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Lecture 1—Lattice Gauge Theory:
Origins;
Formalism;
Numerical methods.
Lecture 2—Lattice QCD Results:
Decay constants (leptonic decays);
Semileptonic form factors & neutral-meson mixing:

CKM determination and search for non-SM FCNC



Quantum Field Theory = Lattice Field Theory



Lots of Degrees of Freedom

- Essence of field theory is uncountably many degrees of freedom:

- but UV divergences stem from the intrinsic problem of
counting the uncountable —

- especially so when scale invariance is key (as it is in 3+1 dim).
- Necessary to tame the counting problem, but want:
- generality (not something limited, say, to perturbation theory);

-+ computabillity (results different from O or 1).



Canonical Quantization of QFT
W. Heisenberg & W. Pauli, Z. Phys. 56 (1929) 1

- H. & P. wanted to extend canonical quantization, [p;, gk] = ihOj,
which works for countable sets (as infinite as Z) to continuous sets
(as infinite as R).

- Right-hand side of [m(x), ¢(y)] = ihd(x—y) was a bit too new.

- Divide space into cells, with one field variable per cell:

- # dof is now countable, reducing QFT to guantum mechanics.


http://dx.doi.org/10.1007/BF01340129

- H&P: In der Tat kann man den Fall kontinuierlich vieler

Freiheitsgrade, wo die Zustandsgrofsen Raumfunktionen sind,
stets durch Grenziibergang aus dem Fall endlich vieler
Freiheitsgrade gewinnen.

Indeed, one can always obtain the case of continuously
many degrees of freedom, where the state variables are
functions of space, through a limit of the case of finitely many
degrees of freedom. (my translation)

- Wenzel (1940) and Schiff (1953) used spatial lattice to study
strong coupling, treating the kinetic term as a perturbation.


http://dx.doi.org/10.5169/seals-111066
http://dx.doi.org/10.1103/PhysRev.92.766

Path Integral in Quantum Mechanics
R. Feynman, Rev. Mod. Phys. 20 (1948) 367

- Propagator in QM, with Hamiltonian H = p%/2m + V(x):

(e(T)[x(0)) = (xr|e™T[xo) = Y (xr[n)e ™ (nlxo)

n

- Divide the time interval into many small steps, 0 = 7/N. Insert
[ dxy|xn) (x| N—1 times. Then

N-1  N-1 .
() b(0)) = [ T [T boneale b

- Now want to work out the matrix element on RHS.


http://inspirehep.net/record/22425

Factorize the operator (Trotter formula):

<xn+1’€_iﬁ6’xn> ~ <xn+1‘e—iV(ﬁ)S/ze—iﬁZS/Zm _iV(ﬁ)s/z\x )
— e—iV(xn+1)5/2<x 1 ’e—lp25/2m‘x Ve —iV (x,)6/2

Work out the factor in the middle (0 — —ia):

. m .
Xnt1le” a/2m’xn> - \%e Mm(Xp41—xn)"/2a

" Assemble factors:
N—1
. T | mN
<.XT|€_HT"XO> — Alli_rgo/@xexp (N r;)Ln) ; Dx = H dx ;,/nj'[f

1 Xnt1 —X | 1
Ly=—-m|=—=") —=V(,)—=V(x;

analytically continue T — iT after taking N — <,



Factorize the operator (Trotter formula):

<xn+1 ’e—iI—AI6 ’xn> ~ <xn+1 ‘e—iV()?)5/28—iﬁ25/2me—iV()€)6/2‘xn>

— ¢V (nt1)0/2 () —iﬁ25/2m‘xn>e—iV(xn)6/2

n—l—l’e

Work out the factor in the middle (0 — —ia):

. m .
Xnt1le” a/2m’xn> - \%6 Mm(Xp41—xn)"/2a

Assemble factors:

<)CT|€_[:IT"XO> :Al]i_rgo/@xexp ( —S ) ; Dx = H dxn

mN
2TT

1 Xnt1 —X | 1

analytically continue T — iT after taking N — <,



Many degrees of freedom

- Two: V(x1, x2) = V(x1) + V(x2) — nx1x2 : Just repeat manipulations.

- Infinite chain, j € Z: V(¢) =X ;¥ (9;) — 3K0;(9j—1 + j+1)

- Combine spatial lattice and path integral —before the infinitesimal
cell-size & time-step limits—to get a spacetime lattice:

- the focus of most lattice field theory.

