

Flavor Physics from Lattice QCD: 2

Andreas S. Kronfeld Fermilab & IAS TU München

Symmetry Breaking in Fundamental Interactions September 19–23, 2016 Kloster Frauenwörth

Ein Einheimischer unter den Rednern?

Outline

- Lecture 1—Lattice Gauge Theory:
 - Origins;
 - Formalism;
 - Numerical methods.
- Lecture 2—Lattice QCD Results:
 - Semileptonic form factors & neutral-meson mixing:
 - CKM determination and search for non-SM FCNC;
 - Decay constants (leptonic decays).

Flavor Physics in Two Slides

• Masses of W, Z, top, and Higgs are much greater than m_b :

$$\mathscr{L} = \mathscr{L}_{kin}[\ell, q, \gamma, g] + \sum_{i} \mathscr{C}_{i}(\alpha, \alpha_{s}, G_{F}, \sin^{2}\theta, m_{\ell}, m_{q}, V; NP) \mathscr{L}_{i}[\ell, q, \gamma, g]$$

• Contributions of unknown massive particles lumped into \mathscr{C}_{i} .

Industrial Lattice QCD

Active Flavor Collaborations ($n_f = 2+1, 2+1+1$)

- HPQCD "High-Precision QCD"-Cornell, Glasgow, Ohio State, ...
- Fermilab Lattice-Fermilab, Illinois, Syracuse, Granada, SAIC, Colorado
- MILC "MIMD Lattice Computation" seven US universities + APS + …
- SWME "Seoul-Washington Matrix Element"
- RBC "RIKEN-BNL-Columbia"
- UKQCD—several UK universities, for flavor esp. Edinburgh & Southampton
- JLQCD "Japan Lattice QCD" KEK, Tsukuba, ...
- PACS-CS (a computer name) Tsukuba, KEK, ...
- ETM "European Twisted Mass" numerous EU institutions
- BMW-Budapest, Marseille, Wuppertal, Jülich, ...

aka Fermilab/MILC

aka RBC/UKQCD

or FNAL/MILC

CKM and Lattice QCD

- Gold-plated quantities available to (over)determine CKM matrix:
 - zero or one hadron in initial and final state.
- Further such matrix elements for BSM flavor-changing neutral currents.
- Flavor Lattice Averaging Group FLAG:
 - self-selected group drawn from most major lattice QCD collaborations;
 - sets "discrete" quality criteria and produces averages of quantities germane to CKM;
 - compare & contrast to the PDG perhaps 30 years ago.

Comments on Using FLAG Averages

- It's easy to take FLAG averages carelessly.
 - Bear in mind that some parts of FLAG are inevitably out of date.
 - Also please follow FLAG's advice to cite the underlying papers.
- Fair and proper citation may seem obvious,
 - but it still doesn't happen all the time.
 - "It is easier to count than it is to read": folks who pay for the computers count citations of papers, not whether a paper appeared in a review.
- Carelessness is interpreted as not caring if the calculations to stop.

Calculations in this lecture

•

- From Fermilab Lattice and MILC collaborations:
 - I know all (or almost all) the details;
 - can therefore give a better idea of all the steps.
 - for the quantities discussed, the most precise results and/or most thorough study of systematic effects.
 - Use ensembles generated by the MILC collaboration, with either
 - 2+1 flavors of sea quark (the determinant) with asqtad staggered action;
 - or 2+1+1 flavors of sea quark with the HISQ action.

asqtad Ensembles: 2+1

<i>a</i> (fm)	size	am'/am's	# confs	# sources
≈ 0.15	16 ³ × 48	0.0097/0.0484	628	24
≈ 0.12	20 ³ × 64	0.02/0.05	2052	4
≈ 0.12	20 ³ × 64	0.01/0.05	2256	4
≈ 0.12	20 ³ × 64	0.007/0.05	2108	4
≈ 0.12	24 ³ × 64	0.005/0.05	2096	4
≈ 0.09	$28^3 \times 96$	0.0124/0.031	1992	4
≈ 0.09	$28^3 \times 96$	0.0062/0.031	1928	4
≈ 0.09	$32^3 \times 96$	0.00465/0.031	984	4
≈ 0.09	40 ³ × 96	0.0031/0.031	1012	4
≈ 0.09	64 ³ × 96	0.00155/0.031	788	4
≈ 0.06	48 ³ ×144	0.0072/0.018	576	4
≈ 0.06	48 ³ ×144	0.0036/0.018	672	4
≈ 0.06	56 ³ ×144	0.0025/0.018	800	4
≈ 0.06	64 ³ ×144	0.0018/0.018	824	4
≈ 0.045	64 ³ ×192	0.0028/0.014	800	4

