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Weak x strong coupling non-equilibrium dynamics in the
early universe

Based on BDHMN, Phys. Rev. Lett. 116 (2016) 2, 022301, arXiv:1507.07834 [hep-ph]

arXiv:1607.05245 

and Buchel, Heller, JN, arXiv:1603.05344 [hep-th]  + other new stuff  

http://arxiv.org/abs/1507.07834
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https://arxiv.org/abs/1603.05344


A thermal history of the Universe

How do Standard Model fields thermalize in the early Universe?



How do Standard Model fields thermalize?

- 20 ps < time < 20 microsecs after Big Bang

- Temperature of the Universe dropped from ~ 100 GeV to 150 MeV

If you focus on the QCD fields:

1) When T >> 1 GeV →  QCD is a gas of quasiparticles

2) For T ~ 200 MeV → QCD is a non-conformal (              ) 

strongly interacting plasma



OUTLINE

I) Expanding universe as the simplest setup to study thermalization
of rapidly evolving systems

 
II) Toy model at weak coupling: Boltzmann equation

III) Toy model at strong coupling: N=2* plasma

IV) Conclusions
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Quark-gluon plasma: The smallest fluid ever made 

gluon self-interactions

QCD  = confinement + asymptotic freedom Quark-Gluon Plasma

?

Ex: Schenke, Jeon, Gale, PRL 2011

QGP perfect fluidity:                → emergent property of QCD.

This seems to appear even in elementary proton+proton collisions.

Fluid dynamics at length scales of the size of a proton.  
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The expanding universe provides a much simpler case to study.

More symmetries than HIC, though there is only one event
to analyze …
 

Figure from D. Baumann's
lectures
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Friedmann-Robertson-Lemaitre-Walker (FRLW) spacetime

Maximally (spatially) symmetric
spacetime

K ~ 0 (spatially flat –> our universe)

K = 1, -1

Einstein's equations
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FLRW spacetime

Spatial isotropy + 
homogeneity 

       Isotropic and homogeneous expanding FLRW spacetime
(zero spatial curvature)

Ex: metric

Determined from Einstein's equations

Universe
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Friedmann-Lemaitre-Robertson-Walker spacetime

We consider an isotropic and homogeneous expanding FRW spacetime

Cosmological 
scale factor
(e.g., radiation)

(zero spatial curvature)

Hubble 
parameter

Distances get stretched

metric



Thermalization in an expanding Universe

Pros: 

- Applications in cosmology

- Spatial isotropy + homogeneity = strong constraining symmetries

- Underlying expansion of the Universe is “simple” 
(in comparison to HIC)

Cons: 

- Inclusion of general relativistic effects: numerics more involved

- Why would the inclusion of something “difficult” (GR) help anybody
here???

 



If your goal is to understand the thermalization process of SM fields
in an expanding case:

Nothing is easier than studying how a locally static system thermalizes
(or not) in an expanding Universe.

 

I will show you in the following two toy models to make you think
about this problem … 

Universe expands

Flow locally static



 

- Dilute gases display complex non-equilibrium dynamics. 
 

- The Boltzmann equation has been instrumental in physics and mathematics 
(e.g., 2010 Fields Medal).
 

Collision termSpace-time variation

General Relativistic Boltzmann equation

- It describes how the particle distribution function                    varies in time and space
due to the effects of collisions (and external fields).

First toy model: General relativistic Boltzmann equation
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Boltzmann Equation in FLRW spacetime

Simplest (unrealistic) toy model of an out-of-equilibrium Universe:

- Massless particles, classical statistics, constant cross section: 

- Weakly coupled QCD at high T is much more complicated than this 

- However, the toy model captures the physics I need for this talk

- You will see that such a system flows as a perfect fluid though
it is dissipative (entropy is always being produced)
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We want to find solutions for the distribution function

Given an initial condition:                and  

This equation includes general relativistic effects + full nonlinear 
collision dynamics

How does one solve this type of nonlinear integro-differential 
equation?

Our Boltzmann equation: 



15

The moments method

- Originally introduced by Grad (1949) and used by Israel and Stewart (1979) in the
relativistic regime.

- Perfected for applications in HIC by DNMR, Phys. Rev. D 85 (2012) 114047

- Used more recently in Phys. Rev. Lett. 116 (2016) 2, 022301 

  The idea is simple

 Instead of solving for the distribution function itself directly, one uses the Boltzmann 
eq. to find exact equations of motion for the moments of the distribution function.