- Need to work out the relation between « and usual properties of
(scalar) field theory, writing ¥ = % u2¢j + ...

- Then spatial lattice spacing b = »~12 and m? = p*— 2dx.

10



Propagator as function of time ¢, 3-momentum p is interesting.

- Set spatial and temporal lattice spacings equal:

S = adZ< ZZa_Z O(x+aey) (|)(x)]2+%m2(])(x)2+%7»(])(x)2 >, X =na,
‘ \

Y S 3KY @ [Pure, + One,| + 505+ 58P ¢, nEZ, e, = unit vector.

\ H J
+ Compute via contour integration: (see back-up slide)
T/a dp4 eip4t
G(t,p) = / ) NP
“n/a 27 2a=*(1 —cos psa)+p*+m
—E|t|

ae
— hEa =1+ 3 (p*+m’
2sinhEa’ cosEd 2 (p " )

which yields 1-particle state, with some discretization effects.

11



Finite Volume

- With lots of field variables, in practice, it is convenient to set the final
configuration equal to the initial configuration and integrate over it:

Z= [ do(ole 1) = [ DoeS = Tre
which “looks like™ a partition function in statistical mechanics.

- The spatial lattice can also be finite, with suitable boundary conditions,
often periodic (or a generalization).

Finite spacetime lattice reduces quantum field theory to quantum
mechanics of a large, but finite, collection of degrees of freedom.

-+ Used in mathematical physics to “construct” QFT [Glimm & Jaffe].

12


https://www.amazon.de/Quantum-Physics-Functional-Integral-Point/dp/0387964762/ref=sr_1_1?ie=UTF8&qid=1474272256&sr=8-1&keywords=glimm+jaffe

Observables

- In QFT, all information can be obtained from correlation functions:

(O(x)) = %/@x O(x;) e S\
(Q1 (1)) 02(xr,)) = %/@X 01 (x;,) 02 (x,) e S0id)

+ For large time extent 7: (proofs as exercise)

larece T
7 5 kot

(0(x)) "5 (0]Q(£)|0)

vields vacuum energy Ep and the vacuum expectation value (vev).

13



- Fort>1t >t >0 andlarge time extent t: (proofs as exercise)

<Q1(t1)Q2(f2)>cla§TZ<O\Q1(t1)\n)<n|Q2(t2)|o> (En—Ep)(11—12)
n#0

+ Y (0102(12)[n) (n] Q1 (11)[0) e P Fo)H2=1)
n#0

yielding excited-state energies and transition matrix elements.

- When t1 — , and 7 — (#1 — 12) are also large:

large T, (11 —17)
%

(0101 (1) 1) (1|02 (12)|0) e~ E1—E0) 1=
T <O‘QA2(t2) ‘ 1> <1 |Q1 (tl) ‘O>€_(E1 —Ey)(t+1p—17)

(01(t1)02(12) )¢

- And similarly for three-point functions (for, e.g., form factors).



QFT as Statistical Mechanics

- Gombination of the lattice and the path integral opens up new tools:
- mean-field approximations;
- strong coupling (“high temperature”) expansions;
- Monte Carlo methods.
- Also opens up QFT tools for condensed matter physics:
- Feynman diagrams, e.g., to calculate critical exponents;

+ renormalization group, e.g., to solve Kondo problem.

15



Lattice Gauge Fields



Local Gauge Invariance

+ Global symmetries simply tag along in the correspondence
between path integrals and canonical quantization.

- Suppose there is a local symmetry, g(x) € Lie group:

0(x) = g(N)d(x),  ¢'(x) = 0" (x)g (x)

- Couplings among different points transform like
0" (X)0(y) = 0" (x)g~ (x)g(»)o()

- Need object transforming like U (x,y) — g(x)U (x,y)g ' (y); then
0" (U (x,7)0(y) = 0" (x)g~" (x) g()U (x,y)¢~" () g(3)O(y) = " (x)U (x,)0(»)

17



Parallel Transport

- It A¥(x) Is the gauge potential, then define X
y
Us(x,y) =P exp/ dz, A" (z) x
* xl >

where AH(x) — g(x) (* +AH(x)) g~ (x)

no i t,' =—t, /

No go: Normalization

- Parallel transporters along adjacent paths compose.
- These transform in the desired way,. (oroof as an exercise)

- Obviously, tr[Us(x,x)] is gauge invariant: called Wilson loop.

