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Outline

✤ Act I: Relativistic hydrodynamics  

- In which we postulate the axioms and classify potential transport and see a 
prelude to the closing act 

✤ Act II: Microscopics 

- In which we present a new perspective on the Schwinger-Keldysh formalism, 
aimed at identifying low energy symmetries 

✤ Act III: Hydrodynamic effective actions 

- In which we exemplify how to construct actions for dissipative 
hydrodynamics as a supersymmetric sigma model



Motivation: non-equilibrium QFT dynamics

✦ There is a reasonably good phenomenological understanding, but the 
theoretical underpinnings are not yet fully understood.  

✦ Entanglement of the system with some external reservoir/purifier is central 
to the discussion.  

✦  There are many reasons to be interested in this question: 

★ intrinsic interest from QFT and many-body physics standpoint. 

★ dynamics of black holes via AdS/CFT. 

★ cosmology.

 What is the framework for a consistent Wilsonian treatment of low energy 
dynamics in mixed states of a QFT?  



Macroscopic phenomenology

✦ Equilibrium dynamics can be understood by 
working with Euclidean generating functions, etc.. 

✦ Linear fluctuations are captured by Schwinger-
Keldysh, while long-wavelength fluctuations are 
described by hydrodynamic effective field theory.  

✦ General non-equilibrium dynamics is theoretical 
terra incognita.

✦ Integrating out high energy modes starting from microscopic Schwinger-
Keldysh leads to coupling between L and R encoded in influence 
functionals. 

✦ What influence functionals are consistent with microscopic unitarity?

Feynman, Vernon ‘63 



Act I

✤ Act I: Relativistic hydrodynamics  

- In which we postulate the axioms and classify potential transport and see a 
prelude to the closing act 

✤ Act II: Microscopics 

- In which we present a new perspective on the Schwinger-Keldysh formalism, 
aimed at identifying low energy symmetries 

✤ Act III: Hydrodynamic effective actions 

- In which we exemplify how to construct actions for dissipative 
hydrodynamics as a supersymmetric sigma model



The hydrodynamic effective field theory

✦ Relativistic fluid dynamics is best thought of as an effective field theory for 
quantum systems in local, but not global, thermal equilibrium. 

✦ The description in terms of fluid dynamics is valid when departures from 
equilibrium are on scales that are large compared to the characteristic 
mean free path of the underlying quantum dynamics. 

✦ Local domains of equilibrated 
fluid can be characterized by the 
local temperature/energy density 
and conserved charges. 

✦ Energy/charge flux exchanged 
across the domains: velocity field.

`mfp ⌧ L , tmfp ⌧ t



Axioms of Hydrodynamics I: Fields

✦ Hydrodynamics describes low-energy, near-equilibrium  fluctuations of an 
equilibrium Gibbsian density matrix on scales large compared to the 
characteristic mean free path.  

✦ The macroscopic description involves currents which capture energy-
momentum and charge transport                  (and entropy current      ). Tµ⌫ , Jµ

✦ The currents are functionals of the hydrodynamic fields, which are the 
intensive variables characterizing the density matrix and background 
sources.

✴  temperature and chemical potential 
and a flux vector (fluid velocity) 

✴ background metric and 
electromagnetic potential

T, µ, uµ, uµ uµ = �1

gµ⌫ , Aµ

Jµ
S



Axioms of Hydrodynamics II: Data

✴ Repackage the dynamical degrees of  freedom in a vector an scalar

✴ The currents of hydrodynamics are expressed as functionals of the 
hydrodynamical fields and the background sources.

2.1 The adiabaticity equation
sec:amotive

Consider a fluid characterized by normalized velocity field u

µ (with u

µ
uµ = �1), temperature

T and chemical potential µ moving in a background geometry M with metric gµ⌫ and a

background flavor gauge field Aµ which generically will be taken to be non-abelian.11 We

will work in d spacetime dimensions and will assume that the hydrodynamic fields {uµ, T, µ}
as well as the background sources {gµ⌫ , Aµ} are slowly varying on this spacetime manifold

throughout our discussion.

While we could choose to work with the hydrodynamic fields defined above it is in fact

convenient to repackage them into an unnormalized vector field and a scalar field. By a simple

redefinition we therefore introduce a the hydrodynamic fields (denoted collectively by B)

B ⌘ {�,⇤�} , �µ ⌘ u

µ

T

, ⇤� ⌘ µ

T

� u

�

T

A� . (2.1) eq:hydrofields

The fields {�µ
,⇤�} which we refer to as the thermal vector and thermal twist, encode the

same hydrodynamic data as the fields {uµ, T, µ}. We can explicitly invert the above relations

to get

u

µ =
�µ

p

�g↵��↵��
, T =

1
p

�g↵��↵��
, µ =

⇤� + ��
A�

p

�g↵��↵��
. (2.2) eq:Tumuinvert

Thus for the rest of the discussion, the dynamical content of hydrodynamics is captured by

the d+ 1 degrees of freedom in the vector field �µ and scalar field ⇤�.

A general hydrodynamic system as reviewed in §1 is characterized by a set of currents: we

have the energy-momentum tensor Tµ⌫ and a charge current Jµ which should be considered

dynamical. In addition we have an entropy current J

µ
S which enforces the constraint of the

second law. It is also useful to include the free energy current Gµ, which is a particular linear

combination of the above, which we will encounter shortly, cf., (2.17). To simplify notation,

we will collect the various currents we have introduced into a single set by introducing a

collection of tensor fields CH
CH ⌘ {Tµ⌫

, J

µ
, J

µ
S , Gµ} . (2.3) eq:hydrocurrents

These currents should all be thought of as given by local covariant functionals of the

background and hydrodynamical fields which we also collectively denote as  

 ⌘ {gµ⌫ , Aµ,�
µ
,⇤�} . (2.4) eq:hfields

Then we can write for our currents CH = CH [ ] or more explicitly, for the fundamental

currents we have

T

µ⌫ = T

µ⌫ [ ] = T

µ⌫ [g↵� , A↵,�
↵
,⇤�]

J

µ = J

µ [ ] = J

µ [g↵� , A↵,�
↵
,⇤�]

J

µ
S = J

µ
S [ ] = J

µ
S [g↵� , A↵,�

↵
,⇤�] .

(2.5)

11 Generalizations to arbitrary number of flavour symmetries is straightforward.
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• currents

• fields

• constitutive 
relations

Tµ⌫ , Jµ, Jµ
S

2.1 The adiabaticity equation

Consider a fluid characterized by normalized velocity field uµ (with uµuµ = �1), temperature

T and chemical potential µ moving in a background geometry M with metric gµ⌫ and a

background flavour gauge field Aµ which generically will be taken to be non-abelian.14 We

will work in d spacetime dimensions and will assume that the hydrodynamic fields {uµ, T, µ}
as well as the background sources {gµ⌫ , Aµ} are slowly varying on this spacetime manifold

throughout our discussion.

While we could choose to work with the hydrodynamic fields defined above it is in fact

convenient to repackage them into an unnormalized vector field and a scalar field. By a simple

redefinition we therefore introduce the hydrodynamic fields (denoted collectively by B)

B ⌘ {�,⇤�} , �µ ⌘ uµ

T
, ⇤� ⌘ µ

T
� u�

T
A� . (2.1)

The fields {�µ,⇤�} which we refer to as the thermal vector and thermal twist, encode the

same hydrodynamic data as the fields {uµ, T, µ}. We can explicitly invert the above relations

to get

uµ =
�µ

p

�g↵��↵��
, T =

1
p

�g↵��↵��
, µ =

⇤� + ��A�
p

�g↵��↵��
. (2.2)

Thus for the rest of the discussion, the dynamical content of hydrodynamics is captured by

the d+ 1 degrees of freedom in the vector field �µ and scalar field ⇤�.

A general hydrodynamic system as reviewed in §1 is characterized by a set of currents: we

have the energy-momentum tensor Tµ⌫ and a charge current Jµ which should be considered

dynamical. In addition we have an entropy current Jµ
S which enforces the constraint of the

second law. It is also useful to include the free energy current Gµ, which is a particular linear

combination of the above, which we will encounter shortly, cf., (2.18). To simplify notation,

we will collect the various currents we have introduced into a single set by introducing a

collection of tensor fields CH
CH ⌘ {Tµ⌫ , Jµ, Jµ

S} , (2.3)

where instead of Jµ
S we often equivalently consider the Gibbs free energy current Gµ to be

defined in due course.

These currents should all be thought of as given by local covariant functionals of the

background and hydrodynamical fields which we also collectively denote as  

 ⌘ {gµ⌫ , Aµ,�
µ,⇤�} . (2.4)

Then we can write for our currents CH = CH [ ] or more explicitly, for the fundamental

currents we have

Tµ⌫ = Tµ⌫ [ ] = Tµ⌫ [g↵� , A↵,�
↵,⇤�]

Jµ = Jµ [ ] = Jµ [g↵� , A↵,�
↵,⇤�]

Jµ
S = Jµ

S [ ] = Jµ
S [g↵� , A↵,�

↵,⇤�] .

(2.5)

14 Generalizations to arbitrary number of flavour symmetries is straightforward.
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thermal vector
thermal twist



Axioms of Hydrodynamics III: Constraints

✦ Constitutive relations:  monitor conserved currents, energy momentum, 
charge, etc.. as functionals of the hydrodynamic fields.

