A Brief Overview of Ultracold Neutron Source Development and Some Points of Personal Interest

> Albert R. Young North Carolina State University

ola Vil

1998...

Now...

and Coming Soon! UCN availability increasing dramatically

Outline

- A Baseline: the ILL Turbine Source
- Superthermal Source Fundamentals
- Liquid He Sources
- Solid Deuterium Sources
- Conclusion

The ILL Turbine source

A. Steyerl, H. Nagel, F.K. Schrieber, K.A. Steinhauser, R. G_ahler, W. G[aser, P. Ageron, J.M. Astruc, W. Drexel, R. Gervais, and W. Mampe. Phys. Lett., 116A:347-352, 1986.

Turbine: ~110 UCN/cm³ from TOF

Talk: P. Geltenbort

Works by extracting the low energy tail of neutrons **thermalized** in a 25K liquid D₂ source

The PF2 beam facility

NEUTRONS

PF2: Physique Fondamentale 2 2nd installation for fundamental physics

4 positions for Ultracold Neutrons (UCN)

- MAM - EDM
- UCN

- TES

v = 5 ms⁻¹ 39 UCN cm⁻³ : SS bottle ~1 pol. UCN cm⁻³ in EDM

1 position for Very Cold Neutrons (VCN)

- VCN beam
$$v = 50 \text{ ms}^{-1}$$

= 10⁸ cm⁻² s⁻¹

FH Aachen, Campus Jüli Gamma backgrounds?

Alternative: Avoid Thermal Equilibrium! e.g. Superthermal Sources

Original idea

- 1. Operate source at temperatures which effectively suppress thermal upscatter
- 2. Expose UCN converter material to cold neutron flux to produce UCN
- Accumulate UCN in a storage volume for times approaching neutron lifetime (works for LHe or a thinflim of source material such as D₂)

High(er) densities possible with much lower thermal power in converter!

Key LHe references

- R. Golub and J. M. Pendlebury, Phys. Lett. 53A, 133 (1975)
- R. Golub and J. M. Pendlebury, Phys. Lett. 62A, 337 (1977)
- P. Ageron, W. Mampe, R. Golub and M. Pendlebury, Phys. Lett. 66A 469 (1978)
- R. Golub et al, Z. Phys. B 51, 187 (1983)

Establishing the Limiting density

Inelastic scattering is dominated (He and ortho-Deuterium) by a **single interaction** with phonons in source

Technical Aside on Production

Using SD_2 as a generic example:

The UCN production rate from cold neutrons with energy E' is proportional to

$$\left(\frac{d^{2}\sigma}{d\Omega dE'}\right)_{J\to J'}^{1\ phonon} = \frac{k'}{k} \frac{\hbar^{2}\kappa^{2}}{2M_{D_{2}}} e^{-2W(\kappa)} \mathcal{S}_{JJ'}(2J'+1)$$

$$\times \sum_{n} \left(\frac{\hbar\kappa^{2}}{2M_{D_{2}}\omega}\right)^{n} \frac{1}{n!} \sum_{l=|J'-J|}^{J'+J} |A_{nl}|^{2} \mathcal{C}^{2}(JJ'l;00)$$

$$\times \left(\frac{Z(E_{ph})}{E_{ph}}\right) \left\{\begin{array}{c}n(E_{ph})+1 & \text{if } E_{ph} >=0\\n(E_{ph}) & \text{if } E_{ph} < 0,\end{array}\right.$$
Favors low mass species for efficient momentum and energy transfer in collision

Thesis, C-Y Liu

species for

efficient

collision

Favors low Debye T materials with good overlap with CN distribution ($T \sim 30 \text{ K}$)

Superthermal Source Candidates

Need very low neutron capture cross-sections!

Isotope	$\sigma_{coh}(barns)$	$\sigma_{inc}(barns)$	$\sigma_a(barns)$	σ_s/σ_a	purity(%)	Debye $T(K)$	
⁴ D	5.59	2.04	0.000519	1.47×10^{4}	99.82	110	
⁴ He	1.13	0	0	∞	100	20	Soo ond
15 N	5.23	0.0005	0.000024	2.1×10^{5}	99.9999	80	of talk
¹⁶ O	4.23	0	0.00010	2.2×10^{4}	99.95	104	
²⁰⁸ Pb	11.7	0	0.00049	2.38×10^{4}	99.93	105	

Table 7.1: Candidates for a superthermal source[8].