18



Lattice Gauge Theory

- Instead of Au(x), gauge d.o.f. in lattice gauge theory are U(x, x+aey),
where a is the lattice spacing and ey, is a unit vector along L.

- Integration measure is “Haar measure”: [dU =1, [dUU =0

/ dU f(U) = / dUf(UV) = / dUUijU;l:]lVSikSﬂ

- For SU(2), this can be expressed via Euler angles; for SU(3) and
higher, it Is too cumbersome to write it out.

- Simplest Wilson loop (hypercubic lattice) goes around a 1x1 square.

- Plaquette action Re tr[1 — Uix1] tends to tr[FuwF™] as a — 0.

19



Lattice Gauge Theory

- Instead of Au(x), gauge d.o.f. in lattice gauge theory are U(x, x+aey),
where a is the lattice spacing and ey, is a unit vector along L.

- Integration measure is “Haar measure”: [dU =1, [dUU =0
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Confinement of Quarks

K. Wilson, PRD 10 (1974) 2445

LGT invented to understand asymptotic freedom without gauge-fixing and

ghosts [Wilson, hep-lat/0412043].
Consider a large RxT Wilson loop.

Boltzmann weight (“plaquette action”):

I;Iexp (—2%] Retr[1 — U,,])

80

Leading term when each plaguette is
covered by it's U,: area law.

Potential energy V(R) = R In(g%/2N).

Lowest-order strong coupling expansion
demonstrates color confinement.

20


http://www.slac.stanford.edu/spires/find/hep/www?j=PHRVA,D10,2445
http://arXiv.org/abs/hep-lat/0412043/
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Fermion Path Integrals



GGrassmann Variables

Take a collection of fermions {ﬁ!&,\ifﬁ} = Oup, { Vo, Pp} = {\TI&,\TIB} = 0.

Define “empty” and “full” states by
Ualempty) =0, ), Jfull) =
(empty| W, =0, (full\yy, = 0.
Define field eigenstates by

~F .
) = eroVo¥olempty), |p) = e ZoValo|fyll),

~F o
<\|]| — <1:U|||€_Zoc‘41(>c\|foc7 <\Tj — <empty‘eZa\|’a\|foc.

These satisfy Uy |W) = yo|W), etc., and (proofs as exercise)

/Hd\va\w w\—/Hd\va!w 7

22



Suppose we have a Hamiltonian H= Z@’&Maﬁfl’ﬁ with Mpo, = M;B. Then

o

(Wle” HTWO /H@‘Vn@\lfn Do (Wn |[In—1) (Wn—1]e " ’\VN—1>”‘><

(W1 [ W) (Fale ™) - (i [W0) (Wole ™" [wio)

Some simple algebra shows:

<\|In+1

(Wnle MY

Assembling all the factors:

\Tfn> — o VYn'V¥n+l

Wn> _ e\Tfn.\pn—a\IIn-M.\pn _|_O(a2)

(show <\TIN\e_m\\TIo> leads to the same thing)

—/ﬂ?\vo (Wole " wo) /H DY, DY, e

s—ar;){

\T;n.\vn—l—la_\vn | \TanWn}

23



Dirac Fielg

- Dirac field annihilates particles and creates antiparticles —

2 (1 £v*)r,; so treat upper (lower) sign like \/|\f)(j).

. Then the action becomes (Dirac p =v*4)

Szad;{w

e Wicaey @ Wtoes Voo “ Nl L oy,
2a 2 a X,y

where M contains the mass and the spatial kinetic terms.

- Note the extra term: looks like a second-order time derivative.

- We will examine the contents of this action after a short comment.

gamma matrices

24



Transtfer Matrix

- We've been “deriving” lattice field theory from canonical
guantization.

- Most texts start with a (discretized) Euclidean path integral.

- Then the connection to a quantum system comes via the transfer
matrix T (strictly speaking an operator), playing the role of e~ 4.

- The Hilbert space consists of eigenstates of T with eigenvalue T.

- Energy is then defined via E = —a~ ' InT; these energies are
deduced from the exponential fall-off of correlation functions.

