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Outline

• Lecture 1—Lattice Gauge Theory:


• Origins;


• Formalism;


• Numerical methods.


• Lecture 2—Lattice QCD Results: 

• Decay constants (leptonic decays); 

• Semileptonic form factors & neutral-meson mixing: 

• CKM determination and search for non-SM FCNC

3



Quantum Field Theory = Lattice Field Theory



Lots of Degrees of Freedom

• Essence of field theory is uncountably many degrees of freedom: 

• but UV divergences stem from the intrinsic problem of 
counting the uncountable— 

• especially so when scale invariance is key (as it is in 3+1 dim). 

• Necessary to tame the counting problem, but want: 

• generality (not something limited, say, to perturbation theory); 

• computability (results different from 0 or 1).
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Canonical Quantization of QFT 
W. Heisenberg & W. Pauli, Z. Phys. 56 (1929) 1

• H. & P. wanted to extend canonical quantization, [pj, qk] = iħδjk, 
which works for countable sets (as infinite as Z) to continuous sets 
(as infinite as R). 

• Right-hand side of [π(x), φ(y)] = iħδ(x–y) was a bit too new. 

• Divide space into cells, with one field variable per cell: 

• # dof is now countable, reducing QFT to quantum mechanics.
6

Z
R

http://dx.doi.org/10.1007/BF01340129


• H&P: In der Tat kann man den Fall kontinuierlich vieler 
Freiheitsgrade, wo die Zustandsgrößen Raumfunktionen sind, 
stets durch Grenzübergang aus dem Fall endlich vieler 
Freiheitsgrade gewinnen.

• Indeed, one can always obtain the case of continuously 
many degrees of freedom, where the state variables are 
functions of space, through a limit of the case of finitely many 
degrees of freedom.	 (my translation) 

• Wenzel (1940) and Schiff (1953) used spatial lattice to study 
strong coupling, treating the kinetic term as a perturbation.
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Path Integral in Quantum Mechanics 
R. Feynman, Rev. Mod. Phys. 20 (1948) 367

• Propagator in QM, with Hamiltonian H = p2/2m + V(x): 

• Divide the time interval into many small steps, δ = T/N.  Insert	
	 N–1 times. Then 

• Now want to work out the matrix element on RHS.

hx(T )|x(0)i= hxT |e�iĤT |x0i= Â
n
hxT |nie�iEnT hn|x0i

hx(T )|x(0)i=
Z N�1

’
n=1

dxn

N�1

’
n=0

hxn+1|e�iĤd |xni

R
dx

n

|x
n

ihx
n

|
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• Factorize the operator (Trotter formula): 

• Work out the factor in the middle (δ → –ia): 

• Assemble factors: 	
	
	
	
	
	
	
analytically continue τ → iT after taking N → ∞.

hx
n+1|e�p̂

2
a/2m|x

n

i=
r

m

2pa

e

�m(x
n+1�x

n

)2/2a

hxn+1|e�iĤd |xni ⇡ hxn+1|e�iV (x̂)d/2e�ip̂2d/2me�iV (x̂)d/2|xni

= e�iV (xn+1)d/2hxn+1|e�ip̂2d/2m|xnie�iV (xn)d/2
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Many degrees of freedom

• Two: V(x1, x2) = V(x1) + V(x2) – κx1x2 : just repeat manipulations. 

• Infinite chain, 

• Combine spatial lattice and path integral—before the infinitesimal 
cell-size & time-step limits—to get a spacetime lattice: 

• the focus of most lattice field theory. 

• Need to work out the relation between κ and usual properties of 
(scalar) field theory, writing	  + …. 

• Then spatial lattice spacing b = κ–1/2 and m2 = μ2– 2dκ.

j 2 Z : V (f) = Â j V (f j)� 1
2 kf j(f j�1 +f j+1)

V = 1
2 µ2f j
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• Propagator as function of time t, 3-momentum p is interesting. 

• Set spatial and temporal lattice spacings equal: 	
	
	
	
	  

• Compute via contour integration: 	 (see back-up slide)	
	 	
	 	
	 	
	 	
	 	
which yields 1-particle state, with some discretization effects.

