Relativistic dissipative hydrodynamics from kinetic theory in the relaxation-time approximation

Amaresh Jaiswal

GSI Darmstadt, Germany

MITP Workshop on Relativistic Hydrodynamics: Theory and Modern Applications

October 11, 2016

Introduction

- Hydrodynamics describes the long-wavelength, low-frequency limit of the microscopic dynamics of a system.
- Relativistic hydrodynamics has been used to study high-energy heavy-ion collisions with considerable success.
- As all fluids are non-ideal in nature, dissipation must be included in the formulation of hydrodynamic equations.
- Relativistic generalization of the Navier-Stokes theory (first-order in gradients) shows acausal behavior.
- Israel-Stewart theory (second-order corrections) restores causality.
- However there are several ways in which one can derive a second-order theory of relativistic dissipative hydrodynamics.
- Here I discuss formulations based on kinetic theory.

Ideal and dissipative hydrodynamics

• Hydrodynamic equations are conservation of energy-momentum and particle current, i.e., $\partial_\mu T^{\mu\nu}=0$ and $\partial_\mu N^\mu=0$.

Ideal	Dissipative
$T^{\mu\nu} = \epsilon u^{\mu} u^{\nu} - P \Delta^{\mu\nu}$	$T^{\mu u} = \epsilon u^{\mu}u^{ u} - (P + \Pi)\Delta^{\mu u} + \pi^{\mu u}$
$\mathcal{N}^{\mu}=\mathit{nu}^{\mu}$	$N^{\mu}=nu^{\mu}+rac{n^{\mu}}{n}$
Unknowns: $\underbrace{\epsilon, P, n, u^{\mu}}_{1+1+1+3} = 6$	$\epsilon, P, n, u^{\mu}, \Pi, \pi^{\mu\nu}, n^{\mu} = 15$
Equations: $\underbrace{\partial_{\mu}T^{\mu\nu}=0,\partial_{\mu}N^{\mu}=0, EOS}_{4}=6$	
Closed set of equations	9 more equations required

- Here $\Delta^{\mu\nu} = g^{\mu\nu} u^{\mu}u^{\nu}$.
- Landau frame chosen: $T^{\mu\nu}u_{\nu}=\epsilon u^{\mu}$.

Relaivistic kinetic theory

- Kinetic theory: calculation of macroscopic quantities by means of statistical description in terms of distribution function.
- For large no. of particles, one can introduce a function f(x, p) which gives a distribution of particle momenta at each space-time point.
- In terms of the distribution function, the energy momentum tensor and particle four-current can be written as:

$$T^{\mu\nu}(x) = \frac{g}{(2\pi)^3} \int \frac{d^3p}{p^0} p^\mu p^\nu f(x,p) \; ; \quad N^\mu(x) = \frac{g}{(2\pi)^3} \int \frac{d^3p}{p^0} p^\mu f(x,p) \; .$$

- For a system which is not in equilibrium, $f = f_0 + \delta f$.
- With suitable projections, the dissipative quantities can be written in terms of δf as:

$$\Pi = -\frac{1}{3} \Delta_{\alpha\beta} \! \int \! dP \; p^\alpha p^\beta \; \delta f \,, \quad \pi^{\mu\nu} = \Delta_{\alpha\beta}^{\mu\nu} \! \int \! dp \; p^\alpha p^\beta \; \delta f \,, \quad {\color{blue} n^\mu = \Delta_\alpha^\mu \! \int \! dp \; p^\alpha \; \delta f \,.}$$

Dissipative evolution equations

- In order to preserve causality, it is necessary to have relaxation-type equations for dissipative quantities rather than constituent equations.
- The best prescription [Denicol, Koide, Rischke, PRL 2010] is to consider

$$\begin{split} \dot{\Pi} &= -\frac{1}{3} \Delta_{\alpha\beta} \! \int \! dP \, p^{\alpha} p^{\beta} \, \dot{\delta f}, \quad \dot{\pi}^{\langle \mu \nu \rangle} = \Delta_{\alpha\beta}^{\mu\nu} \! \int \! dp \, p^{\alpha} p^{\beta} \, \dot{\delta f}, \quad \dot{n}^{\langle \mu \rangle} = \Delta_{\alpha}^{\mu} \! \int \! dp \, p^{\alpha} \, \dot{\delta f}, \\ \text{where } \dot{\Pi} &= u^{\mu} \partial_{\mu} \Pi, \ \dot{\pi}^{\langle \mu \nu \rangle} = \Delta_{\alpha\beta}^{\mu\nu} \dot{\pi}^{\alpha\beta} \ \text{and} \ \dot{n}^{\langle \mu \rangle} = \Delta_{\alpha}^{\mu} \dot{n}^{\alpha}. \end{split}$$