HISQ Ensembles: 2+1+1

omitting some with $a \approx 0.12$ fm, newer with $a \approx 0.042, 0.03$ fm

a (fm)	size	am'i/am's/am'c	# confs	# sources	notes
≈ 0.15	16 ³ × 48	0.0130/0.065/0.838	1020	4	
≈ 0.15	24^{3} × 48	0.0064/0.064/0.828	1000	4	
≈ 0.15	$32^3 \times 48$	0.00235/0.0647/0.831	1000	4	
≈ 0.12	$24^3 \times 64$	0.0102/0.0509/0.635	1040	4	
≈ 0.12	$32^3 \times 64$	0.00507/0.0507/0.628	1000	4	3 sizes
≈ 0.12	$48^{3} \times 64$	0.00184/0.0507/0.628	999	4	
≈ 0.12	$24^3 \times 64$	0.01275/0.01275/0.640	1020	4	$m_{s}^{\prime}=m_{l}^{\prime}$
≈ 0.12	$32^3 \times 64$	0.00507/0.0307/0.628	1020	4	$m_{s}^{\prime} < m_{s}$
≈ 0.12	$32^3 \times 64$	0.00507/0.012675/0.628	1020	4	$m_{s}^{'} \neq m_{s}$
≈ 0.09	$32^3 \times 96$	0.0074/0.037/0.440	1011	4	
≈ 0.09	$48^3 \times 96$	0.00363/0.0363/0.430	1000	4	
≈ 0.09	$64^3 \times 96$	0.0012/0.0363/0.432	1031	4	
≈ 0.06	48 ³ ×144	0.0048/0.024/0.286	1016	4	
≈ 0.06	64 ³ ×144	0.0024/0.024/0.286	1166	4	→1246
≈ 0.06	96 ³ ×192	0.0008/0.022/0.260	583	6	→ 701*

asqtad Ensembles: 2+1

HISQ Ensembles: 2+1+1

Neutral-Meson Mixing

arXiv:1602.03560

• After integrating out heavy particles:

$$\mathscr{L} = \mathscr{L}_{\mathrm{kin}}[\ell, q, \gamma, g] + \sum_{i} \mathscr{C}_{i}(\alpha, \alpha_{s}, G_{F}, \sin^{2}\theta, m_{\ell}, m_{q}, V; \mathrm{NP}) \mathscr{L}_{i}[\ell, q, \gamma, g]$$

• For $\Delta F = 2$ processes, discrete symmetries and Fierz rearrangement reduces the list of operators to 8 = 5 + 3:

By parity in QCD: $\langle \bar{B}^0 | \mathscr{O}_i | B^0 \rangle = \langle \bar{B}^0 | \widetilde{\mathscr{O}}_i | B^0 \rangle$

• After integrating out heavy particles:

$$\mathscr{L} = \mathscr{L}_{\mathrm{kin}}[\ell, q, \gamma, g] + \sum_{i} \mathscr{C}_{i}(\alpha, \alpha_{s}, G_{F}, \sin^{2}\theta, m_{\ell}, m_{q}, V; \mathrm{NP})\mathscr{L}_{i}[\ell, q, \gamma, g]$$

• For $\Delta F = 2$ processes, discrete symmetries and Fierz rearrangement reduces the list of operators to 8 = 5 + 3:

$$\mathcal{O}_{1} = \bar{b}\gamma^{\mu}Lq\,\bar{b}\gamma^{\mu}Lq \quad SM$$
$$\mathcal{O}_{2} = \bar{b}Lq\,\bar{b}Lq$$
$$\mathcal{O}_{3} = \bar{b}^{\alpha}Lq^{\beta}\,\bar{b}^{\beta}Lq^{\alpha}$$
$$\mathcal{O}_{4} = \bar{b}Lq\,\bar{b}Rq$$
$$\mathcal{O}_{5} = \bar{b}^{\alpha}Lq^{\beta}\,\bar{b}^{\beta}Rq^{\alpha}$$

 $\tilde{\mathscr{O}}_{1} = \bar{b}\gamma^{\mu}Rq\,\bar{b}\gamma^{\mu}Rq$ $\tilde{\mathscr{O}}_{2} = \bar{b}Rq\,\bar{b}Rq$ $\tilde{\mathscr{O}}_{3} = \bar{b}^{\alpha}Rq^{\beta}\,\bar{b}^{\beta}Rq^{\alpha}$

