)

fermion masses are forbidden by flavor symmetries and arise only after spontaneous breaking of the symmetry

mass and mixing hierarchies given by powers of the "spurion" $\langle \varphi \rangle / M$. in the example from the previous slide we have

$$rac{m_u}{m_t} \sim \left(rac{\langle arphi
angle}{M}
ight)^6 \sim \epsilon^6$$

mass and mixing hierarchies given by powers of the "spurion" $\langle \varphi \rangle / M$. in the example from the previous slide we have

$$rac{m_u}{m_t} \sim \left(rac{\langle arphi
angle}{M}
ight)^6 \sim \epsilon^6$$

Exercise: Construct a U(1) model with the following hierarchies

$$m_u \sim \epsilon^6$$
, $m_c \sim \epsilon^3$, $m_t \sim 1$
 $m_d \sim \epsilon^5$, $m_s \sim \epsilon^4$, $m_b \sim \epsilon^2$

Which predictions does your model make for the CKM hierarchies?

Hierarchy without Symmetry: Geometry

(Arkani-Hamed, Schmaltz '99; Grossman, Neubert '99; ...)

fermions are localized at different positions in an extra dimension

hierarchies from exponentially small wave-function overlap between left-handed and right-handed fermions and the Higgs

$$rac{m_u}{m_t}\sim e^{-\Delta}$$

Hierarchy without Symmetry: Loops

(Weinberg '72; ...)

light fermion masses arise only from quantum effects

light fermions do not couple to the higgs directly

couplings are loop-induced by flavor violating new particles

mass and mixing hierarchies from loop factors

$$\frac{m_u}{m_t} \sim \left(\frac{1}{16\pi^2}\right)^n$$

- ▶ In the SM, all flavor violation is due to the Higgs
- At tree level there are no FCNCs; flavor violation occurs only in charged currents, parametrized by the CKM matrix
- FCNCs arise at the 1-loop level. Example: meson mixing; gives access to CKM elements V_{td} and V_{ts} and their phases
- Where do the hierarchies in the CKM elements and the fermion masses come from?