• To obtain δf , one can use the Boltzmann equation in the relaxation time approximation:

$$p^{\mu}\partial_{\mu}f = -rac{u\cdot p}{ au_R}\delta f.$$

ullet Keeping in mind that $f=f_0+\delta f$, and after some rearrangements,

$$\dot{\delta f} = -\dot{f_0} - \frac{1}{u \cdot p} p^{\gamma} \nabla_{\gamma} f - \frac{\delta f}{\tau_R}.$$

Dissipative evolution equations contd.

• Substituting $\dot{\delta f}$ in expressions for $\dot{\Pi}$, $\dot{\pi}^{\langle\mu\nu\rangle}$ and $\dot{n}^{\langle\mu\rangle}$

$$\begin{split} \dot{\Pi} + \frac{\Pi}{\tau_R} &= \frac{\Delta_{\alpha\beta}}{3} \int d\rho \, p^{\alpha} p^{\beta} \left[\dot{f_0} + \frac{1}{u \cdot p} p^{\gamma} \nabla_{\gamma} \left(f_0 + \delta f \right) \right], \\ \dot{\pi}^{\langle \mu \nu \rangle} + \frac{\pi^{\mu \nu}}{\tau_R} &= -\Delta_{\alpha\beta}^{\mu \nu} \int d\rho \, p^{\alpha} p^{\beta} \left[\dot{f_0} + \frac{1}{u \cdot p} p^{\gamma} \nabla_{\gamma} \left(f_0 + \delta f \right) \right], \\ \dot{n}^{\langle \mu \rangle} + \frac{n^{\mu}}{\tau_R} &= -\Delta_{\alpha}^{\mu} \int d\rho \, p^{\alpha} \left[\dot{f_0} + \frac{1}{u \cdot p} p^{\gamma} \nabla_{\gamma} \left(f_0 + \delta f \right) \right]. \end{split}$$

- The above equations are relaxation-type equations with a single relaxation time-scale τ_R .
- Now the form of δf needs to be specified.
 - Grad's 14-moment method.
 - Chapman-Enskog like iterative solution of the Boltzmann equation.

Grad's 14-moment method

The equilibrium distribution functions can be written as

$$f_0 = [\exp\{y_0(x,p)\} + r]^{-1}, \quad y_0 = -\beta(u \cdot p) + \alpha, \quad r = 0, \pm 1$$

• Away from equilibrium, $f = [\exp\{y(x,p)\} + r]^{-1}$, where $\phi(x,p) \equiv y(x,p) - y_0(x,p) = \varepsilon(x) - \varepsilon_{\mu}(x)p^{\mu} + \varepsilon_{\mu\nu}(x)p^{\mu}p^{\nu} + \cdots$

• Approximations: Taylor expansion around equilibrium up to linear in ϕ and truncated up to quadratic in p^μ

$$f = f_0 + \delta f$$
, $\delta f = f_0 \tilde{f}_0 \phi$, where, $\tilde{f}_0 = 1 - r f_0$

• Assumption: ε , ε_{μ} and $\varepsilon_{\mu\nu}$ are linear in Π , n_{μ} and $\pi_{\mu\nu}$

$$\varepsilon = A_0\Pi, \quad \varepsilon_\mu = A_1\Pi u_\mu + B_0 n_\mu, \quad \varepsilon_{\mu\nu} = A_2(3u_\mu u_\nu - \Delta_{\mu\nu})\Pi - B_1 u_{(\mu} n_{\nu)} + C_0 \pi_{\mu\nu}$$

• A_0 , A_1 , A_2 , B_0 , B_1 and C_0 are determined from the definitions of dissipative quantities, matching conditions and frame definition.