By parity in QCD: $\langle \bar{B}^0 | \mathscr{O}_i | B^0 \rangle = \langle \bar{B}^0 | \tilde{\mathscr{O}}_i | B^0 \rangle$

• After integrating out heavy particles:

$$\mathscr{L} = \mathscr{L}_{\mathrm{kin}}[\ell, q, \gamma, g] + \sum_{i} \mathscr{C}_{i}(\alpha, \alpha_{s}, G_{F}, \sin^{2}\theta, m_{\ell}, m_{q}, V; \mathbf{NP}) \mathscr{L}_{i}[\ell, q, \gamma, g]$$

• For $\Delta F = 2$ processes, discrete symmetries and Fierz rearrangement reduces the list of operators to 8 = 5 + 3:

$$\begin{split} \widehat{\mathcal{O}}_{1} &= \bar{b}\gamma^{\mu}Lq\,\bar{b}\gamma^{\mu}Lq \ \ \mathsf{SM} \\ \widehat{\mathcal{O}}_{2} &= \bar{b}Lq\,\bar{b}Lq \\ \widehat{\mathcal{O}}_{2} &= \bar{b}Lq\,\bar{b}Lq \\ \widehat{\mathcal{O}}_{3} &= \bar{b}^{\alpha}Lq^{\beta}\,\bar{b}^{\beta}Lq^{\alpha} \\ \widehat{\mathcal{O}}_{4} &= \bar{b}Lq\,\bar{b}Rq \\ \widehat{\mathcal{O}}_{5} &= \bar{b}^{\alpha}Lq^{\beta}\,\bar{b}^{\beta}Rq^{\alpha} \end{split}$$

By parity in QCD: $\langle \bar{B}^0 | \mathscr{O}_i | B^0 \rangle = \langle \bar{B}^0 | \tilde{\mathscr{O}}_i | B^0 \rangle$

Historical Baggage

• Usually, the mixing matrix elements are recast as "bag parameters":

$$\langle \bar{B}_q | \mathscr{O}_i | B_q \rangle = \left[\mathfrak{e}_i + \mathfrak{c}_i \left(\frac{M_{B_q}}{m_b + m_q} \right)^2 \right] M_{B_q}^2 f_{B_q}^2 B_{B_q}^{(i)}$$

with certain fractions defined via the "vacuum saturation approximation", $\langle \bar{B}_q | \bar{b} \Gamma q \bar{b} \Gamma' q | B_q \rangle \sim \langle \bar{B}_q | \bar{b} \Gamma q | 0 \rangle \langle 0 | \bar{b} \Gamma' q | B_q \rangle$.

- The jargon "bag" dates back to the MIT bag model of hadrons.
- The "approximation" $B_B = 1$ varies with renormalization scheme/scale.
- Not "parameters" but outputs of a calculation.

Two-Point Correlation Function

Compare "effective" mass and amplitude to full fit

$$M_{\text{eff}}(t) = \cosh^{-1} \frac{C_B(t+1) + C_B(t-1)}{2C_B(t)}$$
$$C_B(t) = \langle B^{\dagger}(t)B^{\dagger}(0)\rangle \qquad \qquad A_{\text{eff}}(t) = C_B(t) e^{M_{\text{eff}}t}$$

Three-Point Correlation Function

$$A_{\text{eff}}^{O_i}(t_x, t_y) = C_{O_i}(t_x, t_y) e^{M_{\text{eff}}(t_y + |t_x|)}$$
$$C_{O_i}(t_x, t_y) = \langle B^{\dagger}(t_y) \mathscr{O}_i(0) B^{\dagger}(t_x) \rangle$$

Matching to Continuum QCD

- At this stage, we have 510 data points for the five matrix elements.
- As in continuum QCD, they have to be renormalized, i.e., logarithmic dependence on the UV cutoff (π/a) must be removed.
- At the same time, we match to the renormalization schemes used in the literature: \overline{MS} -NDR-BBGLN or -BMU (evanescent operators) at $\mu = m_b$.
- Use a nonperturbative method for matching related to the vector current.
- Use one-loop (lattice & continuum) perturbation theory for the intrinsic four-quark terms: "mostly nonperturbative renormalization".
- Moves individual data points < few %.

Chiral-Continuum Limit

- The renormalized 510 data points for the five matrix elements can now be
 - extrapolated to the physical quark mass: $m_l, m_q \rightarrow (m_u + m_d)/2$;
 - extrapolated to the continuum limit: $a \rightarrow 0$.
- Fit to a version of chiral perturbation theory (χ PT) adapted to discretization effects in the pions: $B \leftrightarrow B^*\pi$.
- Augment with NNLO (and NNNLO) terms in χ PT.
- Augment with heavy-quark discretization effects derived from HQET.