Ex: The particle density                                                      is a scalar moment  

with equation
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Defining the scaled time:

(constant mean free path)

And the normalized moments                                      which obey the exact set of eqs: 

GR effect Simple recursive nonlinearity

Conservation laws require 

See PRL 2016, arXiv:1507.07834 [hep-ph]

ALL THE NONLINEAR BOLTZMANN DYNAMICS IS ENCODED HERE

Cuius rei demonstrationem mirabilem sane detexi hanc marginis exiguitas non caperet

http://arxiv.org/abs/arXiv:1507.07834
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Ex: The energy density                                              is a scalar moment  

with equation

Clearly, due to the symmetries, here only scalar moments can be nonzero. 

Thus, if we can find the time dependence of the scalar moments

via solving their exact equations of motion, one should be able to recover 
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“Fourier” transforming the Boltzmann equation

G. Denicol and JN, to appear soon

If the moments are what we want, it makes sense to define the generating function

where v is a complex number

Thermalization → development of a pole at 

x
Thermalization process is mapped onto
how the analytical structure of this function
changes with time.

Equilibrium = global
attractor on the plane 
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“Fourier” transforming the Boltzmann equation

G. Denicol and JN, to appear soon

This way to see the thermalization process is valid for any type of cross section
(does not depend on the mass, quantum statistics changes the pole) 

It is easy to 
show that this → 

Taking derivatives w.r.t.         one can easily find the equation for the moments

Becomes this: 
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Full Analytical Solution

Using the moments equations in this form

One can show that 

is an analytical solution of the moments equations !

Redefining time

Non-perturbative in 
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Full Analytical Solution

1st analytical solution of the Boltzmann equation for an expanding
gas (since 1872)

= fugacity

BDHMN, PRL (2016) arXiv:1507.07834 [hep-ph]

Initial condition

See arXiv:1607.05245  for many more details about this and other solutions

http://arxiv.org/abs/arXiv:1507.07834
https://arxiv.org/pdf/1607.05245.pdf
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Full Analytical Solution

Time evolution Momentum dependence

For radiation dominated universe higher order moments will certainly not erase 
the info about initial conditions → system never equilibrate due to expansion.

The approach to equilibrium here depends on the occupancy of each moment.
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Full Analytical Solution – Generating function

For the analytical solution

one finds

Time dependent pole at x Equilibrium = global
attractor on the plane 

IC at
- Thermalization process of different initial conditions 
correspond to other trajectories on the plane. 

- Non-thermal fixed points???? Universality? 
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Non-equilibrium entropy

One can prove that H-theorem is valid here. Entropy production solely
from non-hydrodynamic modes (hydro modes have decoupled).

Even though energy-momentum tensor always the same 
as in equilibrium.

Expansion is never truly adiabatic in this toy Universe.

See arXiv:1607.05245

https://arxiv.org/pdf/1607.05245.pdf
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This is all very nice but QCD is a non-Abelian gauge theory.

Close to the QCD phase transition, QCD is likely strongly coupled.

Boltzmann description not applicable.

How do we study thermalization for T ~ QCD phase transition
in the early universe?

Lattice QCD cannot be used here (need real time dynamics) 

A reasonable thing to do is to “jump” into a black hole (brane) 
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Holography

Strong coupling limit of QFT in 4 dimensions

String Theory/Classical gravity in d>4 dimensions

Holography (gauge/string duality)

Maldacena 1997; Witten 1998; Gubser, Polyakov, Klebanov 1998

Universality of nearly perfect fluids

Kovtun, Son, Starinets, PRL 2005
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SU(Nc)   Supersymmetric Yang-Mills in d=4

Gluons, Fermions, Scalars

Fields in the adjoint rep. of SU(Nc)

STANDARD
EXAMPLE

Maldacena, 1997: This gauge theory is dual to Type IIB string theory on AdS_5 x S_5

Strongly-coupled, large Nc gauge theory

CFT !!!!

Weakly-coupled, low energy string theory

t'Hooft coupling in
the gauge theory
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Universality and nearly perfect fluidity

                     in QFT  → string theory in weakly curved backgrounds

d.o.f. / vol.             in QFT   →  vanishing string coupling

                           in QFT   →  spatially isotropic black brane 

Kovtun,Son,Starinets, PRL 2005

Universality of black 
hole horizons 

HOLOGRAPHY Universality of transport
coefficient in QFT

Universality of shear viscosity

For anisotropic models 
there is violation
see, e.g, arXiv:1406.6019
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Given that heavy ion data indicates that T ~ QCD transition the QGP 
is a nearly perfect fluid …

There must have been nearly perfect fluidity in the early universe

Experimental consequences of that are not yet known (are there any??)