Iterative solution of the Boltzmann equation

Botzmann equation in the relaxation-time approximation:

$$p^{\mu}\partial_{\mu}f = -rac{u\cdot p}{ au_{R}}(f-f_{0}) \ \Rightarrow \ f = f_{0} - rac{ au_{R}}{u\cdot p}\,p^{\mu}\partial_{\mu}f$$

• Writing $f = f_0 + \delta f^{(1)} + \delta f^{(2)} + \cdots$ and solving iteratively,

$$\delta f^{(1)} = -\frac{\tau_R}{u \cdot p} p^{\mu} \partial_{\mu} f_0, \quad \delta f^{(2)} = \frac{\tau_R}{u \cdot p} p^{\mu} p^{\nu} \partial_{\mu} \left(\frac{\tau_R}{u \cdot p} \partial_{\nu} f_0 \right), \quad \cdots$$

ullet Using $\delta f^{(1)}$ in the definition of dissipative quantities, one gets

$$\Pi = -\beta_\Pi \, \tau_R \, \theta, \quad \pi^{\mu\nu} = 2\beta_\pi \, \tau_R \, \sigma^{\mu\nu}, \quad \mathbf{n}^\mu = \beta_{\,\mathbf{n}} \, \tau_R \, \nabla^\mu \alpha.$$

• Using these first-order relations in $\delta f^{(1)}$,

$$\delta f_1 = \left(\lambda_\Pi \Pi + \lambda_n n_\alpha p^\alpha + \lambda_\pi \pi_{\alpha\beta} p^\alpha p^\beta\right) f_0 \tilde{f}_0.$$

• Identical to small anisotropy expansion in aHydro; see talk by L. Tinti.

Second-order viscous corrections

• For a system of massless particles at vanishing chemical potential, $\delta f = \frac{\delta f^{(1)}}{\delta f^{(2)}}$ can be written as

$$\begin{split} \delta f &= \frac{f_0 \beta}{2 \beta_\pi (u \cdot p)} \, p^\alpha p^\beta \pi_{\alpha\beta} - \frac{f_0 \beta}{\beta_\pi} \left[\frac{\tau_\pi}{u \cdot p} \, p^\alpha p^\beta \pi_\alpha^\gamma \, \omega_{\beta\gamma} - \frac{5}{14 \beta_\pi (u \cdot p)} \, p^\alpha p^\beta \pi_\alpha^\gamma \, \pi_{\beta\gamma} \right. \\ &\quad + \frac{\tau_\pi}{3 (u \cdot p)} \, p^\alpha p^\beta \pi_{\alpha\beta} \theta - \frac{6 \tau_\pi}{5} \, p^\alpha \dot{u}^\beta \pi_{\alpha\beta} + \frac{(u \cdot p)}{70 \beta_\pi} \, \pi^{\alpha\beta} \pi_{\alpha\beta} + \frac{\tau_\pi}{5} \, p^\alpha \left(\nabla^\beta \pi_{\alpha\beta} \right) \\ &\quad - \frac{3 \tau_\pi}{(u \cdot p)^2} \, p^\alpha p^\beta p^\gamma \pi_{\alpha\beta} \dot{u}_\gamma + \frac{\tau_\pi}{2 (u \cdot p)^2} \, p^\alpha p^\beta p^\gamma \left(\nabla_\gamma \pi_{\alpha\beta} \right) \\ &\quad - \frac{\beta + (u \cdot p)^{-1}}{4 (u \cdot p)^2 \beta_\pi} \, p^\alpha p^\beta p^\gamma p^\delta \pi_{\alpha\beta} \pi_{\gamma\delta} \right] + \mathcal{O}(\delta^3). \end{split}$$

[R. S. Bhalerao, AJ, S. Pal, and V. Sreekanth, PRC 89, 054903 (2014)]

 The first-order correction can be compared to that due to Grad's 14-moment approximation

$$\delta f_{CE} = \frac{5f_0}{2(u \cdot p)(\epsilon + P)T} p^{\alpha} p^{\beta} \pi_{\alpha\beta}, \qquad \delta f_G = \frac{f_0}{2(\epsilon + P)T^2} p^{\alpha} p^{\beta} \pi_{\alpha\beta}$$

Effect of viscous corrections on observables

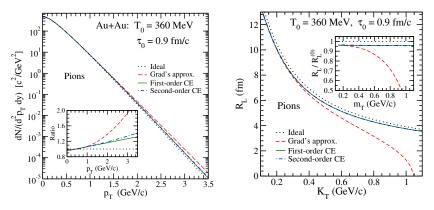


Figure: Effect of viscous corrections on pion spectra and longitudinal HBT radii.