- Augment with two-loop and (three-loop) matching corrections.
- Augment with generic light-quark & gluon discretization effects.
- Input various auxiliary information: mass splittings, $B^*B\pi$ coupling,
- Minimize

$$\chi_{\text{aug}}^2 = \sum_{\alpha,\beta} \left[F^{\text{base}} - Z \langle O \rangle \right]_{\alpha} \sigma_{\alpha\beta}^{-2} \left[F^{\text{base}} - Z \langle O \rangle \right]_{\beta} + \sum_m \frac{(P_m - \tilde{P}_m)^2}{\tilde{\sigma}_m^2}$$

where α , β run over the 510 data points, and *m* runs over the ~100 fit parameters: $F^{\text{base}} = F^{\text{base}}(P_m)$.

• "Informative" priors would add ~1 to χ^2 ; ours are a bit looser than that.

• Data in r_1 units:

 $r_1^2 F(r_1) = 1$

- *χ*PT effects mix the
 123 and 45 sets.
- Meson masses are the same for all 5.
- Thus, one fit to all 510 points.
- Reconstitute at a = 0and $m_q = m_d, m_s$.

$$\chi^2_{\rm aug}/{\rm dof} = 137.7/510$$

Stability

- f_K instead of f_{π} ;
- different renorm'n;
- vary χPT data, priors;
- vary discretization effects included;
- "dumb" fits.

Basic Observables

	B	$d-\bar{B}_d$	$B_s - \bar{B}_s$			
	BMU	BBGLN	BMU	BBGLN		
$f_{B_q}^2 B_{B_q}^{(1)}(\overline{m}_b)$	0.034	7(27)(7)	0.0503(29)(10)			
$f_{B_q}^2 B_{B_q}^{(2)}(\overline{m}_b)$	0.0290(24)(6)	0.0305(25)(6)	0.0425(26)(9)	0.0451(27)(9)		
$f_{B_q}^2 B_{B_q}^{(3)}(\overline{m}_b)$	0.0412(61)(8)	0.0409(60)(8)	0.0585(61)(12)	0.0581(60)(12)		
$f_{B_q}^2 B_{B_q}^{(4)}(\overline{m}_b)$	0.039	6(28)(8)	0.0540(30)(11)			
$f_{B_q}^2 B_{B_q}^{(5)}(\overline{m}_b)$	0.036	6(31)(7)	0.0497(33)(10)			

$$f_{B_d} \sqrt{\hat{B}_{B_d}^{(1)}} = 229.4(9.0)(2.3) \text{ MeV}$$

 $f_{B_s} \sqrt{\hat{B}_{B_s}^{(1)}} = 276.0(8.0)(2.8) \text{ MeV}$ $\xi = 1.203(17)(6)$

Error Budget

Table 1: Total error budget for matrix elements converted to physical units of GeV^3 and for the dimensionless ratio ξ . The error from isospin breaking, which is estimated to be negligible at our current level of precision is not shown. Entries are in percent.

	Fit total	FV	r_1/a	r_1	EM	Total	Charm sea
$\langle \mathcal{O}_1^d \rangle / M_{B_d}$	7.0	0.2	2.7	2.1	0.2	7.8	2.0
$\langle \mathcal{O}_2^d \rangle / M_{B_d}$	7.4	0.3	2.8	2.1	0.2	8.2	2.0
$\langle \mathcal{O}_3^d \rangle / M_{B_d}$	14.5	< 0.1	1.7	2.1	0.2	14.7	2.0
$\langle \mathcal{O}_4^d \rangle / M_{B_d}$	6.2	< 0.1	2.3	2.1	0.2	7.0	2.0
$\langle \mathcal{O}_5^d \rangle / M_{B_d}$	8.0	< 0.1	2.4	2.1	0.2	8.6	2.0
$\langle \mathcal{O}_1^s \rangle / M_{B_s}$	5.0	0.2	2.1	2.1	0.2	5.8	2.0
$\langle \mathscr{O}_2^s \rangle / M_{B_s}$	5.1	0.2	2.1	2.1	0.2	5.9	2.0
$\langle \mathcal{O}_3^s \rangle / M_{B_s}$	10.0	< 0.1	1.3	2.1	0.2	10.3	2.0
$\langle \mathscr{O}_4^s \rangle / M_{B_s}$	4.6	< 0.1	1.9	2.1	0.2	5.4	2.0
$\langle \mathscr{O}_5^s \rangle / M_{B_s}$	5.9	< 0.1	1.8	2.1	0.2	6.5	2.0
ξ	1.3	< 0.1	0.6	0	0.04	1.4	0.5