✦ Dynamics is conservation modulo work and anomaly terms, subject to a 
constraint: local form of the second law of thermodynamics is upheld. 

✦ Ample evidence from kinetic theory, fluid/gravity correspondence etc., that 
this is the correct macroscopic picture. 

9 Jµ
S [ ] : 8  

on-shell

, rµJ
µ
S [ ] � 0

work term covariant anomalies

Eµ
T
= r⌫T

µ⌫ � J⌫ · Fµ⌫ � Tµ?
H = 0 EJ = DµJ

µ � J?
H = 0



Classification of hydrodynamic transport

✦ Q: What are the acceptable solutions to the axioms of hydrodynamics, i.e., 
what constitutive relations are consistent with the second law?

✦ Theorem: Hydrodynamic transport can be classified in an eightfold way. 
There are seven adiabatic classes and a class of dissipative transport. In 
addition we have a class of forbidden constitutive relations which can be 
determined by studying hydrostatic equilibrium.

✦ This theorem was proved by studying an off-shell reformulation of the 
second law using the adiabaticity equation:

rµJ
µ
S + �µ Eµ

T
+ (⇤� + �↵A↵) EJ = � � 0

Haehl, Loganayagam, MR  [1502.00636]



Aside: Free energy current

✦ The structures are clearer if we introduce the Gibbs free energy current, 
switching from a microcanonical to grand-canonical language:

✦ The off-shell second law encoded in the adiabaticity equation then reads

into the fluid,17 the charge and energy-momentum injection is inevitably accompanied by a

free energy injection. The free energy per unit time per unit volume injected by anomalies is

G?
H
⌘ �T

h

�⌫T
⌫?
H + (⇤� + �⌫

A⌫) · J?H
i

= �
h

u⌫T
⌫?
H + µ · J?H

i

.

(2.19)

Using this definition, we can now write the grand canonical version of the adiabaticity equation

(2.11) as (we include � for completeness)

�
"

r�

✓G�

T

◆

� G?
H

T

#

=
1

2
T

µ⌫
�

B
gµ⌫ + J

µ · �
B
Aµ +�

= T

µ⌫rµ

⇣

u⌫

T

⌘

+ J

� ·


D�

⇣

µ

T

⌘

� E�

T

�

+� .

(2.20) eq:AdiabaticityG

Here E

µ = F

µ⌫
u⌫ is the electric field and �

B
represents the Lie derivatives using the di↵eo-

morphism and flavor transformations generated by {�µ
,⇤�}:

�

B
gµ⌫ ⌘ £�gµ⌫ = rµ�⌫ +r⌫�µ ,

�

B
Aµ ⌘ £�Aµ + @µ⇤� + [Aµ,⇤�] = Dµ(⇤� + �⌫

A⌫) + �⌫
F⌫µ . (2.21) eq:delBdef

In this expression, we used £� to denotes the Lie derivative along the vector field �µ.

It is useful to record the expression for the Lie derivative in terms of the more familiar

hydrodynamic decomposition. A quick evaluation leads to

�

B
gµ⌫ = 2r(µ�⌫) =

2

T



�µ⌫ + Pµ⌫
⇥

d� 1
� �

a(µ +r(µ log T
�

u⌫)

�

�

B
Aµ = Dµ(⇤� + �⌫

A⌫) + �⌫
F⌫µ = u

↵
D↵

⇣

µ

T

⌘

uµ � 1

T

vµ . (2.22) eq:diffbga

We use the standard decomposition of the gradient of the velocity field into the transverse

traceless shear tensor, the antisymmetric vorticity, the vectorial acceleration and scalar ex-

pansion respectively, viz.,

rµu⌫ = �(µ⌫) + ![µ⌫] � uµ a⌫ + Pµ⌫
⇥

d� 1
, (2.23) eq:uder

and the flavour fields decompose as

vµ = E

µ � T P

µ⌫ r⌫

⇣

µ

T

⌘

, E

µ = F

µ⌫
u⌫ . (2.24) eq:cvdef

An alternate form of (2.20) can be given by introducing the fluid acceleration a↵ ⌘
u

µrµu
↵ eliminating the thermal gradients:

�
h

(r� + a�)G� � G?
H

i

= J

�
S (r� + a�)T + T

µ⌫(r⌫ + a⌫)uµ + J

� · [D�µ+ a�µ� E�] + T� .

(2.25)

17 The anomalous contribution to the entropy current can typically be chosen to vanish for flavour anomalies.

The story for Lorentz anomalies is a bit more involved and is discussed in §12.
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diffeomorphism
flavour gauge transformation

�G�

T
= J�

S + �⌫T
⌫� + (⇤� + �↵A↵) · J�

r�

✓
G�

T

◆
� G?

H

T
= �1

2
Tµ⌫�Bgµ⌫ � Jµ · �BAµ +�

along the thermal vector & twist.



Eightfold classification of hydrodynamic transport

Fig. 1: The eightfold way of hydrodynamic transport. fig:eightfold

ground sources, {ḡµ⌫ , Āµ}, which morally speaking appear to be a proxy for the the Schwinger-

Keldysh partners of the basic sources. Furthermore, this doubling of sources comes with an

interesting new gauge symmetry – U(1)T KMS-flavor invariance, with an associated gauge

field A(T)
µ!

In the thermofield construction one has sources for the left (L) and right (R) degrees of

freedom; these are specific linear combinations of the sources {gµ⌫ , Aµ} and {ḡµ⌫ , Āµ}. The

necessity to double of the degrees of freedom, whilst curious for adiabatic transport, has al-

ready been encountered previously in attempts to construct e↵ective actions for anomalous

hydrodynamic transport, which forms a special case, in [27]. What is really intriguing is the

gauge field A(T)
µ and its associated gauge invariance U(1)T, which along with the di↵eomor-

phism and gauge invariance forms the symmetries of the e↵ective action.9 The latter act

canonically on the fields above, but the U(1)T gauge symmetry acts non-trivially. All fields

carry U(1)T charges, with the gauge transformation acting as a di↵eomorphism or flavour

gauge transformation in the direction of �µ
,⇤�. In addition, ḡµ⌫ and Ā further undergo

transformations depending on the physical fields {�µ
,⇤�, gµ⌫ , Aµ}. The Bianchi identity

9 A clue to the existence of such a structure is provided by the analysis of hydrostatic partition functions

satisfying the Euclidean consistency condition in the presence of gravitational anomalies [14].

– 15 –

Haehl, Loganayagam, MR [’14-’15]

Gµ = S�µ +Vµ

longitudinal vector

transverse vector

✦ Second law:  

✴ forbids HF. 

✴ D terms sign-definite 
only at leading order.

S. Bhattacharyya [’13-’14]



Exemplifying the classification
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★ D: viscosities, conducitivities, etc.. 

★ C: Conserved entropy (no transport) 

★ B: Hall viscosity/conductivity, parity even counterparts, etc.. 

★ A: anomalous contribution (chiral magnetic/vorticial effects). 

★ HS: Equilibrium data with non-trivial static sources (pressure, higher 
order terms) 

★ HS: Landau-Ginzburg terms (shear contributions to Lagrangian) 

★ HV: Vectorial terms in equilibrium eg., gravitational anomalies  

★ HV: Non-stationary vectorial terms (charged fluids)



Adiabatic fluid lagrangian

✦ Intuitively, we allow local thermal translations at every spacetime point, 
relating operators and their KMS conjugates i.e., impose, local KMS 
condition.

✦ New variables              : former is the SK partner of the worldvolume metric.

✦ The adiabatic part of transport can be derived from an effective action, 
which generalizes hydrostatic partition functions. 

✦ To constrain influence functionals so as to agree with the classification data, 
we empirically introduced a new emergent U(1) symmetry.

g̃ab, Ãa

Haehl, Loganayagam, MR 1502.00636 

✦ The effective action takes a very simple form, involving the energy 
momentum and free energy current:

LT =
1

2
Tabg̃ab + Ga

LAa



Act II

✤ Act I: Relativistic hydrodynamics  

- In which we postulate the axioms and classify potential transport and see a 
prelude to the closing act 

✤ Act II: Microscopics 

- In which we present a new perspective on the Schwinger-Keldysh formalism, 
aimed at identifying low energy symmetries 

✤ Act III: Hydrodynamic effective actions 

- In which we exemplify how to construct actions for dissipative 
hydrodynamics as a supersymmetric sigma model



I. Microscopics: Schwinger-Keldysh formalism

✦The Schwinger-Keldysh formalism computes time ordered correlation 
functions in a generic (mixed) state. Focus on Gibbsian states. 

✦  We double the degrees of freedom to account for the operator nature of 
the density matrix or equivalently work with a closed time contour:

Consequentially we work in an enlarged Hilbert space H = HR ⌦ HL with the action (�

denoting the collection of fields)

S

SK

= S[�R]� S[�L] . (2.5)

It will be crucial in the sequel to note the relative sign between the two copies, which

is predicated by the fact that while states are evolved forward (in the Schrödinger picture

say), their conjugates are evolved in reverse under standard unitary Hamiltonian evolution.