[R. S. Bhalerao, AJ, S. Pal, and V. Sreekanth, PRC 89, 054903 (2014)]

• Grad's approximation for δf violate $1/\sqrt{m_T}$ scaling of the longitudinal HBT radii.

Shear evolution for low density fluids of massless particles

• For $\mu_b = m = 0$,

$$n^{\mu} = \Delta^{\mu}_{\alpha} \int \!\! dp \, p^{\alpha} \, \delta f \, , \quad \Pi = -\frac{1}{3} \Delta_{\alpha\beta} \int \!\! dP \, p^{\alpha} p^{\beta} \, \delta f \, , \quad \pi^{\mu\nu} = \Delta^{\mu\nu}_{\alpha\beta} \int \!\! dp \, p^{\alpha} p^{\beta} \, \delta f \, .$$

 Using 14-moment approximation [G. S. Denicol, T. Koide and D. H. Rischke, PRL 105, 162501 (2010)],

$$\dot{\pi}^{\langle\mu\nu\rangle} + \frac{\pi^{\mu\nu}}{\tau_\pi} = 2\beta_\pi \sigma^{\mu\nu} - \frac{4}{3}\pi^{\mu\nu}\theta + 2\pi_\gamma^{\langle\mu}\omega^{\nu\rangle\gamma} - \frac{10}{7}\pi_\gamma^{\langle\mu}\sigma^{\nu\rangle\gamma}, \qquad \beta_\pi = \frac{4P}{5}.$$

Shear evolution for low density fluids of massless particles

• For $\mu_b = m = 0$,

$$n^{\mu} = \Delta^{\mu}_{\alpha} \int \!\! dp \; p^{\alpha} \; \delta f \, , \quad \Pi = -\frac{1}{3} \Delta_{\alpha\beta} \int \!\! dP \; p^{\alpha} p^{\beta} \; \delta f \, , \quad \pi^{\mu\nu} = \Delta^{\mu\nu}_{\alpha\beta} \int \!\! dp \; p^{\alpha} p^{\beta} \; \delta f \, .$$

 Using 14-moment approximation [G. S. Denicol, T. Koide and D. H. Rischke, PRL 105, 162501 (2010)],

$$\dot{\pi}^{\langle\mu\nu\rangle} + \frac{\pi^{\mu\nu}}{\tau_{\pi}} = 2\beta_{\pi}\sigma^{\mu\nu} - \frac{4}{3}\pi^{\mu\nu}\theta + 2\pi^{\langle\mu}_{\gamma}\omega^{\nu\rangle\gamma} - \frac{10}{7}\pi^{\langle\mu}_{\gamma}\sigma^{\nu\rangle\gamma}, \qquad \beta_{\pi} = \frac{4P}{5}.$$

 Using Champan-Enskog like iterative solution of the Boltzmann equation [AJ, PRC 87, 051901 (2013)],

$$\dot{\pi}^{\langle\mu\nu\rangle} + \frac{\pi^{\mu\nu}}{\tau_{\pi}} = 2\beta_{\pi}\sigma^{\mu\nu} - \frac{4}{3}\pi^{\mu\nu}\theta + 2\pi^{\langle\mu}_{\gamma}\omega^{\nu\rangle\gamma} - \frac{10}{7}\pi^{\langle\mu}_{\gamma}\sigma^{\nu\rangle\gamma}, \qquad \beta_{\pi} = \frac{4P}{5}.$$

Identical in the conformal case, not in general!