Thesis: C.-Y. Liu

- He has (by far) longest absorption time (limited by ³He contamination) : high densities accessible
- D₂ has larger cross-sections: higher production rates accessible (good for flow-through experiments)

Inelastic Scattering in ⁴He

E transfer [meV]

UCN production via **1 phonon** scattering occurs when the ⁴He dispersion curve intersects that of the free neutron

(E and p conservation in coherent scattering)

Well characterized for early work on superthermal sources

Scattering data eventually provided a very complete picture...

Ken Andersen's data. Left: linear, Right: log. Filled contours made from interpolated data. 1.24 K 1.24 K З 0 6 2.5 2.5 5 -1 2 E transfer [meV] 2 og10(SQw) 1.5 1.5 З -3 1 2 -4 0.5 0.5 2 Q [1/A] Q [1/A]

1-phonon production multiphonon prod peaks

K. H. Anderson and W. G. Stirling, J. Phys: Cond. Matt. 6, 5805 (1994).

Production for various CN sources

0.5

E.Korobkina et al. / Physics Letters A 301 (2002) 462-469

1.0

Korobkina *et al.* calculate contribution from single and multiphonon prod for various CN distributions

0.8 0.6 0.4 2D Intercolated Std. mad²/2ml 0.4 0.2 0.0 0.6 0.8 t.0 12 1.6 2.0 0.3 - $S(q,\omega=q^2/2m)$, meV⁻¹, extrapolated for Q>1.2 - SNS ballistic guide, 10 ⁹ n/s/cni∕2/meV — HMi polarized flux, arbitrary units 0.2 0.1 0.0 1.0 1.2 0.8 1.4 1.6 1.8 2.01/A

Large volume source produces I > 10⁶ Very high densities!

Table 1 Predicted production rates

	NC State a	SNS ord ^a	SNS ball ^a	HMI a.u.	Maxwell
Multi-ph	490	1.0	0.94	4.7	1.7
Single-ph	375	1.8	2.4	5.5	1.5
Mph/1ph	1.4	0.55	0.4	0.85	1.13
мрилри	1,4	0.55	0.4	C6.U	

^a UCN cm ³ s ¹.

Significant multiphonon contributions possible...

UCN Loss Rate in ⁴He

(also reasonably well characterized)

Ongoing Work: Characterization of UCN Production and Upscatter in LHe vs. T and P

P=SVP, 6, 11, 16, 20

[2] K. K. H. Leung, S. Ivanov, F. M. Piegsa, M. Simson, and O. Zimmer. Ultracold-neutron production and up-scattering in superfluid helium between 1.1 K and 2.4 K. Phys. Rev. C, 93:025501, Feb 2016.

Studied UCN upscattering in temperature range 1.1K to 2.4K.: "Our analysis [from scanning A, B & C coefficients] for T < 1.95 K rules out the contributions from roton-phonon scattering to <29% (95% C.I.) and from one-phonon absorption to <47% (95% C.I.) of their predicted levels."

8.9

-0.9

-1.5

 $d\phi_c/d\lambda_n$

 $s(\lambda_n)$ $P(T, \lambda_n)$

2.12 K

2.17 K

2.26 K

2.96 K

15

18 20

Internal UCN density ~20 UCN cm⁻³, but measured through flapper & foils \rightarrow ~1 UCN cm⁻³

Solid understanding of the performance of this source from the LHe studies...

Technical Issues to Optimize Source:

- Maximize CN intensity and usefulness (overlap with production)
- 2. Optimize Extraction of UCN
- 3. Eliminate losses due to absorption, upscatter and wall interactions

One solution to item 2 is **not to extract**, perform experiment in LHe bath with dedicated source

SNS nEDM is pursuing this path – I will concentrate on sources which extract UCN ...

Comparing sources

The UCN density one can load into an experiment depends on a number of source parameters:

UCN storage time in the source, integrated flux (UCN/s), spectrum, filling mode (batch vs. flow-through), etc...

