Electric Dipole Moments: A Look Beyond the Standard Model

M.J. Ramsey-Musolf U Mass Amherst

AMHERST CENTER FOR FUNDAMENTAL INTERACTIONS Physics at the interface: Energy, Intensity, and Cosmic frontiers University of Massachusetts Amherst

http://www.physics.umass.edu/acfi/

Mainz UCN Workshop April 2016

Goals for this talk

- Set a context for the workshop
- Illustrate the broader implications of present & prospective EDM searches
- Introduce some terminology & notation
- Illustrate present theoretical landscape
- Pose challenges for hadronic & nuclear structure theory

Outline

- I. The BSM context
- II. Electric dipole moments
- *III. EDM complementarity*
- *IV.* Challenges for hadronic & nuclear structure theory
- V. Outlook

I. The BSM Context

The Origin of Matter

Explaining the origin, identity, and relative fractions of the cosmic energy budget is one of the most compelling motivations for physics beyond the Standard Model

The Origin of Matter

Explaining the origin, identity, and relative fractions of the cosmic energy budget is one of the most compelling motivations for physics beyond the Standard Model

Ingredients for Baryogenesis

Scenarios: leptogenesis, EW baryogenesis. Afflek-Dine, asymmetric DM, cold baryogenesis, postsphaleron baryogenesis...

TestableStandard ModelB

BSM

- B violation (sphalerons)
- C & CP violation
- Out-of-equilibrium or CPT violation

Symmetries & Cosmic History

Symmetries & Cosmic History

Symmetries & Cosmic History

BSM Physics: Where Does it Live ?

Low-Energy / High-Energy Interplay

Low-Energy / High-Energy Interplay

EDMs: New CPV?

System	Limit (e cm)*	SM CKM CPV	BSM CPV
¹⁹⁹ Hg	7.4 x 10 ⁻³⁰	10 ⁻³³	10 ⁻²⁹
ThO	8.7 x 10 ⁻²⁹ **	10 ⁻³⁸	10 ⁻²⁸
n	3.3 x 10 ⁻²⁶	10 ⁻³¹	10 ⁻²⁶

* 95% CL ** e⁻ equivalent

EDMs: New CPV?

System	Limit (e cm)*	SM CKM CPV	BSM CPV
¹⁹⁹ Hg	7.4 x 10 ⁻³⁰	10 ⁻³³	10 ⁻²⁹
ThO	8.7 x 10 ⁻²⁹ **	10 ⁻³⁸	10 ⁻²⁸
n	3.3 x 10 ⁻²⁶	10 ⁻³¹	10 ⁻²⁶

* 95% CL ** e⁻ equivalent

Mass Scale Sensitivity

EDMs: New CPV?

System	Limit (e cm)*	SM CKM CPV	BSM CPV
¹⁹⁹ Hg	7.4 x 10 ⁻³⁰	10 ⁻³³	10 ⁻²⁹
ThO	8.7 x 10 ⁻²⁹ **	10 ⁻³⁸	10 ⁻²⁸
n	3.3 x 10 ⁻²⁶	10 ⁻³¹	10 ⁻²⁶

* 95% CL ** e⁻ equivalent

Not shown: muon Why Multiple Systems ?

Why Multiple Systems ?

Multiple sources & multiple scales

Effective Operators: The Bridge

$$\mathcal{L}_{\mathrm{CPV}} = \mathcal{L}_{\mathrm{CKM}} + \mathcal{L}_{\bar{\theta}} + \mathcal{L}_{\mathrm{BSM}}^{\mathrm{eff}}$$

$$\mathcal{L}_{\mathrm{BSM}}^{\mathrm{eff}} = \frac{1}{\Lambda^2} \sum_i \alpha_i^{(n)} \, O_i^{(6)}$$

21

+...

Wilson Coefficients: Summary

$\delta_{\!f}$	fermion EDM	(3)
$\widetilde{oldsymbol{\delta}}_q$	quark CEDM	(2)
$C_{\widetilde{G}}$	3 gluon	(1)
C _{quqd}	non-leptonic	(2)
C _{lequ, ledq}	semi-leptonic	(3)
$m{C}_{arphi}$ ud	induced 4f	(1)

12 total + $\overline{\theta}$

light flavors only (e,u,d)

Wilson Coefficients: Summary

12 total + $\overline{\theta}$ light flavors only (e,u,d)Complementary searches needed

III. EDM Complementarity

- CPV in an extended scalar sector (2HDM): "Higgs portal CPV"
- Weak scale baryogenesis (MSSM)
- Model-independent

The Higgs Portal

Portals & Early Universe

New CPV ?