Correlation Matrix

	$f_{B_d}^2 B_{B_d}^{(1)}$	$f_{B_d}^2 B_{B_d}^{(2)}$	$f_{B_d}^2 B_{B_d}^{(3)}$	$f_{B_d}^2 B_{B_d}^{(4)}$	$f_{B_d}^2 B_{B_d}^{(5)}$	$f_{B_s}^2 B_{B_s}^{(1)}$	$f_{B_s}^2 B_{B_s}^{(2)}$	$f_{B_s}^2 B_{B_s}^{(3)}$	$f_{B_s}^2 B_{B_s}^{(4)}$	$f_{B_s}^2 B_{B_s}^{(5)}$
$f_{B_d}^2 B_{B_d}^{(1)}$	1	0.415	0.124	0.320	0.297	0.845	0.417	0.142	0.323	0.308
$f_{B_d}^2 B_{B_d}^{(2)}$		1	0.332	0.349	0.281	0.416	0.841	0.348	0.360	0.295
$f_{B_d}^2 B_{B_d}^{(3)}$			1	0.204	0.119	0.133	0.316	0.954	0.203	0.125
$f_{B_d}^2 B_{B_d}^{(4)}$				1	0.457	0.343	0.380	0.232	0.848	0.468
$f_{B_d}^2 B_{B_d}^{(5)}$					1	0.312	0.300	0.140	0.449	0.879
$f_{B_s}^2 B_{B_s}^{(1)}$						1	0.464	0.175	0.385	0.357
$f_{B_s}^2 B_{B_s}^{(2)}$							1	0.368	0.437	0.354
$f_{B_s}^2 B_{B_s}^{(3)}$								1	0.257	0.169
$f_{B_s}^2 B_{B_s}^{(4)}$									1	0.508
$f_{B_s}^2 B_{B_s}^{(5)}$										1

Comparison with Other Calculations 1

Comparison with Other Calculations 1

Comparison with ETM Calculation ($n_f = 2$)

Oscillation Frequencies

- New results for mixing in arXiv:1602.03560: 2–3 times more precise.
- Taking CKM from tree-only inputs
 (from CKMfitter):
- Contrast with the measured frequencies:

$$\Delta M_d^{\text{SM}} = 0.630(53)(42)(5)(13) \text{ ps}^{-1}$$
$$\Delta M_s^{\text{SM}} = 19.6(1.2)(1.0)(0.2)(0.4) \text{ ps}^{-1}$$
$$\frac{\Delta M_d^{\text{SM}}}{\Delta M_s^{\text{SM}}} = 0.0321(10)(15)(0)(3)$$

 $\Delta M_d^{\text{expt}} = (0.5055 \pm 0.0020) \text{ ps}^{-1}$ $\Delta M_s^{\text{expt}} = (17.757 \pm 0.021) \text{ ps}^{-1}$

- These amount to discrepancies of 1.8σ , 1.1σ , and 2.0σ , respectively.
- Below, examine these tensions with those in other FCNC processes, casting each one as a "CKM determination".

Semileptonic Decays

Processes

$$\ell = \mu, e$$

CKM Determination

 $\checkmark B \to \pi \ell v$ $\checkmark B \to D \ell v$ $\checkmark B \to D^* \ell v$ $\checkmark (\Lambda_b \to \Lambda_c / p \ell v)$

- New Physics Search
 - $B
 ightarrow \pi au v$ $B \rightarrow D \tau v$ $B \rightarrow K \nu \bar{\nu}$ $B \rightarrow \pi v \bar{v}$ $\checkmark B \rightarrow K \ell^+ \ell^ \checkmark B \rightarrow \pi \ell^+ \ell^-$