Shear evolution for low density fluids of massless particles

• For $\mu_b = m = 0$,

$$n^{\mu} = \Delta^{\mu}_{\alpha} \int \!\! dp \; p^{\alpha} \; \delta f \, , \quad \Pi = -\frac{1}{3} \Delta_{\alpha\beta} \int \!\! dP \; p^{\alpha} p^{\beta} \; \delta f \, , \quad \pi^{\mu\nu} = \Delta^{\mu\nu}_{\alpha\beta} \int \!\! dp \; p^{\alpha} p^{\beta} \; \delta f \, .$$

 Using 14-moment approximation [G. S. Denicol, T. Koide and D. H. Rischke, PRL 105, 162501 (2010)],

$$\dot{\pi}^{\langle\mu\nu\rangle} + \frac{\pi^{\mu\nu}}{\tau_{\pi}} = 2\beta_{\pi}\sigma^{\mu\nu} - \frac{4}{3}\pi^{\mu\nu}\theta + 2\pi^{\langle\mu}_{\gamma}\omega^{\nu\rangle\gamma} - \frac{10}{7}\pi^{\langle\mu}_{\gamma}\sigma^{\nu\rangle\gamma}, \qquad \beta_{\pi} = \frac{4P}{5}.$$

 Using Champan-Enskog like iterative solution of the Boltzmann equation [AJ, PRC 87, 051901 (2013)],

$$\dot{\pi}^{\langle\mu\nu\rangle} + \frac{\pi^{\mu\nu}}{\tau_{\pi}} = 2\beta_{\pi}\sigma^{\mu\nu} - \frac{4}{3}\pi^{\mu\nu}\theta + 2\pi^{\langle\mu}_{\gamma}\omega^{\nu\rangle\gamma} - \frac{10}{7}\pi^{\langle\mu}_{\gamma}\sigma^{\nu\rangle\gamma}, \qquad \beta_{\pi} = \frac{4P}{5}.$$

Identical in the conformal case, not in general!

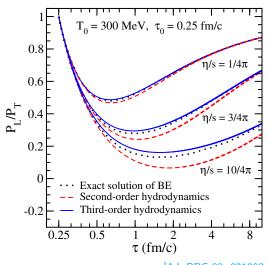
Third-order hydrodynamics

• Third-order equation for shear stress tensor [AJ, PRC 88, 021903 (2013)]:

$$\begin{split} \dot{\pi}^{\langle\mu\nu\rangle} &= -\frac{\pi^{\mu\nu}}{\tau_{\pi}} + 2\beta_{\pi}\sigma^{\mu\nu} + 2\pi_{\gamma}^{\langle\mu}\omega^{\nu\rangle\gamma} - \frac{10}{7}\pi_{\gamma}^{\langle\mu}\sigma^{\nu\rangle\gamma} - \frac{4}{3}\pi^{\mu\nu}\theta - \frac{10}{63}\pi^{\mu\nu}\theta^2 \\ &+ \tau_{\pi} \bigg[\frac{50}{7}\pi^{\rho\langle\mu}\omega^{\nu\rangle\gamma}\sigma_{\rho\gamma} - \frac{76}{245}\pi^{\mu\nu}\sigma^{\rho\gamma}\sigma_{\rho\gamma} - \frac{44}{49}\pi^{\rho\langle\mu}\sigma^{\nu\rangle\gamma}\sigma_{\rho\gamma} \\ &- \frac{2}{7}\pi^{\rho\langle\mu}\omega^{\nu\rangle\gamma}\omega_{\rho\gamma} - \frac{2}{7}\omega^{\rho\langle\mu}\omega^{\nu\rangle\gamma}\pi_{\rho\gamma} + \frac{26}{21}\pi_{\gamma}^{\langle\mu}\omega^{\nu\rangle\gamma}\theta - \frac{2}{3}\pi_{\gamma}^{\langle\mu}\sigma^{\nu\rangle\gamma}\theta \bigg] \\ &- \frac{24}{35}\nabla^{\langle\mu}\left(\pi^{\nu\rangle\gamma}\dot{u}_{\gamma}\tau_{\pi}\right) + \frac{6}{7}\nabla_{\gamma}\left(\tau_{\pi}\dot{u}^{\gamma}\pi^{\langle\mu\nu\rangle}\right) + \frac{4}{35}\nabla^{\langle\mu}\left(\tau_{\pi}\nabla_{\gamma}\pi^{\nu\rangle\gamma}\right) \\ &- \frac{2}{7}\nabla_{\gamma}\left(\tau_{\pi}\nabla^{\langle\mu}\pi^{\nu\rangle\gamma}\right) - \frac{1}{7}\nabla_{\gamma}\left(\tau_{\pi}\nabla^{\gamma}\pi^{\langle\mu\nu\rangle}\right) + \frac{12}{7}\nabla_{\gamma}\left(\tau_{\pi}\dot{u}^{\langle\mu}\pi^{\nu\rangle\gamma}\right). \end{split}$$