In particular, computing correlation functions involves turning on sources for the operators

on both sides with a relative sign, or equivalently working with a Lorentzian inner-product

in the source operator space, viz.,

�S

SK

=

ˆ
d

d

x

p�g (JR OR � JL OL) . (2.6)

This feature is manifest in the definition of the SK path integral Z
SK

given in Eq. (2.1).

2.2 Topological limit

The second defining feature is a specific boundary condition imposed on the double copy

correlators [14]. Usually this is stated as a technical condition that right-right correlators

are all time-ordered, left-left correlators are all anti-time ordered and the left operators are

always ordered to the left of the right operators; see Eq. (2.2). While technically su�cient,

this way of framing is somewhat unwieldy to deal with. For example, it is not immediately

clear how or why such an ordering structure should be preserved under renormalization.

We will thus rephrase this feature in a more useful form for doing e↵ective theory. A

consequence of the time-ordering prescription given above is that a certain class of operators,

viz., the di↵erence operators Odif = OR � OL, in the doubled theory have vanishing self-

correlations.5 This is a manifestation of unitarity in the underlying QFT. In order to see this,

we first note that, according to Eq. (2.6), di↵erence operator correlators are computed by

aligning the sources JR = JL = J . Looking at Eq. (2.1), it is clear that the SK path integral

degenerates in this limit to a trace over initial state Tr (⇢0) if the evolution with arbitrary

sources is unitary.6

Typically it is hard to protect an entire set of correlation functions against correction

without some symmetry principle. We therefore intuit there is underlying topological sym-

metry in play, since the above structure is insensitive to the particularities of the dynamics

of the QFT under consideration.

5 This statement is very familiar in the context of two point functions, where the advanced, retarded and

the symmetric correlator form a complete basis. One can check that this statement extends trivially in the

case of higher point functions, noting that it is a consequence of a simple identity involving time-ordering of

operators [14]. This identity is sometimes called the Veltman’s largest time equation in the context of Cutkosky

cutting rules [15].
6 This shows that SK path integral is the right framework to study unitarity in the evolution of mixed

states. This is to be contrasted with the thermofield double description which studies path integrals of the form

Tr
n

U [JR] ⇢
1
2
0 U†[JL] ⇢

1
2
0

o

and is hence ill-suited for studying single copy unitarity unless it is analytically

continued to a SK path integral.
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this way of framing is somewhat unwieldy to deal with. For example, it is not immediately

clear how or why such an ordering structure should be preserved under renormalization.

We will thus rephrase this feature in a more useful form for doing e↵ective theory. A

consequence of the time-ordering prescription given above is that a certain class of operators,

viz., the di↵erence operators Odif = OR � OL, in the doubled theory have vanishing self-

correlations.5 This is a manifestation of unitarity in the underlying QFT. In order to see this,

we first note that, according to Eq. (2.6), di↵erence operator correlators are computed by

aligning the sources JR = JL = J . Looking at Eq. (2.1), it is clear that the SK path integral

degenerates in this limit to a trace over initial state Tr (⇢0) if the evolution with arbitrary

sources is unitary.6

Typically it is hard to protect an entire set of correlation functions against correction

without some symmetry principle. We therefore intuit there is underlying topological sym-

metry in play, since the above structure is insensitive to the particularities of the dynamics

of the QFT under consideration.

5 This statement is very familiar in the context of two point functions, where the advanced, retarded and

the symmetric correlator form a complete basis. One can check that this statement extends trivially in the

case of higher point functions, noting that it is a consequence of a simple identity involving time-ordering of

operators [14]. This identity is sometimes called the Veltman’s largest time equation in the context of Cutkosky

cutting rules [15].
6 This shows that SK path integral is the right framework to study unitarity in the evolution of mixed

states. This is to be contrasted with the thermofield double description which studies path integrals of the form

Tr
n

U [JR] ⇢
1
2
0 U†[JL] ⇢

1
2
0

o

and is hence ill-suited for studying single copy unitarity unless it is analytically

continued to a SK path integral.
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with the hydrodynamic fields being the Goldstone modes for spontaneously broken di↵erence

di↵eomorphism and flavour symmetries. For simplicity, we will only realize three of the eight

classes (including dissipation) in the eightfold classification of [13]. We also will demonstrate

the validity of the second law, by deriving the generalized fluctuation-dissipation result of

Jarzynski [35, 36] and Crooks [37, 38], invoking spontaneous breaking of microscopic time-

reversal as envisaged beautifully in [39–41]. The construction we describe in the main text

explicitly illustrates that the broad principles laid out in [32] su�ce to construct an e↵ective

field theory of dissipative hydrodynamics.

The rest of the paper is organized as follows: in §2 we outline the basic fields and

symmetries, arguing that a superspace functional is the easiest route to our goal. We explain

how these connect to the microscopic perspective in §3 and proceed to exhibit an explicit

construction for dissipative fluids in §4. We then demonstrate how to recover the generalized

fluctuation-dissipation statement in §5 and end with some comments in §6. We only sketch

the basic principles here; full details of the construction will appear elsewhere [42].

Note: Following [32], as this work was in progress, we received [43] who also construct an

action for dissipative hydrodynamics based on principles of SK path integrals.

2 Symmetries in SK description

We begin by examining the fundamental symmetries of a SK path integral. Given an initial

density matrix ⇢̂
initial

of a QFT, we define the SK generating functional

ZSK [JR, JL] ⌘ Tr
n

U [JR] ⇢̂
initial

(U [JL])
†
o

. (2.1)

U [J ] denotes the unitary evolution of the QFT, deformed by a source J . This form of SK

functional immediately leads to a set of essential properties which should be satisfied by any

SK e↵ective theory [32].

Features for generic mixed states: First, when we align the sources JR = JL = J , the

SK functional localizes to ⇢̂
initial

, viz.,

ZSK [JR = JL = J ] ⌘ Tr
n

⇢̂
initial

o

. (2.2)

This is a simple consequence of the unitarity of the underlying QFT. At the level of correlators,

this implies that the di↵erence operators, OR � OL, form a protected topological subsector

of the theory. This statement is equivalent to the largest time equation/cutting rule for the

corresponding correlator in the single copy theory. Thus imposing (2.2) in the low-energy

e↵ective theory ensures the cutting rule structure for its correlators.

This feature can be implemented in the SK e↵ective theory by demanding that when

sources align appropriately, the theory should exhibit topological invariance. Equivalently,

any SK e↵ective theory should be a source-deformed topological theory (TQFT). Such a

TQFT has two nilpotent, mutually anti-commuting, Grassmann odd topological charges
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evolution operators with a suitable sprinkling of both right and left sources JR and JL re-

spectively. Then one can via functional di↵erentiation with respect to these sources computes

the SK correlation functions, which take the schematic form:

Tr
⇣

⇢̂initial T̄
⇣

U †OLU
†OL . . .

⌘

T (UORUOR . . .)
⌘

, (3.5) eq:SKCorr

where T̄ denotes anti-time ordering, T denotes time-ordering and we note that left operators

are ordered to the left of the right operators (thus justifying the terminology). We will have

more to say about the SK time-ordering prescription momentarily.

The SK description should be contrasted against the more familiar Feynman path-integral

description of the QFT

ZFeynman[J ] ⌘ hVaccumt=1| U [J ] |Vaccumt=�1i , (3.6)

which computes time-ordered correlators of the form4

hVaccumt=1| T
⇣

UbOUbO . . .
⌘

|Vaccumt=�1i . (3.7)

As noted in §2 in a non-equilibrium or open quantum system have an inkling of what the

interacting final state of the system would be. The SK construction cleverly avoids this issue,

by reverting back at the end of the day to the initial state. This ensures that the entanglement

built into the initial density matrix ⇢̂initial, and the knowledge of the sources that one has

turned on, su�ces to compute the desired time ordered correlators.

3.2 Schwinger-Keldysh time ordering
sec:torder

check my usage of FO andGO. I think I fixed some erroneous statements, but would appreciate

a second check.

We now introduce a notion of SK time-ordering, which follows the contour ordering

prescription introduced in §2. To allow a general statement, let us first introduce the concept

of mutual Grassmann parity of operators. To so we first introduce the notion of a Grassmann

number for an operator (�1)GO, which is defined to be

(�1)GO =

(

+1 , O : Grassmann even

�1 , O : Grassmann odd
(3.8) eq:GOdef

In addition to the Grassmann number it is also useful to keep track on occasion of the

fermion number, which we denote (�1)FO. We define this as

(�1)FO =

(

+1 , O : bosonic

�1 , O : fermionic
(3.9) eq:FOdef

4 A note on our convention: operators of the original single copy microscopic theory are hatted, while the

doubled operators are denoted explicitly by appropriate subscripts. These operators could be either elementary

fields of the microscopic theory or more generally composite operators built from them.
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Thermal density matrices and KMS condition

✦Thermal density matrices                            define stationary equilibrium 
configurations. 

✦Correlation functions have analyticity properties which allows for a 
Euclidean (Matsubara) formulation, cf.,

4 Thermal correlation functions in SK formalism

sec:skthemal

Our discussion thus far has focused on an initial density matrix ⇢̂initial which was arbitrary.