Matrix Elements and Form Factors

• Decompose amplitudes in form factors $(q = p - k = \ell + \nu)$:

$$\begin{split} \langle \pi(k) | \bar{u} \gamma^{\mu} b | B(p) \rangle &= \left(p^{\mu} + k^{\mu} - \frac{M_B^2 - M_\pi^2}{q^2} q^{\mu} \right) f_+(q^2) + \frac{M_B^2 - M_\pi^2}{q^2} q^{\mu} f_0(q^2), \\ &= \sqrt{2M_B} \left[p^{\mu} f_{\parallel}(q^2) / M_B + k_{\perp}^{\mu} f_{\perp}(q^2) \right] \end{split}$$

$$\langle \pi(k) | \bar{u} \sigma^{\mu\nu} b | B(p) \rangle = -2i \frac{p^{\mu} k^{\nu} - p^{\nu} k^{\mu}}{M_B + M_{\pi}} f_T(q^2),$$

$$\langle \pi(k)|\bar{u}b|B(p)\rangle = \frac{M_B^2 - M_\pi^2}{m_b - m_u} f_0(q^2), \checkmark \text{PCVC: same}$$

• The kinematic variable $q^2 = M_B^2 + M_\pi^2 - 2M_B E_\pi$.

Basic Formulas for $B \rightarrow \pi l \nu$

- Relevant term in effective Hamiltonian: $\mathscr{L}_i = \bar{b}\gamma^{\mu}(1-\gamma^5)u\,\bar{v}_{\ell}\gamma_{\mu}(1-\gamma^5)\ell$
- Differential decay rate:

$$\frac{d\Gamma}{dq^2} = \frac{G_F^2}{24\pi^3} |V_{ub}|^2 |k|^3 |f_+(q^2)|^2 + \mathcal{O}(m_\ell^2),$$

- Steps:
 - generate numerical data at several k, m_l , a;
 - chiral continuum extrapolation;
 - extend to full kinematic range with z expansion.

Semileptonic $B \rightarrow \pi l \nu$ for $|V_{ub}|$

arXiv:1503.07839

- Compute $f(\mathbf{k}, m_s, m_l, a)$
- Combine data with
 Symanzik EFT & χPT:
 - $m_l \rightarrow \frac{1}{2}(m_u + m_d);$
 - $a \rightarrow 0$.
- Limited range: $|\mathbf{k}|a \ll 1$.
- NB: $q^2 = M_B^2 + M_\pi^2 2M_B E_\pi$

39

near region with lattice data

The largest uncertainty, by far, comes from MC statistics, as amplified via the chiral-continuum extrapolation.

- Next (and independent of q^2) is matching from LGT to continuum QCD.
- Error on input parameters (m_l, m_s, \varkappa_b) & relative scale (r_1) disappear in quadrature sum.
- Challenge: extend reach to lower q^2 , without being killed by the (amplified) statistical error.

Error Charts

vl decay

Analyticity and Unitarity

- The form factor is analytic in q^2 except a cut for $q^2 \ge (M_B + M_\pi)^2$ and (possibly) subthreshold poles $(M_B - M_\pi)^2 \le q^2 < (M_B + M_\pi)^2$.
- With $t_{+} = (M_B + M_{\pi})^2$, set

$$z = \frac{\sqrt{t_+ - q^2} - \sqrt{t_+ - t_0}}{\sqrt{t_+ - q^2} + \sqrt{t_+ - t_0}}$$

which maps cut to unit circle and semileptonic decay to real $|z| \le 0.28$ for optimal t_0 .

- Much more precise than 2008.
- BLINDED PLOTS!!
- *z* variable extends range.
- Functional fitting method.
- Relative norm'n yields $IV_{ub}I$.
- Total error on $|V_{ub}|$: 4.1%.

- Much more precise than 2008.
- BLINDED PLOTS!!
- *z* variable extends range.
- Functional fitting method.
- Relative norm'n yields $IV_{ub}I$.
- Total error on $|V_{ub}|$: 4.1%.

- Much more precise than 2008.
- BLINDED PLOTS!!
- *z* variable extends range.
- Functional fitting method.
- Relative norm'n yields $IV_{ub}I$.
- Total error on $|V_{ub}|$: 4.1%.

- Much more precise than 2008.
- BLINDED PLOTS!!
- *z* variable extends range.
- Functional fitting method.
- Relative norm'n yields $IV_{ub}I$.
- Total error on $|V_{ub}|$: 4.1%.