Given that around those temperatures QCD is not conformal, we
would like to use a nonconformal gravity dual in a FLRW spacetime

This was done by A. Buchel, M. Heller, JN in arXiv:1603.05344 [hep-th]  

https://arxiv.org/abs/1603.05344
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Holography2nd toy model: N=2* gauge theory

N = 4 SYM theory  + 

Pilch, Warner, Buchel, Peet, Polchinski, 2000
A. Buchel, S. Deakin, P. Kerner and J. T. Liu, NPB 784 (2007) 72

Bosonic mass

Fermionic mass

A relevant deformation of SYM:            Breaking of SUSY 

 C. Hoyos, S. Paik, and L. G. Yaffe, JHEP 10, 062 (2011)
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Holography2nd toy model: N=2* gauge theory

Pilch, Warner, Buchel, Peet, Polchinski, 2000

Classical gravity dual action:

Scalar potential

- Well defined stringy origin

- Non-conformal strongly interacting plasma: 

- Used in tests of holography in non-conformal setting

Bulk viscosity
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HolographyN=2* gauge theory in a FLRW Universe

Characteristic formulation of gravitational dynamics in asymptoticaly AdS5
spacetimes

Assuming spatial isotropy and homogeneity                        leads to

Chesler,Yaffe, 2013

Encode non-equilibrium
dynamics in an expanding
Universe !!!

Buchel, Heller, JN, arXiv:1603.05344 [hep-th]

https://arxiv.org/abs/1603.05344
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HolographyN=2* gauge theory in a FLRW Universe

Conformal limit

Analytical solution for SYM in FLRW spacetime

Temperature Energy density Pressure

Conformal anomaly!!!!

Buchel, Heller, JN, arXiv:1603.05344 [hep-th]

First studied by P. S. Apostolopoulos, G. Siopsis, and N. Tetradis, PRL, (2009)

https://arxiv.org/abs/1603.05344
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HolographyDivergence of the hydrodynamic series

Viscous hydrodynamics → Knudsen series expansion

macroscopic: microscopic:Separation of scales → 

Knudsen number
gradient expansion:

FLUID

- Used in kinetic theory (Chappman-Enskog)

- Within the fluid/gravity duality (Minwalla, Hubeny, 
Rangamani, etc)

Buchel, Heller, JN, arXiv:1603.05344 [hep-th]

https://arxiv.org/abs/1603.05344
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HolographyDivergence of the hydrodynamic series

In our FLRW case, such a Knudsen gradient series gives

equilibrium dissipation

Energy-momentum
tensor

In terms of the energy density and pressure out-of-equilibrium

Bulk viscosity

Buchel, Heller, JN, arXiv:1603.05344 [hep-th]

https://arxiv.org/abs/1603.05344


36

HolographyDivergence of the hydrodynamic series

Entropy production 

For single component cosmologies

Factorial growth!!!

Buchel, Heller, JN, arXiv:1603.05344 [hep-th]

Apparent horizon:

https://arxiv.org/abs/1603.05344
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HolographyDivergence of the hydrodynamic series

1st analytical proof of the divergence of gradient expansion:
 

→  Knudsen gradient series has zero radius of convergence

→  Knudsen series leads to acausal and unstable dynamics

→ There must be a new way to define hydrodynamics 
      beyond the gradient expansion 

→  A recent way to understand that involves resurgence (see, e.g. 
Heller's talk). For a different approach, see Denicol's talk. 
 

 

Buchel, Heller, JN, arXiv:1603.05344 [hep-th]

https://arxiv.org/abs/1603.05344
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Conclusions 

- The early Universe may be the simplest “way” to study how Standard Model
quantum fields thermalize.

- Exactly solvable nonlinear kinetic models in a FLRW can be studied (led to
the 1st analytical solution of the Boltzmann equation for expanding gas).

- Due to strong coupling near the QCD phase transition in the early Universe,
non-equilibrium dynamics may be studied using the gauge/gravity duality.

- Toy model of QCD, N=2* gauge theory, behaves as a nearly perfect fluid but
the hydrodynamic expansion has zero radius of convergence.

- New ideas are needed to make further progress in this field ...