The initial state of the quantum system is mainly setting up for us an appropriate entangle-

ment pattern for the degrees of freedom in H. With this information we can only go as far

as the discussion in §3.
However, not all density matrices are created equal, with some being more special than

others. In what follows we will switch our focus on to thermal density matrices which enjoy

some nice properties. To understand these, let us start by considering a QFT at finite

temperature T . Should our theory contain some global symmetries we can also include some

chemical potentials. One thus is considering the state of the system to be a Gibbs density

matrix, which gives the probabilities to find states with a given energy and charge: � or �?

⇢̂T = e�� (bH�µI
bQI) (4.1)

Here bH is the Hamiltonian for the quantum theory and bQ the flavour charge operator. We

have chosen not to normalize the density matrix; the trace over the states then gives us the

thermal partition function

ZT (�, µI ) = Tr (⇢̂T ) (4.2) eq:thermalZ

Usually one discusses thermal field theories in Minkowski spacetime Rd�1,1. One fur-

thermore, makes heavy use of the connection between thermal quantum field theories in

d-spacetime dimensions and classical statistical mechanics in (d� 1) dimensions by realizing

the operator ⇢̂T as performing Hamiltonian evolution in imaginary time tE by an amount set

by the inverse temperature �. The role of the chemical potential then is to twist the charge

fields by an amount set by the charge as they are taken around this imaginary Euclidean

time.10

With this information we are now ready to understand the thermal boundary conditions

implicit in ⇢̂T . For any single-copy operator lying on the initial time slice ⌃M we require

that the Kubo-Martin-Schwinger (KMS) periodicity condition [21, 22], be satisfied.11 The

KMS condition says that bosonic operators are periodic under traversal of the thermal circle

while fermionic operators are anti-periodic. We will now try to capture this information in a

covariant form that will be useful in the sequel.

4.1 Thermal equilibrium in stationary curved spacetimes
sec:styT

However, insofar as thermal equilibrium is concerned, all one requires is that the system be

stationary – one does not require a globally constant temperature or chemical potentials. To

10 In classical statistical mechanics, the operator ⇢̂T serves to determine the transfer matrix and the only

information necessary to determine it are the Boltzmann weights, which give the relative probabilities for the

occurrence of various energy levels.
11 This condition was first discussed independently in papers by Kubo [21] and by Martin-Schwinger [22].

However, the name was coined a bit afterward by Haag et. al., [23] who applied this idea in the context of

defining equilibrium configurations in axiomatic QFT.
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�

ZT [JR,JL] = Tr
⇣
U [JR] ⇢̂T (U [JL])

†
⌘

✦KMS condition asserts that the correlation functions are analytic in the 
time strip                          .  

✦Equivalently within correlation functions, operators and their KMS 
conjugates (or thermal translates) are equivalent.

0 < =(t) < �



Topological limit and BRST charges

✦Ward identities for correlation functions in Gibbs states follow from 

ZSK [JR = JL = J ] = Tr
�
⇢̂initial

 

✦Along with the KMS condition we learn that 

live in this extended space of states. The main caveat is that not all elements of HR⌦H⇤
L can

be normalized to give a mixed state whereas any non-zero element of H can be normalized

to a pure quantum state; recall that density matrix ⇢̂ of an admissible mixed state should be

(i). Hermitian with non-negative eigenvalues

(ii). should have non-zero but finite trace (which can then be normalized to unity).

We adapt a notation wherein standard operators on H (which are automatically elements

of HR ⌦H⇤
L ) by a hat. On the contrary there will be no hats on SK operators which act on

the entire space HR ⌦ H⇤
L. Operators in the extended system are sometimes referred to as

superoperators. some reference

Let Ô 2 HR ⌦H⇤
L be an operator acting on the state space H: we can then construct two

corresponding superoperators acting on HR ⌦H⇤
L of the form

OR ⌘ bO ⌦ I , OL ⌘ I ⌦ bO (3.1)

As described in §2 often one performs a Keldysh rotation to instead work with the di↵erence

and average operators defined via:

Odif ⌘ OR � OL , Oav ⌘ 1

2
(OR + OL) (3.2) eq:KeldyshDef

We note that, after Keldysh rotation the average sources are associated with di↵erence op-

erators and the di↵erence sources are associated with average operators. This a consequence

of the following relation relating right-left basis to Keldysh basis:

JR OR � JL OL = Jav Odif + Jdif Oav . (3.3) eq:KeldyshJ

One may view the statement as saying that the SK contour imparts a Lorentzian inner product

between the left and right segments, and the passage to the Keldysh basis is akin to choosing

light-cone variables. In any event, varying the SK action with respect to average sources gives

the correlators with di↵erence operators and vice-versa.

We should note here that in much of the literature the Keldysh basis introduced in (3.2)

is called the ‘ra’ basis. The average operators are called the r�operators and the di↵erence

operators are called a-operators. We find this terminology less intuitive. Moreover, when we

discuss thermal correlation functions, for ⇢̂initial being a thermal Gibbs density matrix, we

will encounter the retarded-advanced basis (we use ret � adv to denote them). To forestall

any potential confusion, we propose to refer the Keldysh basis as av � dif operators.

With these preliminaries in place let us define the SK generating functional ZSK which

is defined by the trace over the tensor product Hilbert space HR ⌦H⇤
L

ZSK [JR,JL] ⌘ Tr
⇣

U [JR] ⇢̂initial U
†[JL]

⌘

, (3.4) eq:ZSKdef

where ⇢̂initial is the initial density matrix of the system, U represents the unitary evolution

operator of the QFT, U † is its adjoint. We have allowed ourselves to deform the unitary
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✦Keldysh (light-cone) basis

It is usual to give a regularizing prescription for what happens when the causal order

is indeterminate. In addition it is natural to demand that whatever the prescription be, it

should continue to obey the identity above (3.14).

Some of the commonly used regularizing prescriptions when the causal order is indeter-

minate are (Check this)

Itō : ⇥A>B = 1, ⇥A<B = 0.

(Fisk-) Stratonovich : ⇥A>B =
1

2
, ⇥A<B =

1

2
.

Hanggi- Klimentovich : ⇥A>B = 0, ⇥A<B = 1.

(3.15)

Since Stratanovich prescription is natural from the viewpoint of Fourier transforms and it is

a CPT invariant regulator, we will employ it in what follows. We then have ⇥A>B = ⇥A<B

everywhere.7

3.4 Keldysh basis correlators
sec:keldysh

We now have all the machinery to give an explicit formula for the Keldysh basis correlators

following [4]. The simplest correlator is the one containing only di↵erence operators and it

vanishes identically, viz.,

hTSK
Y

k

O(k)
dif

i ⌘ hTSK
Y

k

⇣

O(k)
R � O(k)

L

⌘

i ⌘ hTSK
Y

k

O(k)
advi = 0 (3.16) eq:diff0

This is in fact easy to see directly from the definition of the generating function ZSK [JR,JL].

First one notes that the di↵erence operators are sourced by the average sources Jav , which

means that we can w.l.o.g. set JR = JL in the generating function before taking any functional

derivatives. However, ZSK [J ,J ] = Tr (⇢̂initial), owing to the cyclicity of the trace.

Thus we learn that the functional derivative of this result will vanish, simply asserting

that the SK-path integral is unresponsive to a set of average sources, for it collapses to a

statement of initial conditions. It must be emphasized that this fact holds independent of the

dynamics, which after all, is contained in the unitary evolution operator U . The universality

of this statement, points to a fundamental symmetry principle. We will argue later that the

SK path integral behaves like a topological theory when restricted to this sector. In particular,

the di↵erence operators will be shown to be BRST exact, with the symmetry being traceable

back a set of field redefinitions inherent in the doubling from H to HR ⌦H⇤
L.

should we draw an analogy or make a connection with MHV amplitudes?

7 Sometimes for generalized Langevin theory in non-equilibrium physics and often in stochastic mathematics

(including mathematical finance) the Itō prescription is preferred. CPT exchanges Itō and Hanggi- Klimen-

tovich prescriptions and thus the CPT-violating nature of Itō has to then be compensated by CPT-violating

counter terms (as is usual with any symmetry violating regulator). The ghosts we will talk about later in this

text often decouple in the Itō prescription which is the probably the reason it is preferred in fields which do

not want to deal with ghosts.
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✦Rather remarkable statement, which is agnostic of microscopic dynamics. 

✦ It is a Ward identity arising from field redefinition symmetry inherent in 
doubling; rephrase as a BRST symmetry.

KMS conjugate ÕL are equivalent in correlation functions. The SK construction requires that

the correlation functions of di↵erence operators OR � OL vanishes, (3.16). Using OL = ÕL

inside correlation functions one immediately concludes that

hTSK
n
Y

k=1

⇣

O(k)
R � Õ(k)

L

⌘

i = 0 (4.19) eqdiff1

One can check that this statement is compatible with our earlier statement phrased in terms

of two-point functions (4.6). The general statement may of course be derived directly from

there; a clear statement worded in terms of thermal sum rules appears in [19].