S = a

d Â
x

(
1
2 Â

µ

a

�2 [f(x+ae

µ

)�f(x)]2 + 1
2 m

2f(x)2 + 1
4! lf(x)2

)
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= Â
n

(
1
2 kÂ

µ

j
n

⇥
j
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µ
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µ

⇤
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2 j2
n
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4 gj4

n

)
, n 2 Zd , e
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= unit vector.
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Z p/a
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4

2p
eip

4

t

2a�2(1� cos p
4

a)+ p̂2 +m2

,
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ae�E|t|

2sinhEa
, coshEa = 1+ 1

2

�
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Finite Volume

• With lots of field variables, in practice, it is convenient to set the final 
configuration equal to the initial configuration and integrate over it: 	
	
	
	
	
which “looks like” a partition function in statistical mechanics. 

• The spatial lattice can also be finite, with suitable boundary conditions, 
often periodic (or a generalization). 

• Finite spacetime lattice reduces quantum field theory to quantum 
mechanics of a large, but finite, collection of degrees of freedom. 

• Used in mathematical physics to “construct” QFT [Glimm & Jaffe].

Z =
Z

dfhf|e�Ĥt|fi=
Z

Dfe�S = Tre�Ĥt
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Observables

• In QFT, all information can be obtained from correlation functions: 

• For large time extent τ:	 (proofs as exercise)	
	 	
	 	
	 	
	 	
yields vacuum energy E0 and the vacuum expectation value (vev).

hQ(x
t

)i =
1
Z

Z
Dx Q(x

t

)e

�S({x

i

})

hQ1(xt1)Q2(xt2)i =
1
Z

Z
Dx Q1(xt1)Q2(xt2)e

�S({x

i

})
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• For τ > t1 > t2 > 0 and large time extent τ:	 (proofs as exercise) 
	 	
	 	
	 	
	 	
	 	
yielding excited-state energies and transition matrix elements. 

• When t1 – t2 and τ – (t1 – t2) are also large: 

• And similarly for three-point functions (for, e.g., form factors).

hQ1(t1)Q2(t2)ic
large t! Â

n 6=0
h0|Q̂1(t1)|nihn|Q̂2(t2)|0ie�(En�E0)(t1�t2)

+ Â
n6=0

h0|Q̂2(t2)|nihn|Q̂1(t1)|0ie�(En�E0)(t+t2�t1)

hQ1(t1)Q2(t2)ic
large t,(t1�t2)! h0|Q̂1(t1)|1ih1|Q̂2(t2)|0ie�(E1�E0)(t1�t2)

+ h0|Q̂2(t2)|1ih1|Q̂1(t1)|0ie�(E1�E0)(t+t2�t1)



QFT as Statistical Mechanics

• Combination of the lattice and the path integral opens up new tools: 

• mean-field approximations; 

• strong coupling (“high temperature”) expansions; 

• Monte Carlo methods. 

• Also opens up QFT tools for condensed matter physics: 

• Feynman diagrams, e.g., to calculate critical exponents; 

• renormalization group, e.g., to solve Kondo problem.
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Lattice Gauge Fields



Local Gauge Invariance

• Global symmetries simply tag along in the correspondence 
between path integrals and canonical quantization. 

• Suppose there is a local symmetry, g(x) ∈ Lie group: 

• Couplings among different points transform like 

• Need object transforming like	 ; then

f†(x)f(y) 7! f†(x)g�1(x)g(y)f(y)

U(x,y) 7! g(x)U(x,y)g�1(y)

f(x) 7! g(x)f(x), f†(x) 7! f†(x)g�1(x)

f†(x)U(x,y)f(y) 7! f†(x)g�1(x) g(x)U(x,y)g�1(y) g(y)f(y) = f†(x)U(x,y)f(y)
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Parallel Transport

• If Aμ(x) is the gauge potential, then define	  

	
	
where  	  

• Parallel transporters along adjacent paths compose. 

• These transform in the desired way.	 (proof as an exercise) 

• Obviously, tr[Us(x,x)] is gauge invariant: called Wilson loop.

A

µ(x) 7! g(x)(∂µ +A

µ(x))g

�1(x)

no i: ta† = –ta 
no g0: normalization

U

s

(x,y) = P
s

exp

Z
y

x

dz

µ

A

µ(z)
x

y

s
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Lattice Gauge Theory

• Instead of Aμ(x), gauge d.o.f. in lattice gauge theory are U(x, x+aeμ), 
where a is the lattice spacing and eμ is a unit vector along μ. 