Different experimental geometries couple to these parameters in a unique way (e.g. larger experimental volumes favor higher current sources, etc...)

UCN densities measured in different ways: ³He gas counters, B-coated scintillators, sample activation, direct detection of beta decay With different transport to detectors...

Solutions

- Determine true density and spectrum by understanding detector response (measurements and modeling – apply corrections)
 - + Permits others to model and predict response to other detectors or experiments
 - Forces others to model detector response
- (2) Use the same "standard" test cell and detector on each source, with "typical" transport from source
 - + removes detector and geometry ambiguity
 - still need to model UCN spectral sensitivity to understand performance of other experiments

The LHe sources – Overview (ILL turbine included for comparison)

Name	Density in cell	Useful average current (10 ⁴ s ⁻¹)	Source storage time (s)		
ILL Turbine	39	100-200	Few s		
Talk: P. Geltenbort					
ILL SUN-2	~15 peak(60s,30 l)*	Max = 1 Drain time ~150 s	200 (4 I, Fomblin grease, ~ 80 neV)		
SuperSUN	~150 peak(60s,30l)*	10 polarized	800 (12 I, 230 neV magnetic trap)		
RCNP/KEK	26	3.2	81 (Ni)		
TRIUMF/KEK	600 polarized	~100 polarized	100 (NiP)		
Talk: Y. Masuda					
PNPI	12000	7000	10 (from He @ 1.2 K)		
Talk: V. Lyamkin					

Available Now

SUN-2 and Super-SUN

- Logical extension of early superthermal source geometry
 - Solid systematic study of basic physics processes
 - Increase production by increasing incident beam
 - Refined extraction to control heat-load (interesting IR window technology)
 - Explored various wall coatings to control losses BeO, supermirrors, AI + Fomblin
- Super-SUNS will increase production volume and simultaneously increase trap depth and holding time using trapping magnet (delivers polarized UCN)
- Production rates limited by available beam intensity

Constructed second source prototype "SUN-2"

Development goals

- modularity: converter r&d
- shorter turnaround time
- more cooling power

SUN-2 relocatable source ...first test @ white cold beam PF1b (2011)

Leung et al., PRC 93 (2016) 025501

Ultracold neutron production and up-scattering in superfluid helium between 1.1 K and 2.4 K

Recent achievement (16 July 2015, repeated since)

(fomblin grease on Be on Al converter vessel, long pumping)

0.61 K: 882000 accumulated UCN from 4 litres He-II ~ 220/cm³

The KEK/TRIUMF Source

- Uses a 40 uA proton beam at 480 MeV incident on a Ta-clad W target, with liquid and solid D2O for CN moderators
 - Low heat loads for spallation makes high production rate (I > 10⁶ s⁻¹) in source possible
 - Target density in cell 600 polarized UCN cm⁻³
- Vertical extraction approach for prototype being changed to horizontal extraction from 12 I production volume, with magnetically-assisted transport out of the bath through AI foils
- Source assembly scheduled to be complete and installed at end of 2016, with an upgrade of cold moderator also planned

RCNP Source – Masuda (upgrade will be moved to TRIUMF)

Fig. 3 He-II spallation UCN source

Heat loads – .13 W in source vessel (predict 1.3 W at TRIUMF) Prod \approx 4 UCN/cm³/s

KEK/TRIUMF Source Geometry

Ultra-Cold Neutrons and the Electric Dipole Moment

 Phase 2 developed in Canada (CFI proposal this year) for 2019

PNPI Super-source

- Source located in reactor (15 MW) thermal column, behind lead shield – reasonably conservative of neutron flux, very low heating (similar approach taken with PULSTAR source)
 -- strongest source under construction w/ projected density in a storage cell of 10⁴ UCN cm⁻³ and 7 × 10⁷ UCN/s
- Effectively saturated cryogenic cooling power, optimizing design
- Recent tests confirm performance of cryogenic system
- Approach well documented in publications
 - A. P. Serebrov, Crystallography Reports 61, 144-148 (2016)
 - A. P. Serebrov and A. K. Fomin, Technical Reports 60, 1238-1242 (2015)

LHe Source in thermal column of WWR-M: MCNP results

Core (15 MW)

Prospects for UCN source at WWR-M reactor

The resource of basic elements of the reactor provides its further operation within 25 years.