4.4 The retarded-advanced basis
sec:retadv

One consequence of the KMS condition which relates operators related by a thermal trans-

lation, is that one expects the set of identities (??) hold in correlation functions. These sum

rules which have been derived for example in [19] can be succinctly stated by working in yet

another basis of operators. This new basis is called the retarded-advanced basis, which is

sometimes also referred to as the RA basis.13 It is defined by the the linear combination of

the SK operators , OR,OL and their KMS shifted counterparts ÕL. Without loss of generality

we make the choice:

Oadv ⌘ OR � OL , Oret ⌘
1

1� (�1)FOe�i��

⇣

OR � (�1)FOe�i�� OL

⌘

. (4.20) eq:RADef

Note that the retarded operator Oret is actually defined with an inverse of �� , so it should

actually be thought of as a solution to the di↵erential equation

i��Oret = OR � (�1)FOe�i�� OL (4.21)

which is solved with some initial condition. We will choose our initial conditions to be

Oret(t = ti) = OR(t = ti) = OL(t = ti) = bO(t = ti)

Oadv(t = ti) = OR(t = ti)� OL(t = ti) = 0 .
(4.22)

It is a common practice to explicitly include the statistics of the operator in question

in the definition. Recall that, for thermal correlation functions we should include the cor-

rect distribution function for bosons or fermions (which follows in turn from the periodicity

conditions). This may be done by introducing another di↵erential operator corresponding to

Bose-Einstein or Fermi-Dirac distribution

f� ⌘ 1

ei�� � (�1)F
. (4.23) eq:fDef

13 As noted after Eq. (3.3), the Keldysh basis itself in some circles is referred to as the ra basis. We

understand that this nomenclature originates from some historical confusion about the connections between

the two bases. We will avoid this confusion altogether by sticking to the usage of ‘retarded-advanced’ basis.
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ÕL(t) = OL(t� i�) = (�1)FO e�i �� OL✦KMS conjugate operators
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The Schwinger-Keldysh quartet

✦Difference operator correlation functions vanish because they are trivial 
elements of a BRST cohomology. 

✦There exists a pair of Grassmann odd charges which act on the doubled 
operator algebra.  

✦The SK theory is covariantly expressed in terms of a quartet of fields, 
which usual doubled formalism being a gauge  fixed version (ghosts =0).

In what follows it will be useful to keep track of ghost number for various operators.

The physical operators bO and their SK counterparts have zero ghost number. We will choose

to assign ghost number ±1 to OG and O
G

respectively. Ghost number conservation then

demands a compatible assignment to the supercharges. We make the following choice

gh(OG) = gh(QSK ) = +1 , gh(O
G
) = gh(QSK ) = �1 , (6.5) eq:ghnum

The action of the supercharges can be usefully captured in a diagrammatic form, viz.,

OR,OL

OG O
G

OR � OL

QSK Q
SK

Q
SK �QSK

(6.6) eq:qskaction

with the understanding QSK and QSK maps should be interpreted as a commutator action.

The one peculiarity of our ghost number assignment is that it increases right to left on

this diagram. While we have denoted both OL and OR on the top row, it is clear that both of

then are an overkill, and we could equivalently resort to the Keldysh basis of av-dif operators.

In the Keldysh basis, the action of the supercharges can be checked to take the form

[QSK ,Oav ]± = OG , [QSK ,OG ]± = 0,
⇥

QSK ,OG

⇤

±
= �Odif ,

⇥

QSK ,Odif

⇤

±
= 0 ,

⇥

QSK ,Oav

⇤

±
= O

G
,

⇥

QSK ,OG

⇤

±
= 0,

⇥

QSK ,OG

⇤

±
= Odif ,

⇥

QSK ,Odif

⇤

±
= 0 .

(6.7) eq:QSKdefKeld

The commutation relations make it clear in either case that Odif is both QSK and QSK exact,

thus assuring that their correlation functions vanish. In either presentation, is easy to check

that

Q2
SK

= Q2
SK

=
⇥

QSK ,QSK

⇤

±
= 0 (6.8) eq:qsksq

We note that the ghost operators O
G
and OG occur naturally as the ghosts corresponding to

the right-left symmetric shift generated by the SK supercharges.

It is worthwhile comparing the discussion above with the more familiar discussion of

BRST symmetries in gauge theories. In that case we introduce the ghosts by upgrading the

gauge transformation parameters. One usually defines a single BRST charge Qby requiring

that it perform a gauge transformation of the physical fields in along the ghost. With the

ghost number assignment as in (6.5) we have an alignment in the charge assignment of the

BRST operator and the ghost field. The partner anti-ghost field comes with an opposite

ghost charge, to ensure that we have a net vanishing of ghost number for terms that appear

in the action. Equivalently, when we exponentiate the Jacobian arising from the gauge fixing

condition, we have a pair of ghosts with equal and opposite ghost number; only one of them is

chosen to be obtained by gauge transforming the physical fields. Clearly there is an analogous

construction where we should invoke a BRST transformation in the anti-ghost direction, Q̄.
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or equivalently

Oav

OG O
G

Odif

Q
SK Q

SK

Q
SK

�Q
SK

(6.10) eq:qskactionAvDif

We can easily read o↵ how dSK , d̄SK act on av� dif operators by using [QSK , . . .]± = dSK(. . .)

and
⇥QSK , . . .

⇤

±
= d̄SK(. . .). We get

dSKOav = OG , dSKOG = 0, dSKO
G
= �Odif , dSKOdif = 0 ,

d̄SKOav = O
G
, d̄SKO

G
= 0, d̄SKOG = Odif , d̄SKOdif = 0 .

(6.11) eq:dSKdefKeld

The commutation relations make it clear in either case that Odif is both QSK and QSK

exact, thus assuring that their correlation functions vanish. In either presentation, it is easy

to check that

Q2

SK
= Q2

SK
=

⇥QSK ,QSK

⇤

±
= 0 . (6.12) eq:qsksq

There is a similar relation for dSK , d̄SK which reads

d2
SK

= d̄2
SK

=
⇥

dSK , d̄SK

⇤

±
= 0 . (6.13) eq:dskalg

We note that the ghost operators O
G
and OG occur naturally as the ghosts corresponding to

the right-left symmetric shift generated by the SK supercharges.

It is worthwhile comparing the discussion above with the more familiar discussion of

BRST symmetries in gauge theories. In that case we introduce the ghosts by upgrading the

gauge transformation parameters. One usually defines a single BRST charge Q by requiring

that it perform a gauge transformation of the physical fields along the ghost. With the ghost

number assignment as in (6.7) we have an alignment in the charge assignment of the BRST

operator and the ghost field. The partner anti-ghost field comes with an opposite ghost charge,

to ensure that we have a net vanishing of ghost number for terms that appear in the action.

Equivalently, when we exponentiate the Jacobian arising from the gauge fixing condition, we

have a pair of ghosts with equal and opposite ghost number; only one of them is chosen to be

obtained by gauge transforming the physical fields. Clearly there is an analogous construction

where we should invoke a BRST transformation in the anti-ghost direction, Q̄. The two pairs

of BRST charges are individually nilpotent and should anti-commute among themselves. In

either case the Lagrange multiplier or the Nakanishi-Lautrup field, which enters through the

gauge fixing condition, is BRST exact – it is obtained as the Q action on the anti-ghost or

the Q̄ action on the ghost.

This is exactly the structure present in (6.5) or (6.8). The BRST charges QSK and QSK

perform field redefinitions of the SK fields in the ghost and anti-ghost directions respectively.

The di↵erence operator Odif is the Nakanishi-Lautrup field of this redefinition redundancy.
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The KMS superalgebra

✦The SK and KMS BRST charges generate an interesting superalgebra: 

On the other hand in the retarded-advanced basis, we obtain

[QKMS ,Oret]± = 0,
⇥

QKMS ,OG

⇤

±
= i��Oret ,

[QKMS ,OG ]± = 0, [QKMS ,Oadv]± = i��OG ,
⇥

QKMS ,Oret

⇤

±
= 0,

⇥

QKMS ,OG

⇤

±
= 0 ,

⇥

QKMS ,OG

⇤

±
= i��Oret,

⇥

QKMS ,Oadv

⇤

±
= i��O

G
. (7.4) eq:QKMSdefRA

In obtaining these expression we used the fact that QKMS and QKMS commute with

the Hamiltonian bH. This once again follows as the KMS invariance can be viewed a a conse-

quence of the field redefinition symmetry in the SK construction combined with the Euclidean

periodicity imposed by the KMS condition for thermal density matrices.

While formally similar to our discussion of the SK supercharges, there is a very crucial

distinction here. Since {QKMS ,QKMS} involve thermal translations e�i�� , by a finite amount

involving the inverse temperature, they relate fields which are physically separated along

the Euclidean thermal circle. This implies that these charges are necessarily non-local. In

global thermal equilibrium one can work with the Fourier modes of fields along the Euclidean

time direction, viz., the Matsubara decomposition, and define the operators rather precisely.

Beyond this special case however one expects that the strict definition of these supercharges

comes with various associated subtleties. We will remark on these issues when we discuss the

analog for generic density matrices later on.

7.2 The KMS superalgebra
sec:kmsalg

For thermal density matrices we have two independent pairs of supercharges: {QSK ,QSK}
owe their origins to the field redefinition symmetries, while {QKMS ,QKMS} arise from the

thermal state KMS boundary condition. Given the commutation relations in §6.3 and §7.1 it

is simple mater to check that these four supercharges give rise to a supersymmetry algebra

Q2
SK

= Q2
SK

= Q2
KMS

= Q2
KMS

= 0 ,

[QSK ,QKMS ]± =
⇥

QSK ,QKMS

⇤

±
=

⇥

QSK ,QSK

⇤

±
=

⇥

QKMS ,QKMS

⇤

±
= 0 ,

⇥

QSK ,QKMS

⇤

±
= �

⇥

QSK ,QKMS

⇤

±
= i�� .