- 14 new transport coefficients obtained; 15 predicted from conformal analysis [S. Grozdanov and N. Kaplis, PRD 93, 066012 (2016)].
- Misses $\omega^{\rho\langle\mu}\omega^{\nu\rangle\gamma}\omega_{\rho\gamma}$ similar to $\omega^{\rho\langle\mu}\omega^{\nu\rangle}_{\rho}$ at second-order.

One dimensional Bjorken evolution of pressure anisotropy



Exact solution of the BE:

[W. Florkowski, R. Ryblewski and M. Strickland, PRC 88, 024903 (2013); NPA 916, 249 (2013); W. Florkowski, E. Maksymiuk, R. Ryblewski and M. Strickland, PRC 89,054908 (2014); W. Florkowski and E. Maksymiuk, JPG 42, 045106 (2015)]

[AJ, PRC 88, 021903 (2013)]

Low density fluids of massive particles

ullet Massive particles m
eq 0 and low net Baryon number density $\mu_{m{b}} = 0$

$$n^{\mu} = \Delta^{\mu}_{\alpha} \int dp \ p^{\alpha} \ \delta f \, , \quad \Pi = -\frac{1}{3} \Delta_{\alpha\beta} \int dP \ p^{\alpha} p^{\beta} \ \delta f \, , \quad \pi^{\mu\nu} = \Delta^{\mu\nu}_{\alpha\beta} \int dp \ p^{\alpha} p^{\beta} \ \delta f \, .$$

Second-order evolution equations are obtained as,

$$\dot{\Pi} = -\frac{\Pi}{\tau_{\Pi}} - \beta_{\Pi}\theta - \delta_{\Pi\Pi}\Pi\theta + \lambda_{\Pi\pi}\pi^{\mu\nu}\sigma_{\mu\nu},$$

$$\dot{\pi}^{\langle\mu\nu\rangle} = -\frac{\pi^{\mu\nu}}{\tau_{\pi}} + 2\beta_{\pi}\sigma^{\mu\nu} + 2\pi^{\langle\mu}_{\gamma}\omega^{\nu\rangle\gamma} - \tau_{\pi\pi}\pi^{\langle\mu}_{\gamma}\sigma^{\nu\rangle\gamma} - \delta_{\pi\pi}\pi^{\mu\nu}\theta + \lambda_{\pi\Pi}\Pi\sigma^{\mu\nu}.$$

- In relaxation-time approximation, $\tau_\Pi = \tau_\pi = \tau_R \ \Rightarrow \ \zeta/\eta = \beta_\Pi/\beta_\pi.$
- For $m/T \ll 1$, $\frac{\zeta}{\eta} = \Lambda \left(\frac{1}{3} c_s^2\right)^2, \qquad \Lambda = \begin{cases} 75 & \text{for MB} \\ 48 & \text{for FD} \\ \infty & \text{for BE} \\ 15 & \text{Weinberg} \end{cases}$

[AJ, R. Ryblewski, M. Strickland, PRC 90, 044908 (2014); W. Florkowski, AJ, E. Maksymiuk, R. Ryblewski, M. Strickland, PRC 91, 054907 (2015)]

One dimensional Bjorken evolution

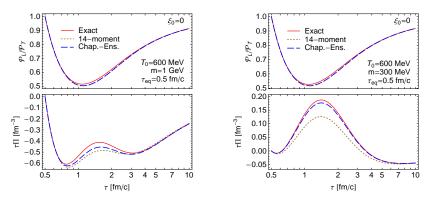


Figure: [AJ, R. Ryblewski, M. Strickland, PRC 90, 044908 (2014); W. Florkowski, AJ, E. Maksymiuk, R. Ryblewski, M. Strickland, PRC 91, 054907 (2015)].

- Chapman-Enskog method performs better than moment method.
- Results valid for all distributions.