The scheme of experimental installations on the WWR-M reactor after installation in a thermal column of the reactor of UCN source with superfluid helium at a temperature of 1.2K. The full-scale model of UCN source with superfluid helium is tested up to 50 W at 1.3 K It means that project can be realized. (Possible UCN density in EDM trap is about 10⁴ cm⁻³)

November 2015

Serebrov. Mainz

Refrigerator 20 K

Cryostat 1 K

Liquefier 4 K

Points of Personal Interest...

- Dominance of simple T⁷ behavior at higher T ... try analyzing measured scattering law data to understand? Also curious whether losses confirm expectation in sources with larger heat-loads...
- Planned TRIUMF source upgrade involves shifting from D₂O to LD₂ cold moderator— with potential gain in UCN production of factor of 5, but is this the optimal choice for moderator?

Moderator Research could have significant impact! LENS and CoNS collaborations Triphenylmethane, moderating reflectors...

Convoluted moderator tests (TMR)

Optimized LHe Source

- Other ideas to cool and transform CN flux might be important! Talk: O. Zimmer
- Source at a low power reactor which "saturates" the cooling power (~1 W for ³He refrigeration) for LHe < 1 K (where moderated neutrons dominate the heat load) has not yet developed
- LHe sources might also be a place where V. Nesvizhevsky's nano-diamond reflectors useful...

Solid D₂

An early measurement of UCN production was performed at LINP in 1980:

Altarev et al., Physics Lett. 80A, 413-416 (1980).

And the early work analyzing solid D_2 for production and upscattering rates relied $\frac{1}{2}$ on the incoherent approx. (reasonable candidate for a superthermal source)

R. Golub and K. Boning, Zeitschrift fr Physik B Condensed Matter, 51(2):95-98, 1983.

Z-Ch. Yu, S.S. Malik, and R. Golub. Zeitschrift fr Physik B Condensed Matter, 62(2):137-142, 1986.

There is a significant body of work by Serebrov's group concerning solid deuterium, probing aspects of production, elastic scattering and upscattering (including large UCN production "gain factors" and an indication of importance of para contamination):

A P Serebrov et al., Pis' ma Zh. Eksp. Teor. Fiz. 59, 728-733, 1994.

A P Serebrov et al., Pis'ma Zh. Eksp. Teor. Fiz. 62, 764-769, 1995.

- A P Serebrov et al., Pis'ma Zh. Eksp. Teor. Fiz. 66, 765-770, 1997.
- A P Serebrov et al, , Nucl. Instrum. in Phys. Res.A, 440:653-657, 2000.
- A P Serebrov et al, , Nucl. Instrum. in Phys. Res.A, 440:658-665, 2000.
- A P Serebrov et al., Pis'ma v. ZhETF 74, 335-338, 2001.

And Yuri Pokotilovskii discussed the use of SD2 in pulsed sources: Y. N. Pokotilovski, Nucl. Instrum. Methods Phys. Res., Sect. A 356, 412 (1995)

An overview of source development from A. Serebrov, with both Lhe and SD_2 source development is included on the next 2 slides

Progress in UCN source development and future prospects

Plot elucidating the progress in UCN source development. The last point in this diagram concerns the designed parameters of the new source in the PNPI WWR-M reactor based on superfluid helium; indicated is the possible UCN density in the trap of the EDM spectrometer.

Slide courtesy of A. Serebrov

Scattering studies

IU, Munich and PSI groups led quantitative studies of CN energy dependent scattering and UCN production to pin down production– refining our expectations

FIG. 10. (a) One-particle density of states of solid D₂ for $c_o = 66.7\%$ (\bigcirc); $c_o = 98\%$ (\square) at T = 7 K. (b) Comparison of deconvoluted DOS with data (\star) from Yu et al.(Ref. 24). The DOSs [part b)] are deconvoluted with the full width at half maximum (FWHM) of the elastic peak of $d\sigma/dE$.