(7.5) eq:kmsalg

The first line follows from the nilpotency of the supercharges defined earlier. To ascertain

the second and third line is a matter of a little algebra using the definitions in (6.4) and (7.1)

respectively.

The interesting point to note is that the KMS operator�� plays the role of a Hamiltonian

which commutes with all the supercharges. The structure here should be reminiscent of the

standard discussion of supersymmetric quantum mechanics [36], which as we shall see in the

sequel is not entirely accidental. What remains implicit and obscure from the algebra (7.5)

is the non-local nature of the KMS supercharges.

The four charges {QSK ,QSK ,QKMS ,QKMS} help generate what is known as an NT = 2

extended equivariant cohomology algebra. We will describe the relation to this mathematical

framework in §9.
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✦This algebra is well known in some circles, and forms part of the                 
extended equivariant cohomology algebra.

NT = 2

NT = 1

Vafa, Witten ’94 
Dijkgraaf, Moore ‘96 

✦The                algebra is realized as the standard Weil algebra satisfied by 
the de Rham complex involving exterior derivatives, Lie derivative and 
interior contraction.

✦Well known results e.g., effective actions for stochastic dynamics a la 
Langevin can be phrased in this language. Martin, Siggia, Rose ’73 

Mathai, Quillen ‘76



Act III

✤ Act I: Relativistic hydrodynamics  

- In which we postulate the axioms and classify potential transport and see a 
prelude to the closing act 

✤ Act II: Microscopics 

- In which we present a new perspective on the Schwinger-Keldysh formalism, 
aimed at identifying low energy symmetries 

✤ Act III: Hydrodynamic effective actions 

- In which we exemplify how to construct actions for dissipative 
hydrodynamics as a supersymmetric sigma model



Hydrodynamic Landau-Ginzburg sigma models

✦ Class L (HS + HS): effective action is just a sigma model parameterized by a 
scalar functional (generalized free energy density)                         .    

✦ Adiabatic fluids: Invariance under diffeomorphisms and flavour 
transformations forces non-dissipative dynamics. 

✦ Dynamics:  conservation follows from variational of the pullback maps with 
reference thermal vector being fixed.

physical 
fluid

worldvolume 
reference  
configuration

�a

gab

�a�µ

gµ⌫

Xµ Xµ(�a)

L[�a, gab(X)]



Topological sigma models for hydrodynamics

✦Hydrodynamic modes are gauge invariant maps from the worldvolume to 
the target space (physical manifold). 

✦  The symmetry being gauged is thermal translations.
{QSK ,QSK}, such that the di↵erence operators are {QSK ,QSK}-exact and SK e↵ective ac-

tion is {QSK ,QSK}-closed, modulo source terms proportional to JR�JL. When JR = JL, this

theory naturally localizes as in (2.2).

It is convenient to implement the topological invariance by working in superspace [44].

We introduce two Grassmann odd coordinates {✓, ✓̄}, identify {QSK ,QSK} ⇠ {@
¯✓, @✓}, and

promote fields to superfields:

Y ! Y̊ = Y + ✓Y
¯ + ✓̄Y + ✓̄ ✓ Ỹ ⌘

YL + YR

2
+ ✓Y

¯ + ✓̄Y + ✓̄ ✓ (YR � YL) . (2.3)

The top (✓̄✓) component of the superfields represent the di↵erence operators while the Y ,Y ¯ 

are the ghost super-partners of Y. Note that they carry the same spin as the field Y but

opposite Grassmann parity. We can always recover the basic field by projection:

Y = Y̊| ⌘ Y̊

�

�

✓=¯✓=0

, Ỹ = @✓@¯✓Y̊| ⌘ @✓@¯✓Y̊
�

�

✓=¯✓=0

. (2.4)

We will henceforth adhere to the convention that the circle˚accent will denote the superfield

corresponding to a field and tilde picks out the di↵erence field in the SK construction.

Denoting spacetime coordinates by {�a
} and superspace coordinates by zI ⌘ {�a, ✓, ✓̄},

we demand invariance under super-reparameterizations zI 7! f I(z) for both (aligned) sources

and fields. Once a TQFT has been constructed in the superspace, we can unalign the sources

by shifting the ✓̄✓ components of the sources thus breaking the topological invariance to get

the required SK e↵ective theory.

The second symmetry we implement is CPT, which implies that the SK path integral is

invariant under the combined CPT transformation of the initial state and the sources. Using

the anti-unitary nature of CPT, we can translate this into a reality condition for the SK path

integral. It should satisfy the identity (where ⇤ represents complex conjugation)

Z

⇤
SK [JL, JR] = ZSK [JR, JL] . (2.5)

This identity follows simply from the definition in (2.1) along with hermiticity of ⇢̂
initial

.

As expected CPT acts anti-unitarily with a complex conjugation; it exchanges the left and

the right sources. Apart from the usual action on �a, CPT exchanges ✓̄ $ ✓ and hence

acts as an R-parity on the superspace. This is necessitated by our requirement that the ✓̄✓

component of the superfields be identified with di↵erence operators. It is further natural

to extend these symmetries by including ghost number conservation with ✓̄ and ✓ having

opposite ghost numbers (wlog ⌥1). The super-reparametrization invariance, CPT invariance

and ghost number conservation form the basic set of symmetries to be imposed on any SK

e↵ective theory.2

2 Thus in particular, these structures should also be present when we consider reduced density matrices for

some spatial region of a QFT as is usually done in the context of entanglement entropy.
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✦  Variables: superfields with top and bottom components being SK 
difference and average fields respectively

Features of near-thermal density matrices: We now move on to symmetries specific

to near-equilibrium situations. For thermal ⇢̂
initial

, SK correlators can be obtained by analyt-

ically continuing Euclidean thermal correlators. Under this continuation, Euclidean thermal

periodicity translates into a set of non-local KMS conditions [45–47]. They characterize the

UV-IR mixing inherent in thermal states, with the scale of non-locality being the thermal

scale. Any e↵ective theory of near-equilibrium fluctuations should e�ciently encode these

conditions non-linearly. This problem is well-studied (but without clear resolution) for non-

relativistic systems in macroscopic fluctuation [25] and mode-coupling theories. The issue

is one of implementing fluctuation-dissipation relations at the non-linear level. One may of

course impose the KMS relations directly on the correlators by hand, but it is unclear how

to maintain them under renormalization.

Inspired by our previous studies of the structural consequences of the second law in

relativistic fluids, we had advocated a solution to this conundrum in terms of an emergent

U(1)T gauge invariance [12, 13, 32]. This KMS symmetry acts on the fields by thermal

translations. In particular:

(a). It ensures the correct localization of the SK path integral satisfying Euclidean period-

icity, by extending the cohomology of {QSK ,QSK} into an equivariant cohomology of

thermal translations.

(b). It gives rise to a macroscopic entropy current thus intimately linking the emergence of

entropy with the microscopic KMS invariance.

In the gravitational description, this statement is then dual to Wald’s construction of black

hole entropy as a Noether charge [48, 49].

To describe our macroscopic gauge theory at a certain temperature we introduce a

background timelike superfield �a(�). It can be viewed as a vector superfield �̊I(z) with

�̊✓ = �̊
¯✓ = 0 = @✓�̊a = @

¯✓�̊
a. We will consider below only that subset of superdi↵eomor-

phisms which respect this gauge choice for the background thermal supervector �̊I . Similarly

for charged fluids we introduce a thermal twist ⇤�(�) which encodes the chemical potential.3

These background fields play a fundamental role in the gauge theory describing thermal

fluctuations.

The supergauge U(1)T transformations are parameterized by an adjoint superfield ⇤̊.

They act on a general superfield Y̊ by Lie dragging it along ⇤̊�a. Such transformations can

be succinctly represented by introducing a special type of Lie bracket which we christen as a

thermal bracket,

(⇤̊, Y̊)� = ⇤̊£�Y̊ , (2.6)

where £� denotes the Lie-derivative along �a. The infinitesimal gauge transformation is thus

given by

Y̊ 7! Y̊ + (⇤̊, Y̊)� . (2.7)

3 This is the phase entering the thermal periodicity conditions in a particular flavour symmetry gauge.
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For scalar Y̊
scalar

this is just a thermal translation4

(⇤̊, Y̊
scalar

)� = ⇤̊ �a@aY̊
scalar

. (2.8)

The Jacobi identity then fixes the action of thermal bracket on adjoint superfields, so that

under U(1)T transformation ⇤̊0
7! ⇤̊0 + (⇤̊, ⇤̊0)� with

(⇤̊, ⇤̊0)� = ⇤̊£�⇤̊
0
� ⇤̊0£�⇤̊ . (2.9)

We introduce a gauge superfield one-form as a triplet ÅI(z) ⌘ {Åa(z), Å✓(z), Å¯✓(z)}, i.e.,

ÅI(z) dz
I = Åa(z) d�

a + Å✓(z) d✓ + Å
¯✓(z) d✓̄ (2.10)

whose gauge transformation is like an adjoint superfield except for an inhomogeneous term,

viz.,

ÅI 7! ÅI + (⇤̊, ÅI)� � @I⇤̊ , (2.11)

with the thermal bracket as in (2.9). One can further define as usual a covariant derivative

D̊I = @I + (ÅI , · )� , (2.12)

and an associated field strength

F̊IJ ⌘ (1�
1

2
�IJ)

⇣

@I ÅJ � (�)IJ @J ÅI + (ÅI , ÅJ)�
⌘

, (2.13)

where (�)IJ is the mutual Grassmann parity of the two indices involved. Given the low-energy

superfields Y̊, the theory of macroscopic fluctuations is given as the general superspace action

invariant under U(1)T gauge transformations. We have sketched in [32] how this construction

works for Langevin dynamics – the full symmetry algebra can be found in Appendix A therein.