Higgs Portal CPV

Inoue, R-M, Zhang: 1403.4257

CPV & 2HDM: Type I & II

 $\lambda_{6,7} = 0$ for simplicity

$$V = \frac{\lambda_1}{2} (\phi_1^{\dagger} \phi_1)^2 + \frac{\lambda_2}{2} (\phi_2^{\dagger} \phi_2)^2 + \lambda_3 (\phi_1^{\dagger} \phi_1) (\phi_2^{\dagger} \phi_2) + \lambda_4 (\phi_1^{\dagger} \phi_2) (\phi_2^{\dagger} \phi_1) + \frac{1}{2} \left[\lambda_5 (\phi_1^{\dagger} \phi_2)^2 + \text{h.c.} \right] \\ - \frac{1}{2} \left\{ m_{11}^2 (\phi_1^{\dagger} \phi_1) + \left[m_{12}^2 (\phi_1^{\dagger} \phi_2) + \text{h.c.} \right] + m_{22}^2 (\phi_2^{\dagger} \phi_2) \right\}.$$

 H^{\mp}

W±S

Future Reach: Higgs Portal CPV

CPV & 2HDM: Type II illustration

 $\lambda_{6.7} = 0$ for simplicity

P	re	S	e	n	t
		_	_		

 $sin \alpha_b$: CPV scalar mixing

Future:	Future:
d _n x 0.1	<i>d_n</i> x 0.01
d _A (Hg) x 0.1	<i>d_A(Hg)</i> x 0.1
d _{ThO} x 0.1	d _{ThO} x 0.1
d _A (Ra) [10 ⁻²⁷ e cm]	d _A (Ra)

Inoue, R-M, Zhang: 1403.4257

Higgs Portal CPV: EDMs & LHC

CPV & 2HDM: Type II illustration

 $\lambda_{6.7} = 0$ for simplicity

Present

 $sin \alpha_b$: CPV scalar mixing

Future:Future: $d_n \times 0.1$ $d_n \times 0.01$ $d_A(Hg) \times 0.1$ $d_A(Hg) \times 0.1$ $d_{ThO} \times 0.1$ $d_{ThO} \times 0.1$ $d_A(Ra) [10^{-27} e cm]$ $d_A(Ra)$

31

Higgs Portal CPV: EDMs & LHC

CPV & 2HDM: Type II illustration

 $\lambda_{6.7} = 0$ for simplicity

FIESEII	Ρ	re	S	er	nt
----------------	---	----	---	----	----

 $sin \alpha_b$: CPV scalar mixing

Future:	Future:
d _n x 0.1	<i>d_n</i> x 0.01
d _A (Hg) x 0.1	<i>d_A(Hg)</i> x 0.1
d _{ThO} x 0.1	d _{ThO} x 0.1
d _A (Ra) [10 ⁻²⁷ e cm]	d _A (Ra)

32

Low-Energy / High-Energy Interplay

Higgs Portal CPV

Was the baryon asymmetry produced during electroweak symmetry-breaking ?

- EDMs provide most powerful probe of CPV
- Phase transition \rightarrow Separate talk

EDMs & EW Baryogenesis: MSSM

Neutron EDM

Li, Profumo, RM '09-'10

EDMs & EW Baryogenesis: MSSM

Electron EDM

Li, Profumo, RM '09-'10

EDMs & EW Baryogenesis: MSSM

Two-Step EW Baryogenesis

φ

BSM Scalar Sector: at least one SU(2)_L non-singlet plus possibly gauge singlets ("partially secluded sector")

BSM CPV in ϕ H interactions: baryogenesis during step 1

Inoue, Ovanesyan, R-M: 1508.05404; Patel & R-M: 1212.5652; Blinov, Kozaczuk, Morrissey: 1504.05195

Two-Step EW Baryogenesis

Two cases: (A) $\delta_{S} = 0$ (B) $\delta_{\Sigma} = 0$

Inoue, Ovanesyan, R-M: 1508.05404

Wilson Coefficients: Model Independent

$\delta_{\!f}$	fermion EDM	(3)
$oldsymbol{\widetilde{\delta}}_q$	quark CEDM	(2)
$C_{\widetilde{G}}$	3 gluon	(1)
C _{quqd}	non-leptonic	(2)
C _{lequ, ledq}	semi-leptonic	(3)
$m{C}_{arphi$ ud	induced 4f	(1)