• Integration measure is “Haar measure”: 

• For SU(2), this can be expressed via Euler angles; for SU(3) and 
higher, it is too cumbersome to write it out. 

• Simplest Wilson loop (hypercubic lattice) goes around a 1×1 square. 

• Plaquette action Re tr[1 – U1×1] tends to tr[FμνFμν] as a → 0.

R
dU = 1,

R
dUU = 0

Z
dU f (U) =

Z
dU f (UV ) )

Z
dUUi jU⇤

kl =
1
N

dikd jl
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Confinement of Quarks 
K. Wilson, PRD 10 (1974) 2445

• Consider a large R×T Wilson loop. 

• Boltzmann weight (“plaquette action”): 

• Leading term when each plaquette is 
covered by it’s Up: area law. 

• Potential energy V(R) = R ln(g2/2N). 

• Lowest-order strong coupling expansion 
demonstrates color confinement.

• LGT invented to understand asymptotic freedom without gauge-fixing and 
ghosts [Wilson, hep-lat/0412043].
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Fermion Path Integrals



• Take a collection of fermions	 ,	 . 

• Define “empty” and “full” states by 

• Define field eigenstates by 

• These satisfy	 , etc., and	 (proofs as exercise)	

Grassmann Variables

22

{ŷ†
a, ŷb}= dab {ŷa, ŷb}= {ŷ†

a, ŷ†
b}= 0

ŷa|emptyi= 0, ŷ†
a|fulli= 0,

hempty|ŷ†
a = 0, hfull|ŷa = 0.

|yi= eÂa ŷ†
aya |emptyi, |ȳi= e�Âa ȳaŷa |fulli,

hy|= hfull|e�Âa ŷ†
aya , hȳ|= hempty|eÂa ȳaŷa .

ŷa|yi= ya|yi

1 =
Z

’
a

dya |yihy|=
Z

’
a

dȳa |ȳihȳ|



• Suppose we have a Hamiltonian	 with 	 .  Then 

• Some simple algebra shows: 

• Assembling all the factors:	 (show	 leads to the same thing)

Ĥ = Â
ab

ŷ†
aMabŷb

hyn+1|ȳni= e�ȳn·yn+1

hȳn|e�aŷ†·M·ŷ |yni= eȳn·yn�aȳn·M·yn +O(a2)

hyN |e�Ĥt|y0i=
Z N�1

’
n=1

DynDȳn Dȳ0hyN |ȳN�1ihȳN�1|e�Ĥa|yN�1i · · ·⇥

hyn+1|ȳnihȳn|e�Ĥa|yni · · ·hy1|ȳ0ihȳ0|e�Ĥa|y0i

Z :=
Z

Dy0 hy0|e�Ĥt|y0i=
Z N�1

’
n=0

DynDȳn e�S

S = a
N�1

Â
n=0

⇢
ȳn ·

yn+1 �yn

a
+ ȳn ·M ·yn

�

hȳN |e�Ĥt|ȳ0i

Mba = M⇤
ab
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Dirac Field

• Dirac field annihilates particles and creates antiparticles— 

• 	 ; so treat upper (lower) sign like	 .  

• Then the action becomes	 (Dirac β = γ4)	
	 	
	 	

	 	
where M contains the mass and the spatial kinetic terms. 

• Note the extra term: looks like a second-order time derivative. 

• We will examine the contents of this action after a short comment.
gamma matrices

S= a

d Â
x

⇢
ȳ

x

b


g4 y
x+ae4 �y

x�ae4

2a

� a

2
y

x+ae4 +y
x�ae4 �2y

x

a

2

��
+a

d Â
x,y

ȳ
x

M

xy

y
y
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Transfer Matrix

• We’ve been “deriving’’ lattice field theory from canonical 
quantization. 

• Most texts start with a (discretized) Euclidean path integral. 

• Then the connection to a quantum system comes via the transfer 
matrix T (strictly speaking an operator), playing the role of e – Ha.  

• The Hilbert space consists of eigenstates of T with eigenvalue T. 