In what follows we will suppress the details of the gauge sector for the most part, quoting

only the key statements we need to write down the results. Thus, in our work the gauge

sector will only appear as minimally coupled and we will systematically ignore the non-

minimal couplings and the detailed dynamics of the gauge sector in this work. A complete

story involves explaining how the equivariant construction of U(1)T dynamics works and will

appear soon in our companion paper [42].5

4 If the superfield is also charged under flavour, this generalizes to (⇤̊, Y̊)� = ⇤̊
⇣
£�Y̊ � [⇤�, Y̊]

⌘
where

[ · , · ] denotes flavour adjoint action.
5 The astute reader will also recognize that the U(1)T gauge symmetry despite being abelian has to act

non-linearly, owing to its origin in thermal translations. Indeed the U(1)T gauge theory has many features

of a non-commutative abelian gauge theory. Heuristically this may be motivated from our earlier statements

about UV/IR mixing below the thermal scale.
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Features of near-thermal density matrices: We now move on to symmetries specific

to near-equilibrium situations. For thermal ⇢̂
initial

, SK correlators can be obtained by analyt-

ically continuing Euclidean thermal correlators. Under this continuation, Euclidean thermal

periodicity translates into a set of non-local KMS conditions [45–47]. They characterize the

UV-IR mixing inherent in thermal states, with the scale of non-locality being the thermal

scale. Any e↵ective theory of near-equilibrium fluctuations should e�ciently encode these

conditions non-linearly. This problem is well-studied (but without clear resolution) for non-

relativistic systems in macroscopic fluctuation [25] and mode-coupling theories. The issue

is one of implementing fluctuation-dissipation relations at the non-linear level. One may of

course impose the KMS relations directly on the correlators by hand, but it is unclear how

to maintain them under renormalization.

Inspired by our previous studies of the structural consequences of the second law in

relativistic fluids, we had advocated a solution to this conundrum in terms of an emergent

U(1)T gauge invariance [12, 13, 32]. This KMS symmetry acts on the fields by thermal

translations. In particular:

(a). It ensures the correct localization of the SK path integral satisfying Euclidean period-

icity, by extending the cohomology of {QSK ,QSK} into an equivariant cohomology of

thermal translations.

(b). It gives rise to a macroscopic entropy current thus intimately linking the emergence of

entropy with the microscopic KMS invariance.

In the gravitational description, this statement is then dual to Wald’s construction of black

hole entropy as a Noether charge [48, 49].

To describe our macroscopic gauge theory at a certain temperature we introduce a

background timelike superfield �a(�). It can be viewed as a vector superfield �̊I(z) with

�̊✓ = �̊
¯✓ = 0 = @✓�̊a = @

¯✓�̊
a. We will consider below only that subset of superdi↵eomor-

phisms which respect this gauge choice for the background thermal supervector �̊I . Similarly

for charged fluids we introduce a thermal twist ⇤�(�) which encodes the chemical potential.3

These background fields play a fundamental role in the gauge theory describing thermal

fluctuations.

The supergauge U(1)T transformations are parameterized by an adjoint superfield ⇤̊.

They act on a general superfield Y̊ by Lie dragging it along ⇤̊�a. Such transformations can

be succinctly represented by introducing a special type of Lie bracket which we christen as a

thermal bracket,

(⇤̊, Y̊)� = ⇤̊£�Y̊ , (2.6)

where £� denotes the Lie-derivative along �a. The infinitesimal gauge transformation is thus

given by

Y̊ 7! Y̊ + (⇤̊, Y̊)� . (2.7)

3 This is the phase entering the thermal periodicity conditions in a particular flavour symmetry gauge.
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✦Thermal translations act via Lie drag along reference thermal vector

✦KMS gauge superfield implements equivariance                . 

For scalar Y̊
scalar

this is just a thermal translation4

(⇤̊, Y̊
scalar

)� = ⇤̊ �a@aY̊
scalar

. (2.8)

The Jacobi identity then fixes the action of thermal bracket on adjoint superfields, so that

under U(1)T transformation ⇤̊0
7! ⇤̊0 + (⇤̊, ⇤̊0)� with

(⇤̊, ⇤̊0)� = ⇤̊£�⇤̊
0
� ⇤̊0£�⇤̊ . (2.9)

We introduce a gauge superfield one-form as a triplet ÅI(z) ⌘ {Åa(z), Å✓(z), Å¯✓(z)}, i.e.,

ÅI(z) dz
I = Åa(z) d�

a + Å✓(z) d✓ + Å
¯✓(z) d✓̄ (2.10)

whose gauge transformation is like an adjoint superfield except for an inhomogeneous term,

viz.,

ÅI 7! ÅI + (⇤̊, ÅI)� � @I⇤̊ , (2.11)

with the thermal bracket as in (2.9). One can further define as usual a covariant derivative

D̊I = @I + (ÅI , · )� , (2.12)

and an associated field strength

F̊IJ ⌘ (1�
1

2
�IJ)

⇣

@I ÅJ � (�)IJ @J ÅI + (ÅI , ÅJ)�
⌘

, (2.13)

where (�)IJ is the mutual Grassmann parity of the two indices involved. Given the low-energy

superfields Y̊, the theory of macroscopic fluctuations is given as the general superspace action

invariant under U(1)T gauge transformations. We have sketched in [32] how this construction

works for Langevin dynamics – the full symmetry algebra can be found in Appendix A therein.

In what follows we will suppress the details of the gauge sector for the most part, quoting

only the key statements we need to write down the results. Thus, in our work the gauge

sector will only appear as minimally coupled and we will systematically ignore the non-

minimal couplings and the detailed dynamics of the gauge sector in this work. A complete

story involves explaining how the equivariant construction of U(1)T dynamics works and will

appear soon in our companion paper [42].5

4 If the superfield is also charged under flavour, this generalizes to (⇤̊, Y̊)� = ⇤̊
⇣
£�Y̊ � [⇤�, Y̊]

⌘
where

[ · , · ] denotes flavour adjoint action.
5 The astute reader will also recognize that the U(1)T gauge symmetry despite being abelian has to act

non-linearly, owing to its origin in thermal translations. Indeed the U(1)T gauge theory has many features

of a non-commutative abelian gauge theory. Heuristically this may be motivated from our earlier statements

about UV/IR mixing below the thermal scale.
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✦Covariant super-field strength:



Topological sigma models for hydrodynamics
✦Symmetries of hydrodynamic effective actions: 

✤  Superdiffeomorphisms in target space and world volume 

✤CPT symmetry of SK path integrals (                                                ) 

✤worldvolume ghost number conservation 

✤KMS gauge invariance

Z⇤
SK [JL,JR] = ZSK [JR,JL]

and similarly for {⇥̊(z), ˚̄⇥(z)}. The worldvolume metric gab gets upgraded to superfields g̊IJ
using the U(1)T covariant D̊IX̊

µ:

g̊IJ(z) = gµ⌫(X̊(z)) D̊IX̊
µ
D̊JX̊

⌫ . (3.2)

Deformations away from the topological limit involve dealigning the sources for the left and

right fields; for the energy-momentum tensor this can be achieved by turning on a di↵erence

source hIJ , i.e.,

g̊IJ(z) ! g̊IJ(z) + ✓̄ ✓ hIJ(�) . (3.3)

Once we have an appropriate superspace Lagrangian, varying it with respect to the source

deformation hab will give us the (worldvolume) fluid dynamical stress tensor Tab
wv

, which can

subsequently be pushed-forward to the physical target space to get Tµ⌫ .

A natural consequence of enhancing the target space fields to superfields is that the target

space di↵eomorphisms, CPT and flavour symmetry get enhanced to

A. Target space super-di↵eomorphisms of {X̊µ, ⇥̊, ˚̄⇥}.

B. Target space CPT acting on {X̊µ, ⇥̊, ˚̄⇥}.

These two symmetries, particular to fluid dynamics, along with the four symmetries enumer-

ated above constitute the complete set of symmetries to describe the macroscopic thermal

fluctuations in fluid dynamics. In what follows, we will exploit a part of the target space

super-di↵eomorphisms to set {⇥̊ = ✓, ˚̄⇥ = ✓̄}. The reader may find the analogy with the

superstring worldsheet theory useful. The picture we portray above is the Ramond-Neveu-

Schwarz formalism for the space filling Brownian brane. As discussed in [32] the worldvolume

TQFT can be similarly constructed for higher codimension Brownian branes, with the Brow-

nian particle (or zero brane) theory leading to a description of Langevin dynamics.