High density fluids of massless particles

• Massless particles m=0 and net Baryon number density $\mu_b \neq 0$,

$$n^\mu = \Delta^\mu_\alpha \! \int \!\! dp \, p^\alpha \, \delta f \, , \quad \Pi = -\frac{1}{3} \Delta_{\alpha\beta} \! \int \!\! dP \, p^\alpha p^\beta \, \delta f \, , \quad \pi^{\mu\nu} = \Delta^{\mu\nu}_{\alpha\beta} \! \int \!\! dp \, p^\alpha p^\beta \, \delta f \, .$$

Second-order evolution equations are obtained as,

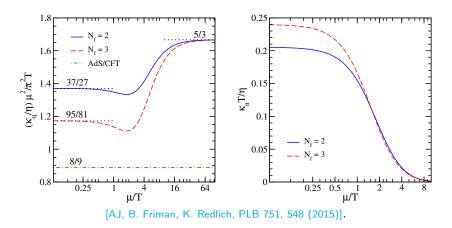
$$\begin{split} \dot{n}^{\langle\mu\rangle} + \frac{n^\mu}{\tau_n} &= \beta_n \nabla^\mu \alpha - n_\nu \omega^{\nu\mu} - n^\mu \theta - \frac{9}{5} n_\nu \sigma^{\nu\mu}, \\ \dot{\pi}^{\langle\mu\nu\rangle} + \frac{\pi^{\mu\nu}}{\tau_\pi} &= 2\beta_\pi \sigma^{\mu\nu} + 2\pi_\gamma^{\langle\mu} \omega^{\nu\rangle\gamma} - \frac{4}{3} \pi^{\mu\nu} \theta - \frac{10}{7} \pi_\gamma^{\langle\mu} \sigma^{\nu\rangle\gamma}. \end{split}$$

- Charge: $\kappa_n/\eta=\beta_n/\beta_\pi$; heat: $\kappa_q/\eta=(\beta_n/\beta_\pi)[(\epsilon+P)/nT]^2$.
- Wiedemann-Franz law [AJ, B. Friman, K. Redlich, PLB 751, 548 (2015)]:

$$\frac{\kappa_q}{\eta} = C \frac{\pi^2 T}{\mu^2}, \quad C = \begin{cases} 37/27 & \text{for 2 flavor QGP, } \mu/T \ll 1\\ 95/81 & \text{for 3 flavor QGP, } \mu/T \ll 1\\ 5/3 & \text{for } \mu/T \gg 1\\ 8/9 & \text{AdS/CFT[Son \& Starinets, JHEP 0603, 052 (2006)]} \end{cases}$$

(μ : quark chemical potential)

Heat and charge conductivity



- Intriguing similarity with AdS/CFT results for heat conductivity.
- At high densities, charge conductivity of QGP is small compared to shear viscosity.

17

Summary

- One can derive causal hydrodynamics from Boltzmann equation without resorting to moment method for δf .
- The simplest case with relaxation-time approximation is presented here.
- It is consistent with aHydro in the limit of small anisotropy [L. Tinti, PRC 94, 044902 (2016)].
- The method presented here seems to work better than 14-moment approximation.
- Interesting features for the ratio of transport coefficients observed within relaxation-time approximation.
- RG method can be used to solve the Boltzmann equation with 2 ↔ 2 collision kernel and derive second-order hydro equations [K. Tsumura, Y. Kikuchi, T. Kunihiro, PRD 92, 085048 (2015); PRC 92, 064909 (2015); 1604.07458].

Thank you for your attention!

Backup slide 1: Non-local Collision term

• Collision term generalised to include non-local effects by including gradients of f(x, p)

$$C[f]_{\mathrm{gen}} = C[f] + \partial_{\mu} (A^{\mu} f) + \partial_{\mu} \partial_{\nu} (B^{\mu\nu} f)$$

Where A^{μ} and $B^{\mu\nu}$ are tensor coefficients of the non-local terms.

 \bullet This form of collision term explicitly derived for 2 \leftrightarrow 2 elastic collision:

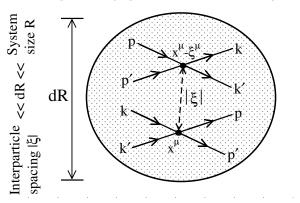
$$C[f] = \frac{1}{2} \int dp' dk \ dk' \ W_{pp' \to kk'} \left(f_k f_{k'} \tilde{f}_p \tilde{f}_{p'} - f_p f_{p'} \tilde{f}_k \tilde{f}_{k'} \right)$$

Where, $W_{pp'\to kk'}$ is the transition matrix element and $f_k=f(k,x)$.