• Energy is then defined via	 ; these energies are 
deduced from the exponential fall-off of correlation functions.

T̂ e�Ĥa

T̂ T

E =�a�1 lnT
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Fermion Propagators



Interaction on the Spatial Lattice

• Action is (new notation:	 ) 

• Spatial part:	 , where 	
	 	  

•  mimics time Wilson term, but both break chiral symmetry: 

• keep Wilson terms or omit them?

S = a

d Â
x

⇢
ȳ

x

b


g4 t4 � t�4

2a

� a

2
t4 + t�4 �2

a

2

�
y

x

�
+a

d Â
x,y

ȳ
x

M

xy

y
y

from now on           	 , 
drop prime

ȳb = ȳ0

M

xy

= mbd
xy

+bggg ·∂∂∂
xy

� 1
2 ba4

xy

∂i = (ti � t�i)/2a, 4= Â
i
(ti + t�i �2)/a2

t±µ

y
x

= y
x±ae

µ
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Naive Fermions

• Historically, naive fermions came first, by simply discretizing the 
(Euclidean) Dirac Lagrangian 

• This expression has poles at	  and 

• more than desired, and some energies not real ! 

• low-energy solutions for pi near 0, and also pi near πa–1.

∂µ = (tµ � t�µ)/2a.

G(t,p) =
Z p/a

�p/a

d p4

2p
a

ig4 sin p4a+ iÂi gi sin pia+ma
eip4t ,

=
Z p/a

�p/a

d p4

2p
a[�ig4 sin p4a� iÂi gi sin pia+ma]

sin2 p4a+Âi sin2 pia+m2a2
eip4t ,

28

p4 = iE p4 = iE +pa�1



G(t,~p) =
Z d p4

2p
eip4t a

iÂµ gµ sin(pµa)+m0a

=
1

sinh(2Ea)

"
e�Et

 
g4 sinh(Ea)� iÂ

i
gi sin(pia)+m0a

!

+
�
�e�Ea�t/a

 
�g4 sinh(Ea)+ iÂ

i
gi sin(pia)+m0a

!#

sinh2(Ea) = Â
i

sin2(pia)+(m0a)2

Naive Fermion Energy Spectrum
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Wilson Fermions

• Including the Wilson terms solves this “doubling” problem 

• This expression only has poles at p4 = iE: 

• other poles have been projected out; 

• low energy solutions for pi near 0 only.

G(t,p) =
Z p/a

�p/a

d p4

2p
aeip4t

ig4 sin p4a+ iÂi gi sin pia+ma+a2 1
2 Âµ p̂2

µ
,

=
Z p/a

�p/a

d p4

2p
aeip4t [�ig4 sin p4a� iÂi gi sin pia+ma+a2 1

2 Âµ p̂2
µ]

sin2 p4a+Âi sin2 pia+(ma+a2 1
2 Âµ p̂2

µ)
2 ,
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Wilson Fermion Energy Spectrum

G(t,p) =
Z p/a

�p/a

d p
4

2p
aeip

4

t

ig4

sin p
4

a+ iÂi gi
sin pia+ma+a2

1

2

Âµ p̂2

µ
,

=
ae�Et

2sinh(Ea)
g

4

sinh(Ea)� iÂi gi sin(pia)+m
0

a+ 1

2

a2p̂2 +1� cosh(Ea)
1+m

0

a+ 1

2

a2p̂2

,

cosh(Ea) = 1+
1

2

Âi sin

2(pia)+(m
0

a+ 1

2

a2p̂2)2

1+m
0

a+ 1

2

a2p̂2
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• Wilson fermion action	
	
	
	
	
is almost completely satisfactory. 

• Must finely tune m0 to cancel explicit breaking of the Wilson term 
to reach spontaneously broken (Nambu-Goldstone) vacuum: 

• Alas, makes renormalization of composite operators similarly 
nasty: operators of different chirality can mix.

