

Status of the UCN source at beamport D of the research reactor TRIGA Mainz

Yu. Sobolev¹, M. Beck², K. Eberhardt¹, Ch. Geppert¹, J. Karch², S. Karpuk¹, F. Kories², W. Heil², T. Reich¹, Ch. Siemensen¹, N. Trautmann¹

¹Institute of Nuclear Chemistry, Johannes Gutenberg University Mainz, 55099 Mainz, Germany ²Institute of Physics, Johannes Gutenberg University Mainz, 55099 Mainz, Germany

International Workshop: Probing Fundamental Symmetries and Interactions with UCN 11-15 April 2016, Waldthausen Castle, Mainz

Research reactor TRIGA Mainz

UCN facilities at TRIGA Mainz

UCN source at beamport D of the TRIGA Mainz

UCN source at beamport D : brief history

Measurements of UCN source performance

Setup

Experimental setup used to measure the UCN&VCN source performance: $\rm S_1$ safety shutter at the exit of the UCN source;

 V_{st} – storage vessel; fast shutters S_2 and S_3 with opening and closing times of 0.1 s.

A vertical guide (90 cm) leads to the Cascade-U detector.

UCN density measurements were performed in the storage

mode, whereas UCN&VCN yields were measured in flow-through mode (all

shutters S_1 - S_3 were open during pulse).

UCN measurements

results

Measured UCN&VCN counts/0.1s in the flow mode versus time after a reactor pulse at $t_0 = 0$ s. The full squares and the open circles represent experimental data whereas solid lines show fits. MC simulation gives ~ 2.4x10⁵ UCN at the experimental area. UCN density (ρ_{ucn}) per reactor pulse (10 MJ) as a function of the storage time T_{st} of UCN in a volume of V_{st} = 9.5 L (filling time was set to Δt = 2.5 s).

Karch, J., Sobolev, Yu., Beck, M. et al.: Performance of the solid deuterium ultra-cold neutron source at the pulsed reactor TRIGA Mainz, Eur. Phys. J. A 50 (2014) 78.

Upgrade of the UCN source at beamport D : MC simulations

Simulation program for UCN source & storage setup

Expected UCN densities (hollow squares) per reactor pulse (10 MJ) in a storage vessel of V_{st} = 9.5 L plotted as a function of the storage time T_{st} . The experimental data are also shown in the diagram (full squares).

MC simulations (full circles) using ⁵⁸NiMo-coated stainlesssteel tubes predict a UCN density ($T_{st} \rightarrow 0$) of about 25/cm³.

Upgrade of the UCN source at beamport D: Concept & transmission measurements

Conclusions and outlook

- A new superthermal UCN source at beamport D of the TRIGA Mainz is in regular operation since April 2015. After installation and commissioning of a helium liquefier in 2014, it has been used for long-term experiments.
- Currently the UCN source can deliver up to 240000 UCN per 10 MJ reactor pulse at the experimental area. UCN density ~ 10 UCN/cm³ in a 10 L storage vessel has been obtained.
- From MC simulations we can expect a factor > 2 higher UCN density per reactor pulse by using neutron guides with a better surface quality (smaller surface roughness) and ⁵⁸NiMo coating. The upgrade of the UCN source has just been started.

Acknowledgements:

- This work was supported by the DFG under the contract number He 2308/2-1(2-2), by the Rhineland/Palatinate Foundation, project number 961- 386261/993, and by the Cluster of Excellence PRISMA "Precision Physics, Fundamental Interactions and Structure of Matter", Exc 1098.
- We thank the reactor staff, workshops of Institute of Nuclear Chemistry and Institute of Physics, Mainz and Th. Lauer for their help.