A. Frei *et al.*, Phys. Rev. B 064301 (2009) IN4 and TOFTOF

UCN Production in SD₂

UCN lifetime in Solid D₂

 $\tau_{para} = 1.2 \pm .14 \text{ (stat)} \pm .20 \text{ (syst) ms}$

C. L. Morris *et al.*, Phys. Rev. Lett. **89**, 272501 (2002) confirmed: F. Atchison et al., Phys. Rev. Lett. **95**, 182502 (2005)

The SD₂ sources – Overview

Name	Density in cell	Useful average current (10 ⁴ s ⁻¹)	Source storage time (s)			
ILL Turbine	39	100-200	Few s			
Talk: P. Geltenbort						
LANL	~50 (gatevalve mon) ~25 polarized	10-20 5-10 polarized	40			
Talk: R. Pattie						
PSI	Peak ~23	Peak ~70 20M/300s = 6.7	~90 s			
Talks: B. Lauss, D. Ries						
Mainz	10	3.2	Few s			
Talks: I. Sobolev, A. Hollering						
FRM II	~5000	6000	Few s			
Talk: A. Frei, S. Wlokka						
PULSTAR	>30	>10	Few s			
Talk: E. Korobkina						
Available Now						

Los Alamos SD₂ source

- Originally running with 5uA (time-averaged), 800 MeV proton beam incident on a He-cooled, W target. Run mode is quasi-CW, with production pulses currently spaced about 30s apart
- Utilizes flapper value to isolate UCN from SD2 after proton beam pulse. Storage $\tau \approx 40$ s
- UCNA running begain 2008. Peak performance for UCNA in 2010, when measured 2 UCN cm⁻³ in 40 I experimental volume (decay trap and guides with storage time 20 s) and 50 UCN cm⁻³ at gate valve (agreeing with expectation)
- Major upgrade planned for this year over order of magnitude gain in intensity! Takeyasu Ito is leading the source upgrade effort, reported on in the talk by **R. W. Pattie**

The PSI Source

- 600 MeV proton beam, 2.2 mA (3 s on, 300 s off) incident on a Pb/Zr target. Uses 30 I of SD₂ both as moderator and UCN converter, surrounded by D20 thermal moderator
- Uses a flapper isolation value to limit losses between beam pulses, $\tau \approx 90s$ and a volume of ~2 m³.
- Operating as a production source since 2012 with on-going EDM experiment, with a peak density of 23 UCN cm⁻³ and a peak current of 7 × 10⁵ UCN/s. Also serves general experimental area...(Area West)
- Extensive characterization program for all aspects of source operation

UCN delivery to beamport

UCN counts as measured with a B10 coated CASCADE GEM counter on beamport West-1. 1 - 7ms Pilotpulse to check proton beam geometry 2 - full proton beam for up to 8s onto target, then closing of UCN shutter 3 - delivery of UCN towards beamport 4 - after 280s the UCN shutter opens again and awaits next proton beam pulse

Accelerator status display for standard nEDM data taking operations in Dec. 2015 - 12 hours of constant pusling are displayed - UCN operations went 24/7.

Quite a bit of space... Н н н 12550 3992.5 1825.5 2160 2322 EDM 1385 3382.5 ~ 8m | NEK 2 West area Parkzelle 8m 1244

Mainz Source

- First group to operate source at a low power university reactor and newest production source – great opportunity to develop source technology and do experiments
- SD₂ converter with V = 160 cm³, exposed to a thermal neutron fluence of 4.5 × 10¹³ n/cm², delivers up to 240000 UCN (v ≤ 6m/s) per pulse and UCN densities of ≈ 10/ cm³ are obtained in stainless-steel bottles of V ≈ 10 L.
- Pulsed operation permits the production of high densities for storage experiments (tauspect)
- Upgrade of guide system complete (hear about that today in the talk of Hollering) New ideas under consideration

Fig. 1. Schematic drawing of the UCN source at beamport D, showing the vertical cryostat outside the biological shield and the in-pile part which ends close to the reactor core: (1) safety shutter, (2) AlMg₃ foil, (3) driver for Joule-Thomson valve, (4) neutron guide, (5) *l*He supply lines, (6) Joule-Thomson valve, (7) premoderator (H₂, D₂ or CH₄), (8) graphite/bismuth stopper, (9) thermal bridge, (10) nose with sD₂ converter. With *d*, we define the distance from the center of the reactor core to a given point along the axis of the radial beamtube D. Inset: Scale drawing (measures in cm) of the horizontal section at reactor TRIGA Mainz with focus on the radial beamport D.