Reconstructing Form Factors

- For additional applications, the *z* expansion provides a useful summary.
- Formulas (Bourrely, Caprini, Lellouch, arXiv:0807.2722):

$$f_{+}(z) = \frac{1}{1 - q^{2}(z)/M_{B^{*}}^{2}} \sum_{n=0}^{N_{z}-1} b_{n}^{+} \left[z^{n} - (-1)^{n-N_{z}} \frac{n}{N_{z}} z^{N_{z}} \right]$$
$$f_{0}(z) = \sum_{n=0}^{N_{z}} b_{n}^{0} z^{n}$$
$$t_{0} = (M_{B} + M_{\pi})(\sqrt{M_{B}} - \sqrt{M_{\pi}})^{2}$$

• Subthreshold 1⁻ pole in f_+ ; first 0⁺ excitation (for f_0) is unstable.

	b_0^+	b_{1}^{+}	b_{2}^{+}	b_{3}^{+}	b_{0}^{0}	b_{1}^{0}	b_{2}^{0}	b_{3}^{0}
	0.407(15)	-0.65(16)	-0.46(88)	0.4(1.3)	0.507(22)	-1.77(18)	1.27(81)	4.2(1.4)
b_0^+	1	0.451	0.161	0.102	0.331	0.346	0.292	0.216
b_1^+		1	0.757	0.665	0.430	0.817	0.854	0.699
b_2^+			1	0.988	0.482	0.847	0.951	0.795
$b_3^{\overline{+}}$				1	0.484	0.833	0.913	0.714
b_0^0					1	0.447	0.359	0.189
$b_1^{\check{0}}$						1	0.827	0.500
$b_2^{\hat{0}}$							1	0.838
$b_3^{\overline{0}}$								1

Coefficients and correlations:

• For your own work, just take this table and the formulas from the last slide and use the resulting form factors.

Semileptonic $B \rightarrow Dlv$ for $|V_{cb}|$

arXiv:1503.07237

- Similar strategy as above:
 - compute sequence of form-factor values;
 - chiral continuum extrapolation;
 - combined *z*-expansion fit to obtain $|V_{cb}|$.
- Differences:
 - HQET control of cutoff effects more central [hep-lat/0002008, hep-lat/ 0112044, hep-lat/0112045];
 - use Boyd, Grinstein, Lebed form of *z* expansion [hep-ph/9508211].

graphic adapted by Daping Du

Basic Formulas for $B \rightarrow \pi l^+ l^-$, $K l^+ l^$ *cf.*, arXiv:1510.02349, Sec. 2 & Appendix B

• One-loop effective Hamiltonian contains many operators (q = d, s):

• Matrix elements of Q_7 , Q_9 , Q_{10} yield form factors, including tensor f_T .

Kinematic Distributions

 Experimental data from LHCb [arXiv:1403.8044, arXiv:1509.00414] and earlier experiments; right plot's theory preceded measurement:

• LHCb wide bins: $q^2 \in [1 \text{ GeV}^2, 6 \text{ GeV}^2]$, and $q^2 \in [15 \text{ GeV}^2, 22 \text{ GeV}^2]$.

Kinematic Distributions

 Experimental data from LHCb [arXiv:1403.8044, arXiv:1509.00414] and earlier experiments; right plot's theory preceded measurement:

• LHCb wide bins: $q^2 \in [1 \text{ GeV}^2, 6 \text{ GeV}^2]$, and $q^2 \in [15 \text{ GeV}^2, 22 \text{ GeV}^2]$.

CKM: $|V_{td}|$ and $|V_{ts}|$

- Assume that there is no new physics buried in the Wilson coefficients.
- Then the combination of our calculations with experimental measurements yield the third row of the CKM matrix.
- We find

$$|V_{td}/V_{ts}| = 0.201(20)$$
$$|V_{tb}^*V_{td}| \times 10^3 = 7.45(69)$$
$$|V_{tb}^*V_{ts}| \times 10^3 = 35.7(1.5)$$

- The uncertainty here is commensurate with neutral *B*-meson mixing.
- The FCNC result for $|V_{ts}|$ is 1.6 σ lower than the *B*-mixing result.

CKM Comparison

CKMFitter from S. Descotes-Genon plots by C. Bouchard

• CKM from FCNC are lower than determinations from trees and unitarity.

Wilson Coefficients

- Assuming no new physics is sad:
 - take the CKM matrix from a global fit;
 - determine best fit to Wilson coefficients C_9 and C_{10} .
- From the observables considered here, the SM is 2σ away from the best fit.
- Comparable but complementary to angular observables in $B \rightarrow K^* \mu \mu$.

Wilson Coefficients 2

- Add $B_s \rightarrow \mu\mu$, which also relies on lattice QCD $-f_{B_s}$.
- Favored region shrinks but only away from SM point.

• NB: assuming no new CPV and avoiding $b \rightarrow s\gamma$ constraints on C_7 and C_8 .

Summary of this part

- The overarching take-home message:
 - we provide a convenient useful parametrization of the form factors, including correlations needed for joint fits, ratios, *etc.*;
 - the scope of application is not limited to what we've done;
 - just like collider physicists use CTEQ or MRSW parton densities, flavor physicists can use our (or other group's) form factors.
- Future work, e.g., on MILC HISQ ensembles, will improve the precision (over the coming few years).