S = a

d Â
x,µ

ȳ
x


gµ

t

µ

� t�µ

2a

� 1
2 a

t

µ

+t�µ

�2
a

2

�
y

x

+a

d Â
x

m0ȳ
x

y
x

M2
p = (m0 �mcrit)B ! 0



Staggered Fermions



(Banks-Kogut-)Susskind Fermions

• Another way of alleviating the doubling/chiral problem: 

• Kogut & Susskind put (anti)particles on even (odd) sites; 

• Banks, Kogut, & Susskind used 1 (not 2) component/site in    
d = 1+time; 

• Susskind studied 1 component/site in d = 3+time; 

• Kawamoto & Smit and Sharatchandra, Thun, & Weisz 
generalized Susskind fermions to 4 Euclidean dimensions.
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Naïve Fermions

• The naive action is 	
	
	
with Grassmann variables Ya, Ya on each site. 

• Invariant under SUcolor(3), translations, hypercubic rotations, and 
UV(nf)×UA(nf). 

• The naïve action also has a remarkable “doubling” symmetry 
[Karsten&Smit]: 	 	  

• Generates a Clifford group Γ4: {Bμ, Bν} = 2δμν.

S =
a

3

2 Â
x,µ

°̄(x)g
µ

h
U

µ

(x)°(x+ µ̂)�U

†
x�µ,µ°(x� µ̂)

i
+m0aÂ

x

°̄(x)°(x)

° 7! B

µ

°, °̄ 7! °̄B

�1
µ

, B

µ

= ig
µ

g5(�1)x

µ

/a

°i
a °̄i

a
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• Doubling symmetries 

• map	 , where πA is a corner of the Brillouin zone; 

• shuffle Dirac indices. 

• The 16 states are really there, e.g., in loops: 

• running coupling:	 ; 

• axial anomaly:	
(chiral symmetry exact).

Ramifications

Anaive lat = (1�4+6�4+1)A= 0

p 7! p+pA/a

b0 =
11
3 Nc � 2

3 (16n f )
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Staggering Magic

• But the lattice allows a transformation [Kawamoto & Smit]. 

• Ω clobbers the Dirac matrices: 

• The naïve action assumes a simpler form (plus mass term):  

• Also attained by diagonalizing a maximal subgroup of doubling 
symmetry [Sharatchandra, Thun, & Weisz].

°(x) 7! y(x) = W(x)°(x), W(x) = gn1
1 gn2

2 gn3
3 gn4

4 ,

°̄(x) 7! ȳ(x) = °̄(x)W�1(x), n = x/a.

W�1(x)g
µ

W(x± µ̂) = (�1)Âr<µ

nr =: h
µ

(x).

S =
a

3

2 Â
x,µ

ȳ(x)h
µ

(x)
h
U

µ

(x)y(x+ µ̂)�U

†
x�µ,µy(x� µ̂)

i
+m0aÂ

x

ȳ(x)y(x).
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• Dirac index now trivial: 	
where χ—the staggered fermion—has one component/color/
flavor, and (kinetic) action 	
	
	  

• But now other symmetries are entangled. 

• For example, translations become shifts:	
	
	
	  

• Clifford again: {Sμ, Sν} = 2δμν. 

• Shifts and spatial inversion do not commute.

S =
a

3

2 Â
x,µ

c̄(x)h
µ

(x)
h
U

µ

(x)c(x+ µ̂)�U

†
x�µ,µc(x� µ̂)

i
+m0aÂ

x

c̄(x)c(x).

h°(x)°̄(y)i
U

= W(x)W�1(y)hc(x)c̄(y)i
U

S

µ

: c(x) 7! z
µ

(x)c(x+ µ̂), c̄(x) 7! z
µ

(x)c̄(x+ µ̂)

Un(x) 7! Un(x+ µ̂),8n; z
µ

(x) = (�1)Âr>µ

nr
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Species Interpretation

• After “staggering” there are enough degrees of freedom for four 
species of Dirac fermion (16 ÷ 4 = 4): 

• called “taste” because they aren’t used for u, d, s, c flavors. 

• Perturbative and nonperturbative calculations show that such a 
structure emerges in the continuum limit: 

• anomaly in a taste-singlet axial current; 

• agreement with various tests of chiral symmetry, e.g., 
eigenvalue spectrum in accord with random matrix theory.
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Chiral Fermions	 e.g., M. Lüscher, arXiv:hep-th/0102028

http://arxiv.org/pdf/hep-th/0102028v2.pdf


Ginsparg-Wilson Magic

• Suppose we have an operator satisfying the Ginsparg-Wilson relation: 

See also Hasenfratz, Laliena, & Niedermayer. 