We simply note in passing that the above discussion can be extended to include other

conserved charges. For flavour symmetry with source Aµ in the physical spacetime, the Gold-

stone modes include a flavour group element c(�), which map points on the flavour bundle

of the worldvolume onto the physical flavour bundle. The chemical potential is defined by

pushing-forward the worldvolume thermal twist ⇤�. Moreover, incorporating the desired su-

pertransformations one upgrades c(�) to a superfield c̊(z). This gives a worldvolume pull-back

flavour gauge field Åa defined by the map {X̊µ, c̊} which may further be deformed by dealign-

ing sources (i.e., introduce ↵a(�)). The crucial item to note is the U(1)T transformation on

the flavour superfield, which is given by

(⇤̊, c̊)� = ⇤̊ c̊
⇣

⇤� + �aÅa

⌘

.

Finally, we should append to the list of symmetries A and B, the target space flavour symmetry

acting on c̊.
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✦Dynamical fields are the pull-back maps which induce a worldvolume 
super-metric 

✦ Its  top component is the SK difference metric which couples to the 
physical stress tensor.  

✦Physical fluid dynamics obtained by deforming the topological theory.
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conserved charges. For flavour symmetry with source Aµ in the physical spacetime, the Gold-

stone modes include a flavour group element c(�), which map points on the flavour bundle

of the worldvolume onto the physical flavour bundle. The chemical potential is defined by

pushing-forward the worldvolume thermal twist ⇤�. Moreover, incorporating the desired su-

pertransformations one upgrades c(�) to a superfield c̊(z). This gives a worldvolume pull-back

flavour gauge field Åa defined by the map {X̊µ, c̊} which may further be deformed by dealign-

ing sources (i.e., introduce ↵a(�)). The crucial item to note is the U(1)T transformation on

the flavour superfield, which is given by

(⇤̊, c̊)� = ⇤̊ c̊
⇣

⇤� + �aÅa

⌘

.

Finally, we should append to the list of symmetries A and B, the target space flavour symmetry

acting on c̊.
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Dissipative hydrodynamic actions

✦  Symmetries suffice to constrain the terms that can appear in the worldvolume 
sigma model (superspace helps). 

✦Dissipative action including non-linear fluctuations:

Lwv =

p
�g

1 + �eAe

⇢
1

2


Tab

L � i

2
⌘(ab)(cd) (F✓✓̄, gcd)�

�
g̃ab �Na

LÃa

+
i

8

⇣
⌘(ab)(cd) + ⌘(cd)(ab)

⌘
g̃ab g̃cd + . . .

�
,

Eightfold Lagrangian

Noise fluctuations

✦Dissipative dynamics spontaneously breaks CPT, KMS field strength picks 
up an expectation value (ghost condensate). 

✦Recovery of the classification appears possible (work in progress)…

see also Kovtun, Moore, Romatschke ’13; Crossley, Glorioso, Liu ‘15



Fluctuation-dissipation & Jarzynski

✦Presence of a gauge symmetry which couples to entropy current appears 
to be manifestly contradicting second law. 

✦  The spontaneous CPT symmetry breaking in dissipative dynamical 
systems leads to a Ward identity that implies the Jarzynski relation.

conclude that the transformation we seek shifts the fluid variables as:

g̃ab 7! g̃ab �
�

F✓¯✓, gab
�

�
, Ãa 7! Ãa +DaF✓¯✓ . (5.3)

Implementing this we see that the worldvolume Lagrangian density transforms with an inho-

mogeneous piece (as expected due to the gauge fixing)

L

wv

7! L

wv

+
�L

wv

�g̃ab
�g̃ab +

�L
wv

�Ãa

�Ãa (5.4)

= L

wv

� F✓¯✓

✓

1

2
T

ab
wv

£� gab �DaN
a

◆

+ boundary terms . (5.5)

The boundary terms above get contributions from the various integrations by parts performed

in doing the transformations and superspace integrals.

We now invoke the expectation value of hF✓¯✓i = �i and write the change in the action

functional S
wv

⌘

´
dd�L

wv

suggestively as

i S
wv

7! i S
wv

� T�1 (Gf �Gi +W ) . (5.6)

We introduced here the free energy di↵erence and total work done by the external source:

Gf �Gi ⌘ �T

ˆ
dd�

p

�g

1 + �eAe
DaN

a = �T

ˆ
⌃E

N

a dd�1Sa

�

�

�

�

�

tf

ti

, (5.7)

W ⌘ T

ˆ
dd�

p

�g

✓

1

2
T

ab
wv

£� gab

◆

, (5.8)

with the assumption that the boundary terms will conspire to cancel out of this analysis.

The integral in Gf �Gi over worldvolume time has been performed such as to localize onto

a hydrostatic integral over the Euclidean base manifold ⌃E with volume element dd�1Sa

evaluated in the equilibrium configurations at initial and final times ti, tf . Note in particular

that this integral is independent of the (generically non-adiabatic) protocol which takes the

system from the initial to the final configuration and it includes contributions from the ghost

superpartners of the fields.

From equation (5.6) we can get the hydrodynamic fluctuation-dissipation result we seek

following [39]. The underlying topological symmetry implies the following Ward identity

he�
W
T
i = e�

1
T(Gf�Gi), (5.9)

i.e., the expectation value of the exponential of the work done is the exponential of the free

energy di↵erence. Using Jensen’s inequality on the above we obtain

hW i � Gf �Gi , (5.10)

which asserts that entropy is produced in the system. In other words the generalized work

relation (5.9) implies the second law of thermodynamics, ensuring that our construction is

consistent with the axioms of hydrodynamics.
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Jarzynski ’97; Crooks ‘98

✦Jarzynski is a non-equilibrium fluctuation dissipation relation that relates 
work done on the system out of equilibrium to the free energy difference.

Mallick, Moshe, Orland ’10; Gaspard ‘12

✦Using Jensen’s inequality, or convexity of exponential one arrives at

conclude that the transformation we seek shifts the fluid variables as:

g̃ab 7! g̃ab �
�

F✓¯✓, gab
�

�
, Ãa 7! Ãa +DaF✓¯✓ . (5.3)

Implementing this we see that the worldvolume Lagrangian density transforms with an inho-

mogeneous piece (as expected due to the gauge fixing)

L

wv

7! L

wv

+
�L

wv

�g̃ab
�g̃ab +

�L
wv

�Ãa

�Ãa (5.4)

= L

wv

� F✓¯✓

✓

1

2
T

ab
wv

£� gab �DaN
a

◆

+ boundary terms . (5.5)

The boundary terms above get contributions from the various integrations by parts performed

in doing the transformations and superspace integrals.

We now invoke the expectation value of hF✓¯✓i = �i and write the change in the action

functional S
wv

⌘

´
dd�L

wv

suggestively as

i S
wv

7! i S
wv

� T�1 (Gf �Gi +W ) . (5.6)

We introduced here the free energy di↵erence and total work done by the external source:

Gf �Gi ⌘ �T

ˆ
dd�

p

�g

1 + �eAe
DaN

a = �T

ˆ
⌃E

N

a dd�1Sa

�

�

�

�

�

tf

ti

, (5.7)

W ⌘ T

ˆ
dd�

p

�g

✓

1

2
T

ab
wv

£� gab

◆

, (5.8)

with the assumption that the boundary terms will conspire to cancel out of this analysis.

The integral in Gf �Gi over worldvolume time has been performed such as to localize onto

a hydrostatic integral over the Euclidean base manifold ⌃E with volume element dd�1Sa

evaluated in the equilibrium configurations at initial and final times ti, tf . Note in particular

that this integral is independent of the (generically non-adiabatic) protocol which takes the

system from the initial to the final configuration and it includes contributions from the ghost

superpartners of the fields.

From equation (5.6) we can get the hydrodynamic fluctuation-dissipation result we seek

following [39]. The underlying topological symmetry implies the following Ward identity

he�
W
T
i = e�

1
T(Gf�Gi), (5.9)

i.e., the expectation value of the exponential of the work done is the exponential of the free

energy di↵erence. Using Jensen’s inequality on the above we obtain

hW i � Gf �Gi , (5.10)

which asserts that entropy is produced in the system. In other words the generalized work

relation (5.9) implies the second law of thermodynamics, ensuring that our construction is

consistent with the axioms of hydrodynamics.
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✦Upheld in hydrodynamic dissipative action.



A roadmap for the future

Microscopic Schwinger-Keldysh construction

Macrophysics: cf., hydrodynamics
Black hole dynamics

★ doubling of degrees of freedom 
★ entanglement structure  in initial state

★ no doubling! 
★ emergent IR collective fields 
★ entropy & second law of 

thermodynamics

★ emergence of  horizons? 
★ reality of the interior?

Wilso
nia

n I
R ph

ysi
cs ER=EPR

Fluid/Gravity



A microscopic perspective

✦ Doubling: Mixed states of a QFT can be purified by introducing an 
ancillary system. Focus on pure states in tensor product Hilbert space. 

✦ Central to the Schwinger-Keldysh formalism developed to compute real 
time correlation functions in QFTs.

| i ! e�iHt | ih |! eiHth |

⇢ =| ih |! e�iHt | ih | eiHt

HRHL

Hphys ⇢ HR ⌦HL

Schwinger ‘61 
Keldysh ‘64