25



Fermion Propagators



Interaction on the Spatial Lattice

+ Action is (new notation: £, Yx = Wyt qe,) from now on Y = '
drop prime

\

[ ata—t_4 atgtit_a4—2 _
S=a L BB T T W r LMY
X \ - a a - X,y

/

- Spatial part: My, = mBdyy + BY- 0y — 5Bal\yy, Where
d; = (Ii—t_l')/ZCl, N\ = Z(ti+t_i—2)/a2

- A mimics time Wilson term, but both break chiral symmetry:

- keep Wilson terms or omit them??

27



Naive Fermions

Historically, naive fermions came first, by simply discretizing the

(Euclidean) Dirac Lagrangian d, = (t, —t—,)/2a.

T/a ] :
G(t,p) = / P — e’
_nja 2T iY*sinpga+iY,; ¥ sinp;a+ma

T/a dp4 a l’f SlIlp4Cl — lZl’Yl Slana+ma] zp4t
e
—n/a 2T sin p4a—|-21 sin’ pia+m*a

- This expression has poles at ps = iE and ps = iE +7a ™!

more than desired, and some energies not real !

low-energy solutions for p; near 0, and also p; near ma!.

28



Naive Fermion Energy Spectrum

dps a
G(t,p) = | == .
(t,p) 271:6 iZuVHSIH(p#a)+m0a
IS S B S v sin(o,
= Snh(2E4) e <y4 sinh(Ea) z;y, 31n(p,a)+mod>
+ (_e—Ea)t/a <—Y4 SiIlh(ECl) _|_iZ’yl- Sin(pid) —|—WL()CZ>
sinh” (Ea) = Zsin2 (pia) + (moa)2

29



Wilson Fermions

Including the Wilson terms solves this “doubling” problem

TC/CI dp4 aelp4t
G(t,p) =/ 0 — T
—n/a 2T iy*sinpsa+iY,; Y sinp;a+ma+a*5 Y, p;

T/a dpy ae'P4 [—if*sin psa — iy, Y sin pja +ma+a2% Zuﬁ/%]

“n/a 2T sin® paa + Y, sin® pia + (ma + az% Y ﬁf,)z

- This expression only has poles at ps = iE:
- other poles have been projected out;

low energy solutions for p; near 0 only.

)

30



Wilson Fermion Energy Spectrum

T/a dp4 aeip4t
—n/a 2T iy*sinpsa+iY,; Y sinp;a+ma+a*5 Y, p;;
- ae ' yysinh(Ea) —iY;y;sin(p;a) +moa+ %azﬁz + 1 —cosh(Ea)
— 2Slnh(Ea) 1 +mopa + %a2ﬁ2 9
| l-sin2 a) + (moa+ La?p?)?
cosh(Ea) = 1+ = > (pia) + (moa+ 70°p")

2 1 +mpa + %azﬁz

31



- Wilson fermion action

[, —1_ _

d\ u o1ty —2 d -

S=a") x|V 2@ | Wb a® ) moVyx
XU X

2a

IS almost completely satisfactory.

Must finely tune mo to cancel explicit breaking of the Wilson term
to reach spontaneously broken (Nambu-Goldstone) vacuum:

M,% — (m() — mcrit)B — 0

- Alas, makes renormalization of composite operators similarly
nasty: operators of different chirality can mix.



Staggered Fermions



Banks-Kogut-)Susskind Fermions

- Another way of alleviating the doubling/chiral problem:

- Kogut & Susskind put (anti)particles on even (odd) sites;

- Banks, Kogut, & Susskind used 1 (not 2) component/site in
d = 1+time;

+ Susskind studied 1 component/site in d = 3+time;

- Kawamoto & Smit and Sharatchandra, Thun, & Weisz
generalized Susskind fermions to 4 Euclidean dimensions.

34


http://inspirehep.net/record/1336
http://inspirehep.net/record/99690
http://inspirehep.net/record/108481
http://inspirehep.net/record/165473
http://inspirehep.net/record/165289

Nalve Fermions

- The naive action Is

Zr Mo | U Y (x+2) = U, Y = )| +moa . F()Y(x)

with Grassmarm variables Y%, Y., on each site.

- Invariant under SUco10r(3), translations, hypercubic rotations, and
Uv(np)xUa(ny).