• Then we can define a gauge-field-dependent 

• Take chiral transformations for two definitions of chirality [Lüscher]:	  
	
	
	
	
The action YRDYR then describes a Weyl fermion, up to phase.

g5D/ +D/ g5 = aD/ g5D/ , and D/ † = g5D/ g5

ĝ5 = g5(1�aD/ )

ĝ5† = ĝ5, (ĝ5)2 = 1

y 7! exp[iaˆg5/2]y,
¯y 7! ¯yexp[iag5/2],

yR/L = 1
2 (1± ĝ5)y,

ȳR/L = ȳ 1
2 (1⌥ g5),

ȳRD/yR
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Domain-Wall Fermions

• One implementation of the Ginsparg-Wilson relation [D.B. 
Kaplan] starts with a 5-dimensional spacetime. 

• Take Wilson fermions with “mass” term 

• In a finite system, use antiperiodic b.c. in s. 

• Then a right-(left-)handed Weyl fermion is localized at s = 0, 	
s = Ns – 1, which combine to form a Dirac fermion. 

• In practice, small chiral symmetry breaking ~ exp(–Ns).

a�1[q(s)�q(�s)]
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Overlap Fermions

• Narayanan & Neuberger pursued an approach to obtaining the 
phase in a chiral gauge theory, which involved an infinite matrix. 

• Also based on Wilson fermions. 

• If you give up on the phase, the construction simplifies and 
suggests the Dirac operator [Neuberger]: 

• Can verify that this operator satisfies the GW relation.

D/ =
1
a

✓
1� 1�aD/W

|1�aD/W|

◆
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• Lüscher symmetry seems to violate CP, transforming Y and 
Y differently. 

• Considering Lüscher and his charge conjugate, Mandula 
uncovered a huge symmetry group, in which CP acts as an 
automorphism. 

• Extra generators vanish in the spacetime continuum limit, 

• but do not go away in the limit of a spatial lattice with 
continuous time, 

• so GW-satisfying operators do not have a transfer 
operator or Hamiltonian.

y
ȳ
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Monte Carlo Integration



A Simple (Dumb) Algorithm

• Choose C random configurations of the {φ} variables: 

• An estimate of the LHS is obtained for finite C. 

• This method is hopeless, because S is extensive, S ~ # dof. 

• Most samples make negligible contribution and are a waste of time.

Z =
Z

Dfe�S = lim

C!•

1

C

C�1

Â
c=0

exp

h
�S

⇣
{f}(c)

⌘i
,

Z
Df f ({f})e�S = lim

C!•

1

C

C�1

Â
c=0

f ({f}(c))exp

h
�S

⇣
{f}(c)

⌘i
.
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Importance Sampling

• Instead of completely random configurations, choose them with 
Boltzmann weight exp[–S({φ})]. Then 

• This is possible, when S is bounded below, as it is for a 
Euclidean action of scalar and/or gauge fields. 

• Quantum field theory has been reduced to the design of random 
number generators.

1
Z

Z
Df f ({f})e�S = lim

C!•

1
C

C�1

Â
c=0

f ({f}(c)).
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Metropolis Method

• Requires only e–S ≥ 0. 

• Visit each xi in turn; follow flow chart. 

• rand() ∈ [0,1). 

• Choose r to accept 40–50%. 

• Keep configurations after enough 
sweeps to decorrelate. 

• Adapt update step for other degrees 
of freedom (e.g., gauge fields).

Start Metropolis

Propose new value for x

y = x + r*(2*rand() - 1);

S(y) > S(x)?

exp(S(x) - S(y)) < rand()?