12 total + $\overline{\theta}$

light flavors only (e,u,d)

Global Analysis: Input

System	Year/ref	Result		
	Pa	ramagnetic systemss		
\mathbf{Cs}	1989 [37]	$d_A = (-1.8 \pm 6.9) \times 10^{-24}$	ecm	
		$d_e = (-1.5 \pm 5.6) \times 10^{-26}$	ecm	
Tl	2002 [9]	$d_A = (-4.0 \pm 4.3) \times 10^{-25}$	ecm	
		$d_e = (6.9 \pm 7.4) \times 10^{-28}$	ecm	
YbF	2011 [8]	$d_e = (-2.4 \pm 5.9) \times 10^{-28}$	ecm	
ThO	2014 [7]	$\omega^{\mathcal{N}E} = 2.6 \pm 5.8$	mrad/s	
		$d_e = (-2.1 \pm 4.5) \times 10^{-29}$	ecm	
		$C_S = (-1.3 \pm 3.0) \times 10^{-9}$		
	Diamagnetic systems			
¹⁹⁹ Hg	2009 [5]	$d_A = (0.49 \pm 1.5) \times 10^{-29}$	ecm	
¹²⁹ Xe	2001 [38]	$d_A = (0.7 \pm 3) \times 10^{-27}$	ecm	
TlF	2000 [39]	$d = (-1.7 \pm 2.9) \times 10^{-23}$	ecm	
neutron	2006 [4]	$d_n = (0.2 \pm 1.7) \times 10^{-26}$	ecm	

Paramagnetic Systems: Two Sources

Paramagnetic Systems: Two Sources

IV. Theoretical Challenges

Hadronic Matrix Elements

Param	Coeff	Best value ^a	Range
θ	$lpha_n \ lpha_p$	0.002 0.002	(0.0005-0.004) (0.0005-0.004)
Im C _{qG}	$egin{smallmatrix} eta_n^{uG} \ eta_n^{dG} \ eta_n^{dG} \end{split}$	4×10^{-4} 8×10^{-4}	$(1-10) \times 10^{-4}$ $(2-18) \times 10^{-4}$
\tilde{d}_q	$e ilde{ ho}_n^u \\ e ilde{ ho}_n^d$	-0.35 -0.7	-(0.09 - 0.9) -(0.2 - 1.8)
$ ilde{\delta}_q$	$e \tilde{\zeta}_n^u \\ e \tilde{\zeta}_n^d$	$\begin{array}{c} 8.2 \times 10^{-9} \\ 16.3 \times 10^{-9} \end{array}$	$(2-20) \times 10^{-9}$ $(4-40) \times 10^{-9}$
$\operatorname{Im} C_{q\gamma}$	$egin{array}{l} eta_n^{u\gamma} \ eta_n^{d\gamma} \ eta_n^{d\gamma} \end{array}$	$0.4 imes 10^{-3}$ -1.6 imes 10^{-3}	$(0.2 - 0.6) \times 10^{-3}$ -(0.8 - 2.4) × 10^{-3}
dq	$ ho_n^u ho_n^d ho_n^d$	-0.35 1.4	(-0.17)-0.52 0.7-2.1
δ_q	ζ_n^u ζ_n^d	$8.2 imes 10^{-9} \ -33 imes 10^{-9}$	$(4 - 12) \times 10^{-9}$ -(16 - 50) × 10 ⁻⁹
C _Ĝ	$eta_n^{ ilde{G}}$	2×10^{-7}	$(0.2 - 40) \times 10^{-7}$
Im C _{\u03c6}	$\beta_n^{\varphi u d}$	$3 imes 10^{-8}$	$(1-10) \times 10^{-8}$
$\operatorname{Im} C_{quqd}^{(1,8)}$	β_n^{quqd}	40×10^{-7}	$(10 - 80) \times 10^{-7}$
$\operatorname{Im} C_{eq}^{(-)}$	$g_{S}^{(0)}$	12.7	11-14.5
Im C _{eq} ⁽⁺⁾	g _S ⁽¹⁾	0.9	0.6–1.2