- The naive action also has a remarkable “doubling” symmetry
[Karsten&Smit]: Y +— B, Y, T+ YB;l, B, = l'PY‘ufYS(_l)Xu/a

- Generates a Clifford group I's: {By, Bv} = 20uv. 1’

35


http://inspirehep.net/record/155536

Ramifications

- Doubling symmetries
- mappr—p +7tA/a, where i is a corner of the Brillouin zone;

- shuffle Dirac indices.

- The 106 states are really there, e.g., in loops:

+ running coupling: Bo %NC — %(1671]‘);

- axial anomaly: Apaive 1at = (1 —44+6—4+1)A =0
(chiral symmetry exact).

36



Staggering Magic

- But the lattice allows a transformation [Kawamoto & Smit].
Y(x) = y(x) =Qx)Y(x), Q(x)=Y"%L"%Y'"
Y(x) = gyx)=T®)Q '(x), n=x/a.

- €2 clobbers the Dirac matrices:

Q! (1) Qx ) = (—1)Eem® =iy (x).
-+ The nalve action assumes a simpler form (plus mass term):

a3
$ =5 LW |Ua(Wle+) = U], W= )|

- Also attained by diagonalizing a maximal subgroup of doubling
symmetry [Sharatchandra, Thun, & Weisz].

37


http://inspirehep.net/record/165473
http://inspirehep.net/record/165289

- Dirac index now trivial: (Y(x)Y(y))y = Qx)Q () (x(x)x ()
where X —the staggered fermion—has one component/color/
flavor, and (kinetic) action

613
=5 pIVAEILMEY {UN(X)X(X‘FQ) - U;—MHX(X —i)

-+ But now other symmetries are entangled.

- Shifts and spatial inversion do not commute.

+ For example, translations become shifts:

Sy x(x) = Cu)x(x+a),  %(x) — Cu(x)(x+ i)
Uy(x) — Uy(x+0),Vv;  Culx) = (— )Zp>u”p

- Clifford again: {Sy, Sv} = 20uv.




Species Interpretation

- After “staggering” there are enough degrees of freedom for four
species of Dirac fermion (16 ~ 4 = 4):

+ called “taste” because they aren’t used for u, d, s, c flavors.

Perturbbative and nonperturbative calculations show that such a
structure emerges in the continuum limit:

- anomaly in a taste-singlet axial current;

- agreement with various tests of chiral symmetry, e.qg.,
eigenvalue spectrum in accord with random matrix theory.

39



Chiral Fermions e.g., M. Lilscher, arXiv:hep-th/0102028


http://arxiv.org/pdf/hep-th/0102028v2.pdf

Ginsparg-Wilson Magic

Suppose we have an operator satisfying the Ginsparg-Wilson relation:

YO+PY =apyP,  and P =7 Py

See also Hasenfratz, Laliena, & Niedermayer.

Then we can define a gauge-field-dependenty® = v’ (1 — alp)

Pi=, F)r=1

Take chiral transformations for two definitions of chirality [Luscher]:

sTEP)W oy expliod’ /2]y,
UriL = U5(1F7), ¥ — Jexplioy’ /2].

The actionyr Dy then describes a Weyl fermion, up to phase.
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http://inspirehep.net/record/169017?ln=en
http://inspirehep.net/record/466352
http://inspirehep.net/record/467029?ln=en

Domain-Wall Fermions

-+ One implementation of the Ginsparg-Wilson relation [D.B.
Kaplan| starts with a 5-dimensional spacetime.

+ Take Wilson fermions with “mass” term a1 [0(s) — 8(—s)]
- In a finite system, use antiperiodic b.c. in s.

- Then a right-(left-)handed Weyl fermion is localized at s =0,
s = Ny — 1, which combine to form a Dirac fermion.

- In practice, small chiral symmetry breaking ~ exp(—NVj).
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http://inspirehep.net/record/334857?ln=en

Overlap Fermions

- Narayanan & Neuberger pursued an approach to obtaining the
phase in a chiral gauge theory, which involved an infinite matrix.

- Also based on Wilson fermions.

- |f you give up on the phase, the construction simplifies and
suggests the Dirac operator [Neuberger]:

p-- (1 L —aby >
a 1 —aD|
- Can verify that this operator satisfies the GV relation.
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http://inspirehep.net/record/379922
http://inspirehep.net/record/446034

LUscher symmetry seems to violate CP, transforming ¥ and
Y differently.