YES

return x

YES

return yNO

return yNO
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Lattice Gauge Theory

• QCD functional integral can always be simplified: 

• Fermion determinant is computationally extremely challenging: 

• brute force would require many operations; 

• nonlocal influence on gauge field

⇤•⌅ =
1
Z

Z
DUD�D�̄exp(�S) [•]

h•i= 1

Z

Z
DU

n f

’
f=1

det(D/+m f )exp

�
�S

gauge

�
[•0]

Det(D/ +m f ) = eTrln(D/ +m f )
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Lattice Gauge Theory

• QCD functional integral can always be simplified: 

• Fermion determinant is computationally extremely challenging: 

• brute force would require many operations; 

• nonlocal influence on gauge field

hand
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1
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Lattice Gauge Theory

• QCD functional integral can always be simplified: 

• Fermion determinant is computationally extremely challenging: 

• brute force would require many operations; 

• nonlocal influence on gauge field

MC hand
⇤•⌅ =

1
Z

Z
DUD�D�̄exp(�S) [•]

h•i= 1

Z

Z
DU

n f

’
f=1

det(D/+m f )exp

�
�S

gauge

�
[•0]

Det(D/ +m f ) = eTrln(D/ +m f )
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Hybrid Monte Carlo

• Introduced new fictitious momentum, conjugate to the Uμ(x): 

• “time” is computer time; 

• Hamilton’s equations for the momentum Πμ(x) and Uμ(x):	
	
	
	
with care taken to keep Uμ(x) in the Lie group. 

• At the end of a “trajectory”, accept or reject with Metropolis. 

• Then refresh with new, random Πμ(x).

Start Metropolis

Propose new value for x

y = x + r*(2*rand() - 1);

S(y) > S(x)?

exp(S(x) - S(y)) < rand()?

YES

return x

YES

return yNO

return yNO

50

U̇

µ

(x) = P
µ

(x), Ṗ
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Monte Carlo “Simulation”

• Choose sequence of bare couplings g0(a) and am0(a), such that 
physical quantities are independent of a: 

• gauge coupling ↔ lattice spacing a in MeV–1; 

• quark masses ↔ suitable meson mass 

• Generate large ensemble of lattice gauge fields 

• Obtain statistical estimate of correlation functions from the 
averages and covariance in the ensemble.
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• Two-point functions for masses,	 : 

• Two-point functions for decay constants: 

• Three-point functions for form factors, mixing: 

• LHS needs supercomputers; RHS needs students, postdocs, .…

Correlators Yield Masses & Matrix Elements

h⇡(t)⇡†
(0)i =

X

n

|h0|⇡̂|⇡ni|2 exp(�m⇡nt)

hJ(t)⇡†
(0)i =

X

n

h0| ˆJ |⇡nih⇡n|⇡̂†|0i exp(�m⇡nt)

h⇡(t)J(u)B†
(0)i =

X

mn

h0|⇡̂|⇡mih⇡n| ˆJ |BmihBm| ˆB†|0i

⇥ exp[�m⇡n(t� u)�mBmu]
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Statistics for Masses and Matrix Elements

• Hadron masses and, consequently, hadronic matrix elements are 
nonlinear functions of the correlation functions: 

• function defined implicitly by the fitting function. 

• To compute their statistic errors need to repeat the simulation? 

• Create pseudo-ensembles from the original one: 

• eliminate individual (or pairs, …) configurations—jackknife; 

• draw configurations at random, allowing repeats—bootstrap.
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• Bootstrap and jackknife have numerous nice and understood 
properties [Efron]: 

• cumulants of bootstrap distribution reproduce underlying 
cumulants; 

• cumulants of jackknife distribution differ from underlying 
cumulants by factor C–k. 

• Practical: arbitrarily complicated analysis can be repeated on the 
set of pseudo-ensembles, yielding a histogram for the output of 
the analysis. 

• Computationally demands large but small compared to the 
whole enterprise.

https://www.amazon.com/Jackknife-Bootstrap-Resampling-Conference-Mathematics/dp/0898711797/ref=sr_1_5?ie=UTF8&qid=1474276243&sr=8-5&keywords=bradley+efron


Lattice Data and Effective Field Theory

• Discretization effects of lattice described w/ Symanzik effective field theory. 

• The finite volume provides an IR cutoff: effective field theory in a box: 

• loop integrals become finite sums; 

• these effects are either very small or very useful (absorptive parts). 

• Sometimes the light quarks aren’t light enough: chiral perturbation theory: 

• replace the computer’s pion cloud with Nature’s. 

• Sometimes heavy-quark masses have mQa ≈ 1: HQET or NRQCD.
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Verflixtes Zeug!  Does It Work?