Engel, R-M, van Kolck [']13

Hadronic Matrix Elements

Param	Coeff	Best value ^a	Range
θ	$lpha_n \ lpha_p$	0.002 0.002	(0.0005-0.004) (0.0005-0.004)
Im C _{qG}	$eta_n^{uG} eta_n^{dG} eta_n^{dG}$	4×10^{-4} 8×10^{-4}	$(1 - 10) \times 10^{-4}$ $(2 - 18) \times 10^{-4}$
\tilde{d}_q	$e ilde{ ho}_n^u \\ e ilde{ ho}_n^d$	-0.35 -0.7	-(0.09 - 0.9) -(0.2 - 1.8)
$\tilde{\delta}_q$ (CEDM)	$e\tilde{\zeta}_n^u$ $e\tilde{\zeta}_n^d$	$\begin{array}{c} 8.2 \times 10^{-9} \\ 16.3 \times 10^{-9} \end{array}$	$\begin{array}{c} (2-20)\times 10^{-9} \\ (4-40)\times 10^{-9} \end{array}$
Im C _{qy}	$ \beta_n^{u\gamma} \\ \beta_n^{d\gamma} $	$0.4 imes 10^{-3}$ -1.6 $ imes 10^{-3}$	$(0.2 - 0.6) \times 10^{-3}$ -(0.8 - 2.4) × 10^{-3}
dq	$ ho_n^u ho_n^d$	-0.35 1.4	(-0.17)-0.52 0.7-2.1
δ_q	ζ_n^u ζ_n^d	$8.2 imes 10^{-9} \ -33 imes 10^{-9}$	$\begin{array}{l} (4-12)\times 10^{-9} \\ -(16-50)\times 10^{-9} \end{array}$
C _Ĝ	$\beta_n^{\tilde{G}}$	2×10^{-7}	$(0.2 - 40) \times 10^{-7}$
Im C _{øud}	$\beta_n^{\varphi u d}$	$3 imes 10^{-8}$	$(1 - 10) \times 10^{-8}$
$\operatorname{Im} C_{quqd}^{(1,8)}$	β_n^{quqd}	40×10^{-7}	$(10 - 80) \times 10^{-7}$
$\operatorname{Im} C_{eq}^{(-)}$	$g_{S}^{(0)}$	12.7	11-14.5
$\operatorname{Im} C_{eq}^{(+)}$	g _S ⁽¹⁾	0.9	0.6–1.2

Engel, R-M, van Kolck [']13

Nuclear Matrix Elements

$$S = a_0 g \,\bar{g}_{\pi}^{(0)} + a_1 g \,\bar{g}_{\pi}^{(1)} + a_2 g \,\bar{g}_{\pi}^{(2)}$$

Nucl.	Best value			
	<i>a</i> ₀	<i>a</i> ₁	<i>a</i> ₂	
¹⁹⁹ Hg ¹²⁹ Xe ²²⁵ Ra	0.01 -0.008 -1.5	$\pm 0.02 \\ -0.006 \\ 6.0$	0.02 -0.009 -4.0	
Range				
a ₀	<i>a</i> ₁		<i>a</i> ₂	
0.005-0.05 -0.005-(-0.05) -1-(-6)	-0.03-(+0.09) -0.003-(-0.05) 4-24		0.01-0.06 -0.005-(-0.1) -3-(-15)	

Had & Nuc Uncertainties

CPV & 2HDM: Type II illustration

$\lambda_{6,7} = 0$ for simplicity

Present

 $sin \alpha_b$: CPV scalar mixing

Had & Nuc Uncertainties

CPV & 2HDM: Type II illustration

$\lambda_{6,7} = 0$ for simplicity

Present

 $sin \alpha_b$: CPV scalar mixing

Had & Nuc Uncertainties

CPV & 2HDM: Type II illustration

$\lambda_{6,7} = 0$ for simplicity

Present

Challenge for Theory

 $sin \alpha_b$: CPV scalar mixing

IV. Outlook

- Searches for permanent EDMs of atoms, molecules, hadrons and nuclei provide powerful probes of BSM physics at the TeV scale and above and constitute important tests of weak scale baryogenesis
- Studies on complementary systems is essential for first finding and then disentangling new CPV
- The interpretation of diamagnetic system EDMs (including the nucleon) is challenged by substantial hadronic and nuclear many-body uncertainties
- The advancing experimental sensitivity challenges hadronic structure theory to aim for an unprecedented level of reliability & model building to envision new pathways for baryogenesis