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Plan

Transport properties and analytic structure of correlation functions
in weakly interacting many-body quantum system (particles or quasiparticles)

Transport properties and analytic structure of correlation functions
in strongly interacting many-body quantum systems (via holography)

Real systems are at intermediate coupling (e.g. QGP)

The problem of interpolation

Computing corrections to infinite coupling results from higher-derivative
gravity



Hydrodynamic regime in kinetic theory

Hierarchy of times (e.g. in Bogolyubov' s kinetic theory)
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Hierarchy of scales
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(L is @ macroscopic size of a system)



The hydrodynamic regime (continued)

Degrees of freedom
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Relaxation time in kinetic theory
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Spectrum of linearized kinetic operator

Wang Chang & Uhlenbeck (1952), Grad (1963)
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a) Discrete spectrum, U = a/r?
b) Continuous spectrum with a gap, U = a/r", n >4
c¢) Continuous gapless spectrum, U = «o/r", n <4

d) Hod spectrum



Relaxation time in kinetic theory (continued)

p(t;p) = Y Cne "' hu(p)

—vh = LO [h]

The hierarchy of relaxation times is determined by the spectrum
of linearized kinetic operator

TR 1/szn
For weakly inhomogeneous systems:
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Krook-Gross-Bhatnagar (KGB) equation (1959)

Transport is then essentially determined by the relaxation time, e.g. shear viscosity is
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How to compute shear viscosity in strongly interacting systems?

D.T.Son next to Maxwell’s viscometer at Cavendish Laboratory, Cambridge



Fluid dynamics is an effective theory valid in the long-wavelength, long-time limit

Fundamental degrees of freedom = densities of conserved charges

Equations of motion = conservation laws + constitutive relations*

Example |
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| - 8 = DN T 4
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Example
8aT“b == Navier-Stokes eqs

Burnett eqgs

T = euu’ + P(e) (¢*° + u®u®) + O* + - -

* Modulo assumptions e.g. analyticity

** E.o.m. universal, transport coefficients depend on underlying microscopic theory



Consider relativistic neutral conformal fluid in a d-dimensional (curved) space-time
ER eyt PG (gab + uaub) e er

Including only terms with first and second derivatives of fluid velocity:
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Transport coefficients (in conformal case): 1), 711, K, )\1 : )\2 ; )\3

Non-conformal case: 2 first order coefficients, 15 (10) second order coefficients
(see S.Bhattacharyya, 1201.4654 [hep-th])



Beyond second order hydrodynamics

Tensors structures appearing in the derivative expansion have been analyzed using
computer algebra in 1507.02461 [hep-th] by Grozdanov & Kaplis.

At third order, there are 20 relevant structures in the conformal case
and 68 in the non-conformal one.

This still needs an entropy current analysis similar to the one in
S.Bhattacharyya, 1201.4654 [hep-th]

Example: dispersion relations in conformal case
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Here 6821/\/—3— I'=n/(c+ P)



Notations used in the derivative expansion
D =u"V,
Aab - gab T uaub

1
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*Hydro definitions differ in the literature — see footnote 91 on page 128
of M.Haehl, R.Loganayagam, M.Rangamani, 1502.00636 [hep-th]



Computing transport coefficients from “first principles”

Fluctuation-dissipation theory
(Callen, Welton, Green, Kubo)

Kubo formulae allows one to calculate transport
coefficients from microscopic models

n= lim ——/dtd%em([Tw(t r), Tay(0,0)])

=)

In the regime described by a gravity dual the correlator
can be computed using gauge theory/gravity duality



Kubo formulas for second order transport coefficients

First order transport coefficients can be computed from two-point functions
of the corresponding operators using Kubo formulas

= oM i/dtd3a3€iwt<[Txy(taw)vTiU?J(O’O>}>
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Similarly, second transport coefficients can be computed from three-point functions

: 82 xy,ty,rz
Ao = 21T — 4p71(111£>10 p0dg? GR%&X’ (p,q)

Moore, Sohrabi, Saremi, 2010, 2011; Arnold, Vaman, Wu, Xiao, 2011

Schwinger-Keldysh generating functional
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How to compute second order transport coefficients?