QCD Hadron Spectrum
π…Ω: BMW, MILC, PACS-CS, QCDSF; ETM (2+1+1);

η-ηʹ: RBC, UKQCD, Hadron Spectrum (ω); 
D, B: Fermilab, HPQCD, Mohler&Woloshyn

numerous 
quarkonium 

omitted
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© 2012−2014 Andreas Kronfeld/Fermi Natl Accelerator Lab.

B mesons offset by −4000 MeV
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Neutron-Proton Mass Difference 
BMW Collab., arXiv:1406.4088 (see also Horsley et al. arXiv:1508.06401)

0 1 2
α/αphys

0

1

2

(m
d-m

u)/(
m

d-m
u) ph

ys

physical point

1 MeV

2 MeV

3 MeV

4 MeV

Inverse β decay region

Mn = Mp

: Mn < Mp + me

1H → n+νe

https://inspirehep.net/record/1300659
https://inspirehep.net/record/1389860
https://inspirehep.net/record/1300659


Tomorrow: more numerical results, 

focusing on flavor physics.  Till then, 

vielen herzlichen Dank!
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Solutions to Some Exercises



Correlation Functions

• One idea: insert complete sets of states of the Hamiltonian (or 
transfer operator): 

• Try this for a three-point function, too.

Z = Tre�Ĥt = Â
n
hn|e�Ĥt|ni= Â

n
e�Ent large t! e�E0t

hQ(x)i= 1
Z

TrQ(x̂)e�Ĥt =
1
Z Â

n
e�Enthn|Q(x̂)|ni large t! h0|Q(x̂)|0i

hQ1(t1)Q2(t2)ic =
1
Z Â

nn0
hn|e�Ĥ(t�t1)Q̂1(t1)|n0ihn0|e�Ĥ(t1�t2)Q̂2(t2)e�Ĥt2 |ni

� 1
Z Â

n
hn|e�Ĥ(t�t1)Q̂1(t1)e�Ĥt1 |ni 1

Z Â
n0
hn0|e�Ĥ(t�t2)Q̂2(t2)e�Ĥt2 |n0i

large t! Â
n0 6=0

h0|Q̂1(t1)|n0ihn0|Q̂2(t2)|0ie�(En0�E0)(t1�t2) + Â
n6=0

h0|Q̂2(t2)|nihn|Q̂1(t1)|0ie�(En�E0)(t+t2�t1)

large t,(t1�t2)! h0|Q̂1(t1)|1ih1|Q̂2(t2)|0ie�(E1�E0)(t1�t2) + h0|Q̂2(t2)|1ih1|Q̂1(t1)|0ie�(E1�E0)(t+t2�t1)
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return

b

a
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Action:

S = abÂ
n, j

(
1
2

✓
fn+1, j �fn, j

a

◆2
+ 1

2 µ2f2
n, j � 1

2 kfn, j (fn, j�1 +fn, j+1)

)
,

Fourier transform:

fn, j =
Z p/a

�p/a

dw
2p

Z p/b

�p/b

dk
2p

ei[naw+ jbk]j(w,k),

Plug in and collect terms:

S = 1
2

Z p/a

�p/a

dw
2p

Z p/b

�p/b

dk
2p

j⇤(w,k)
⇥
ŵ2 +kb2k̂2 +(µ2 �2k)

⇤
j(w,k)

where ŵ = 2a�1 sin 1
2 wa, k̂ = 2b�1 sin 1

2 kb. Identify µ2 �2k = m2
, k = b�2

.



Dirac Matrix Conventions

• Euclidean indices, 1, 2, 3, 4; metric δμν= diag(1,1,1,1). 

• Clifford algebra {γμ,γν} = 2δμν; all γμ are Hermitian. 

• Chiral γ5 = γ1γ2γ3γ4; also Hermitian. 

• Spin [γμ,γν] = –2iσμν; σμν is also Hermitian. 

• Continue back to Minkowski with gμν= diag(–1,1,1,1), 

• and time components x0 = –ix4; γ0 = –iγ4; p0 = E =–ip4.
return

g4 =

✓
1 0
0 �1

◆
,

ggg =
✓

0 sss
sss 0

◆
,

g5 =

✓
0 �i
i 0

◆
.
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