+ Considering Luscher and his charge conjugate, Mandula

uncovered a huge symmetry group, in which CP acts as an
automorphism.

+ Extra generators vanish in the spacetime continuum limit,

+ but do not go away In the limit of a spatial lattice with
continuous time,

50 GW-satisfying operators do not have a transfer
operator or Hamiltonian.
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Monte Carlo Integration



A Simple (Dumb) Algorithm

+ Choose C random configurations of the {¢} variables:

:/Q)(])e_S — lim lCzlexp{ ({(l)}(c))}a

C—o0 C

| Dostione

- An estimate of the LHS is obtained for finite C.

lim — Z {0} exp |5 ({0})].

C—oo C

- This method is hopeless, because S is extensive, § ~ # dof.

- Most samples make negligible contribution and are a waste of time.
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Importance Sampling

- Instead of completely random configurations, choose them with
Boltzmnann weight exp[-S({¢})]. Then

1 1 C—1
= | D e ° = lim — ().
7 | ostione = tim L ¥ £(0))

+ This is possible, when § is bounded below, as it is for a
Euclidean action of scalar and/or gauge fields.

+ Quantum field theory has been reduced to the design of random
number generators.
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Metropolis Method

(Start Metropolis >

Propose new value for x
y =X+ r(2*rand() - 1);

- Requires only e = 0.

- Visit each x; In turn; follow flow chart.
- rand() €10,1).

- Choose r to accept 40-50%.

- Keep configurations after enough

sweeps to decorrelate.

- Adapt update step for other degrees

of freedom (e.9., gauge fields).
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Lattice Gauge Theory

-+ QCD functional integral can always be simplified:

(o) =, [ DUDYDexp(-5)]s]

-+ Fermion determinant is computationally extremely challenging:
» rute force would require many operations;

- nonlocal influence on gauge field Det()) +m ) = eI in(P+my)
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Lattice Gauge Theory

-+ QCD functional integral can always be simplified:

(o) =, [ DUDYDexp(~5) ]
_hand |

-+ Fermion determinant is computationally extremely challenging:
» rute force would require many operations;

- nonlocal influence on gauge field Det()) +m ) = eI in(P+my)

49



Lattice Gauge Theory

-+ QCD functional integral can always be simplified:

1 r Y )
(o) = [| PUDYDYexp (~3) [o
MC| hand |

-+ Fermion determinant is computationally extremely challenging:
» rute force would require many operations;

- nonlocal influence on gauge field Det()) +m ) = eI in(P+my)



Propose new value for x
y =X+ r"(2*rand() - 1);

Hybrid Monte Carlo

+ Introduced new fictitious momentum, conjugate to the U(x):
- “time” Is computer time;

- Hamilton’s equations for the momentum I1,(x) and U,(x):
d[S—Trin(p) +m)]
AUu(x)

Uu(x) — Hy(x), Hu(x) —
with care taken to keep Uy(x) in the Lie group.

- At the end of a “trajectory”, accept or reject with Metropolis.

- Then refresh with new, random I1(x).
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Monte Carlo “Simulation”

-+ Choose sequence of bare couplings go(a) and amo(a), such that
physical quantities are independent of a:

- gauge coupling « lattice spacing a in MeV';
- quark masses « suitable meson mass Mz, Mz, Mp_,Mp

- Generate large ensemble of lattice gauge fields

- Obtain statistical estimate of correlation functions from the
averages and covariance in the ensemble.
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Correlators Yield Masses & Matrix Elements

Two-point functions for masses, ©t(¢) = ¥, Ya P Wa (X, 1):

(! (0)) = D {0 lma) | exp(—fma)t)

Two-point functions for decay constants:

Tty (0)) = S (01wl 10) exp(—ma, 1

Three-point functions for form factors, mixing:

(2(t).7 () BT (0)) = 3 (01 |myn){(7a | T B Brn| BT 0)

mmn

< expl—m, (t = u) — mp,,u]

LHS needs supercomputers; RHS needs students, postdocs, ....
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Statistics for Masses and Matrix Elements

- Hadron masses and, conseguently, hadronic matrix elements are
nonlinear functions of the correlation functions:

+function defined implicitly by the fitting function.
-+ To compute their statistic errors need to repeat the simulation”
+ Create pseudo-ensembles from the original one:

+eliminate individual (or pairs, ...) configurations—jackknife;

- draw configurations at random, allowing repeats —bootstrap.
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Bootstrap and jackknife have numerous nice and understood
oroperties [Efron]:

-+ cumulants of bootstrap distribution reproduce underlying
cumulants;

- cumulants of jackknife distribution differ from underlying
cumulants by factor C+.