J. Karch et al., Eur. Phys. J. A (2014) 50: 78

Installation of τ -SPECT (n-lifetime) at beamport D

PhD: Jan Peter Karch

The FRM II Source

- Unique concept: 250 cm³ converter frozen to the outside of the cold moderator – moderator and converter close-coupled and thickness of converter small enough (~1 cm) to minimize transport issues
- CW production in D2O moderator outside reactor (in throughgoing beam-tube) – large currents and densities (7 × 10⁷ UCN/s and 5000 UCN cm⁻³)!
- Non-nuclear tests underway installation discussed by **A. Frei**
- Extensive characterization program and detailed analysis of scattering studies by team (Talk of **Wlokka** for the latest)

UCN source design

Some pictures

Converter vessel

supporting ring 500mm 115mm 15mm

UCN guide Transmission: (0.990±0.006)m⁻¹ Coldbox

The UCN-Lab @ FRM II

The PULSTAR Source

- Source placed in thermal column, with a special port and lead shielding box coupling D2O thermal moderator with reactor – reactor gamma heating negligible. Low heat load permits methane moderator (optimal T ~ 40-60 K)
- CW production 1 I converter in vertical configuration
- 58Ni-coated quartz guides in source
- Project in Safety Review for about 4 years...
- Currently exploring crystal growth procedures in crystat instrumented to view crystal, with temperature sensors and pressure monitoring in the D2 volume...
- Primary project will be the nEDM test apparatus

Points of Personal Interest

- Loose End: UCN transport effects poorly controlled in SD₂:
 - Routine operation of spallation source (LANL, PSI) requires a melt-and-refreeze at LANL, and annealing at PSI to recover source output:

Source output and melt-andrefreezes over 11 days at LANL (every couple of days) - Elastic scattering mean free path at least a factor of 2 smaller than expected from incoherent scattering cross section, even for carefully grown crystals (seen by all groups) – may be responsible for rate discrepancy with the PSI source...

Probably due to crystal imperfections (voids, cracks, surface roughness) but would be useful to confirm and learn how to control! • A number of alternatives to D₂ and He now investigated...¹⁵N might be a winner! "Peak" crosssection (for CN dist at 40K) down about 5 relative to D₂, but losses a factor of 20 less! Need to check elastic scattering properites and might be a bit expensive...

D. J. Salvat, E. Gutsmiedl, C.-Y. Liu, P. Geltenbort, A. Orecchini, S. Paul and H. Schober, EPL, 103 (2013) 12001

- Why should the upscatter rate for SD2 match so well to a calculation made with the incoherent approximation when para-D2 concentration low (mostly coherent scattering – modes frozen out where coherent scattering is allowed)?
- Interesting possibilities if one saturates cooling power of sub-cooled He station (many used at CERN) to cool LHe source coupled to a spallation target with an optimized geometry to remove gamma and proton heating...very high currents possible (> 10⁸ UCN/s for beam power at 800 MeV > 100 kW -- refining estimates...)

G. Muhrer et al...

ICG (5): D₂ moderator

 $1.0*10^8$ UCN/s/100µA Heat load @ 100μ A = 80KW Total heat: 13.9 W Neutron heat: 10.8 W Photon heat: 2.4 W Proton heat: 0.7 W 7.14*10⁸ UCN/s/100W (heat in the He)

Obtained factor of 2+ x production in latest design...

Conclusions

 There has been incredible progress in the past 10 years in the construction and availability of UCN sources

Thanks to all those who contributed slides!

- We are in an excellent position to create "feeder" programs to develop the excellent experiments and then move them to where "maximum smoke" is available
- It also seems there are a few outstanding issues for source technology we can address...