Fluid-gravity correspondence [Bhattacharyya et al, 2007]
Quasinormal spectrum [Baier et al, 2007]

Kubo formulas & three-point functions
[Moore, Sohrabi, Saremi, 2010, 2011; Arnold, Vaman, Wu, Xiao, 2011]



Shear viscosity in N = 4 SYM

o1 perturbative thermal gauge theory
’_1 A2 log % S.Huot,S.Jeon,G.Moore, hep-ph/0608062
S
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Correctionto 1 /4m Buchel, Liu, AS., hep-th/0406264

Buchel, 0805.2683 [hep-th]; Myers, Paulos, Sinha, 0806.2156 [hep-th]



First and second order transport coefficients of conformal
holographic fluids to leading order in supergravity approximation
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Bhattacharyya et al, 2008
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Transport coefficients 1), 711, K , )\1 : )\2 : )\3 are non-trivial functions of the
parameters of the underlying microscopic theory, even in the simplest case of conformal liquids

A
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Some information can be obtained from kinetic theory at weak coupling
and from gauge-string duality at strong coupling (for theories with string or gravity duals).
In the latter case, it is natural to look for “universal”
(independent of the specific string construction) results.

In the limit of infinite N (gauge group rank) and infinite coupling
(i.e. in the supergravity approximation from dual string theory point of view)

) h Policastro, Kovtun, Son, AOS, 2001-2008
e Buchel, J.Liu, 2003; Buchel, 2004
s Awkp Igbal, H.Liu, 2008

o 1 d

; ] ArT d — 9 [for conformal relativistic fluids]: Kovtun, Ritz, 2008

2777'11 i 4)\1 o )\2 — ()  [for conformal relativistic fluids]: Haack, Yarom, 2008



More speculative statements inspired by holography

h Kovtun, Son, AOS, 2004 (violated by some models with
Higher derivative gravity, Kats and Petrov, 2007;
Brigante, Myers, H.Liu, Myers, Shenker, Yaida, 2008)

e
&= el

i L 2
; il ﬁ G E Buchel, 2008 (counterexample: Buchel, 2012)
See also Kanitscheider and Skenderis, 2009
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See also “Fluctuation bounds...” by Kovtun 1407.0690 [hep-th]



Cuts versus poles: a mystery

Singularities of a Green’s function in the complex frequency plane

Imto Imto
—q q Reto Rem
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Weak (vanishing) coupling Strong (infinite) coupling

Hartnoll, Kumar (2005) Starinets (2002)

We should be able to interpolate between the two limits...



Coupling constant corrections to N=4 SYM transport coefficients
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Curvature squared corrections to transport coefficients
of a (hypothetical) strongly coupled liquid
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Gauss-Bonnet corrections to transport coefficients
of a (hypothetical) strongly coupled liquid
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Non-perturbative Gauss-Bonnet corrections to transport coefficients
of a (hypothetical) strongly coupled liquid
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Singularities of stress-energy tensor Green’s function
at infinite (black dots) and finite (black crosses and diamonds)
coupling
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Singularities of stress-energy tensor Green’s function
in different regimes of viscosity-entropy ratio
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White squares: poles at infinite coupling
Crosses: poles at finite coupling



On the “unreasonable effectiveness” of kinetic theory at strong coupling

Recall that in kinetic theory n = const sTp T
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Breakdown of hydrodynamics at (large) finite coupling
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“Applicability of hydrodynamics” as a function of coupling
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Quasiparticles from holography?
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Conclusions & open questions

Finite coupling corrections seem to show qualitatively similar behavior irrespective of the
precise structure of higher derivative terms in dual gravity (we did R*2 and R”4)

How robust are the results (structure of higher derivative expansion)?

We observe breakdown of hydrodynamics at coupling-dependent value of a wave-vector. The
dependence on coupling suggests that hydrodynamics has a wider applicability range at
stronger coupling

Our results suggest that kinetic theory results may be formally still applicable
in the intermediate and strong coupling regime
where the use of kinetic theory itself cannot be justified

We observe qualitatively different analytic structure of correlators depending on whether
n/s > 1/4worn/s < 1/4m

Is this of any significance?
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