Practical: arbitrarily complicated analysis can be repeated on the
set of pseudo-ensembles, yielding a histogram for the output of
the analysis.

-+ Computationally demands large but small compared to the
whole enterprise.


https://www.amazon.com/Jackknife-Bootstrap-Resampling-Conference-Mathematics/dp/0898711797/ref=sr_1_5?ie=UTF8&qid=1474276243&sr=8-5&keywords=bradley+efron

| attice

Data and

—ffective Field Theory

- Discretization effects of lattice described w/ Symanzik effective field theory.

- The finite volume provides an IR cutoft: effective field theory in a box:

- loop integrals become finite sums;

- these effects are either very small or very useful (absorptive parts).

- Sometimes the light quarks aren’t light enough: chiral perturbation theory:

- replace the computer’s pion cloud with Nature’s.

-+ Sometimes heavy-quark masses have moa = 1: HQET or NRQCD.
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Verflixtes Zeug! Does It Work"?



QCD Hadron Spectrum
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http://inspirehep.net/record/1092992

Neutron-Proton Mass Difference
BMW Collab., arXiv:1406.4088 (see also Horsley et al. arXiv:1508.06401)

phyS|caI point



https://inspirehep.net/record/1300659
https://inspirehep.net/record/1389860
https://inspirehep.net/record/1300659

Tomorrow: more numerical results,

focusing on flavor physics. Till then,

vielen herzlichen Dank!
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Solutions to Some Exercises



Correlation Functions

One idea: insert complete sets of states of the Hamiltonian (or
transfer operator):

Z:Tre—ﬁt :Z n\e_HT|n Ze E, Tlarge’c —E()’E
1
<Q(x)> — 2TrQ _HT Ze_E nT \Q > <()‘Q( )|()>

1 . R . R .
<Q1 (tl)QZ(t2)>c _ 2 Z<I’l‘€_H(T_t1)Q1 (t1)\n'><n’\e_H(“ —tz)Qz(tz)e—th ‘I’l>

——Z e M0, ()e M) Y0 Oa(m)e
large
5L (0101 (1)) (1'102(12) |0)e B =) - 3 {0]0a (1) ) (1] 01 (1) 0™ 02
n'#0 n70
large 7, (t; — A A (F.— _ A A _(E,— _
0101 () 1) (1]Qa(0)]0)e FEI )4 (00a()]1) (1] (1) 0)e P11

+Try this for a three-point function, too.
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S T NN
R L R R R R Ry
S T NN
S T NN
<>
Action: b
( (l) (I) 2 3
i1 — O
S=aby’ %( ! Ja ”’) + 10— 3K (Onj—1 4 On 1) ¢
naj \ /

Fourier transform:

T/a Joy [T/b dk o
_ i[naw+ jbk|
On.j = /Tc/a 2n /n/b 2775 0@,k

Plug in and collect terms:

T/a doy [T/D dk , b ,
O + kb k — 2K ®, k
/ﬂ:/a 27 /n/b o @ (@:5) | (1 )| o(w,k)

return

where ® = 2a~ ! sin fa, k = 2b~ ! sin 3kb. Identify p* — 2k = m?, k= b 2.
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Dirac Matrix Conventions

- Euclidean indices, 1, 2, 3, 4; metric ow= diag(1,1,1,1).

- Clifford algebra {y#,y¥} = 20m; all y* are Hermitian. v = (é _01 ) ,

- Chiral y> = yly2y3v4; also Hermitian. y— (2 ‘O‘) |
+ Spin [yryY] = -2i0W; oW is also Hermitian. o (o —i)
“\i 0 )

- Continue back to Minkowski with gw= diag(-1,1,1,1),

- and time components x0 = —ix*; y0 = —iy4; p0 = E =ip*,
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