Leptonic *K* & *D* and Semileptonic *K* Decays with 2+1+1 Sea Quarks

skip

All Numerical Lattice Data at a Glance

• Simultaneous fit to all data, with EFT formula (Symanzik $\otimes \chi$ PT).

- Good fit: χ^2 /dof = 347/339, with *p* = 0.36.
- Fits lines have a and m_l fixed, but vary m_v .
- Orange band (same in all panels) shows a = 0, $m_v = m_l$.

Combining Analyses

• Blue histograms show outcomes of χPT analyses:

 $f_{D^+} = 212.6 \pm 0.4_{\text{stat}} + 0.9_{a^2 \text{ extrap}} \pm 0.3_{\text{FV}} \pm 0.0_{\text{EM}} \pm 0.3_{f_{\pi} \text{ PDG}} \text{ MeV}$ $f_{D_s} = 249.0 \pm 0.3_{\text{stat}} + 1.0_{a^2 \text{ extrap}} \pm 0.2_{\text{FV}} \pm 0.1_{\text{EM}} \pm 0.4_{f_{\pi} \text{ PDG}} \text{ MeV}$

- Red bars show outcomes of the physical-pointonly analysis.
- Inflate systematic errors to account for slightly wider spread in final result:

 $f_{D^+} = 212.6 \pm 0.4_{\text{stat}} \stackrel{+0.9}{=}_{a^2 \text{ extrap}} \pm 0.3_{\text{FV}} \pm 0.1_{\text{EM}} \pm 0.3_{f_{\pi} \text{ PDG}} \text{ MeV}$ $f_{D_s} = 249.0 \pm 0.3_{\text{stat}} \stackrel{+1.0}{=}_{a^2 \text{ extrap}} \pm 0.2_{\text{FV}} \pm 0.1_{\text{EM}} \pm 0.4_{f_{\pi} \text{ PDG}} \text{ MeV}$

• Thus, the additional "non-physical" ensembles principally reduce the statistical error.

 J_{Ds}

(this work)

1.05

f_D and f_{Ds} or $|V_{cd}|$ and $|V_{cs}|$

- Taking V_{cs} from CKM unitarity, expt yields f_{Ds} (or take $|V_{cd}|$ and get f_D).
- Here the QCD uncertainty is smaller than the experimental uncertainty:

Or determine CKM directly & test $|V_{cd}|^2 + |V_{cs}|^2 + |V_{cb}|^2 = 1$?

First Row Unitarity Test

- Similar precision from f_K/f_{π} and semileptonic kaon decay.
- First-row unitarity test: $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1?$
- Now $|V_{us}|^2$ is as precise as $|V_{us}|^2$ (from nuclear physics).

First Row Unitarity Test

- Similar precision from f_K/f_{π} and semileptonic kaon decay.
- First-row unitarity test: $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1?$
- Now $|V_{us}|^2$ is as precise as $|V_{us}|^2$ (from nuclear physics).

Future Outlook

Three Frontiers

- High precision with mesons:
 - QCD error is (nearly) as small as QED and isospin breaking;
 - will require great attention to detail.
- Nucleons: many matrix elements needed for fundamental physics:
 - nucleon form factors for neutrino physics;
 - quark content of the nucleon for dark matter detection and $\mu N \rightarrow eN$;
 - (moments of) parton densities for LHC collisions;
 - electric dipole moments probing new sources of CP violation.

- New avenues in lattice QCD:
 - hadronic contributions to muon g-2: HVP, HLbL;
 - long-distance contributions, *e.g.*, ΔM_K ;
 - multi-hadron final states, *e.g.*, *CP* violation in $K \rightarrow \pi\pi$.
- New avenues in lattice gauge theory (beyond QCD):
 - composite Higgs models;
 - nonperturbative supersymmetry (public code by David Schaich).
- And many topics in nuclear physics, *e.g.*, detailed hadron structure and QCD thermodynamics.
Community Tools

- Libraries of ensembles of lattice gauge fields:
 - Gauge Connection @ NERSC—ensembles now have a doi
 - International Lattice Data Grid
- Publicly available software:
 - USQCD "SciDAC" framework, with MILC, CPS, and Chroma APIs
 - has enabled junior researchers to start their own projects, even senior researchers who didn't grow up with lattice gauge theory
 - openQCD (Lüscher).

Vielen herzlichen Dank!