• Probability of the process $(kk' \to pp') \propto f_k f_{k'} \tilde{f}_p \tilde{f}_{p'} \leftarrow$ occurs at xProbability of the process $(pp' \to kk') \propto f_p f_{p'} \tilde{f}_k \tilde{f}_{k'} \leftarrow$ also occurs at x

Backup slide 2: Non-local effects

INFINITESIMAL VOLUME ELEMENT IN A FLUID



Assumption that the two processes $(kk' \to pp')$ and $(pp' \to kk')$ occur at the same space-time point relaxed to include a separation ξ .

[AJ, R. S. Bhalerao and S. Pal, PLB 720, 347 (2013)]

Backup slide 3: Dissipative equations with non-locality

• Final evolution equations for the dissipative fluxes:

$$\begin{split} \Pi &= \tilde{a}\Pi_{\mathrm{NS}} - \beta_{\dot{\Pi}}\tau_{\Pi}\dot{\Pi} + \tau_{\Pi n}n \cdot \dot{u} - I_{\Pi n}\partial \cdot n - \delta_{\Pi\Pi}\Pi\theta + \lambda_{\Pi n}n \cdot \nabla\alpha \\ &+ \lambda_{\Pi \pi}\pi_{\mu\nu}\sigma^{\mu\nu} + \Lambda_{\Pi\dot{u}}\dot{u} \cdot \dot{u} + \Lambda_{\Pi\omega}\omega_{\mu\nu}\omega^{\nu\mu} + (8 \text{ terms}), \end{split}$$

$$\begin{split} \mathbf{n}^{\mu} &= \tilde{\mathbf{a}} \mathbf{n}_{\mathrm{NS}}^{\mu} - \beta_{\dot{\mathbf{n}}} \tau_{n} \dot{\mathbf{n}}^{\langle \mu \rangle} + \lambda_{nn} \mathbf{n}_{\nu} \omega^{\nu\mu} - \delta_{nn} \mathbf{n}^{\mu} \theta + I_{n\Pi} \nabla^{\mu} \Pi - I_{n\pi} \Delta^{\mu\nu} \partial_{\gamma} \pi_{\nu}^{\gamma} \\ &- \tau_{n\Pi} \Pi \dot{\mathbf{u}}^{\mu} - \tau_{n\pi} \pi^{\mu\nu} \dot{\mathbf{u}}_{\nu} + \lambda_{n\pi} \mathbf{n}_{\nu} \pi^{\mu\nu} + \lambda_{n\Pi} \Pi \mathbf{n}^{\mu} + \Lambda_{n\dot{\mathbf{u}}} \omega^{\mu\nu} \dot{\mathbf{u}}_{\nu} \\ &+ \Lambda_{n\omega} \Delta^{\mu}_{\nu} \partial_{\gamma} \omega^{\gamma\nu} + (9 \text{ terms}), \end{split}$$

$$\begin{split} \pi^{\mu\nu} &= \tilde{\mathbf{a}} \pi^{\mu\nu}_{\mathrm{NS}} - \beta_{\dot{\pi}} \tau_{\pi} \dot{\pi}^{\langle \mu\nu \rangle} + \tau_{\pi n} \mathbf{n}^{\langle \mu} \dot{\mathbf{u}}^{\nu \rangle} + I_{\pi n} \nabla^{\langle \mu} \mathbf{n}^{\nu \rangle} + \lambda_{\pi \pi} \pi^{\langle \mu}_{\rho} \omega^{\nu \rangle \rho} \\ &- \lambda_{\pi n} \mathbf{n}^{\langle \mu} \nabla^{\nu \rangle} \alpha - \tau_{\pi \pi} \pi^{\langle \mu}_{\rho} \sigma^{\nu \rangle \rho} - \delta_{\pi \pi} \pi^{\mu \nu} \theta + \Lambda_{\pi \dot{\mathbf{u}}} \dot{\mathbf{u}}^{\langle \mu} \dot{\mathbf{u}}^{\nu \rangle} \\ &+ \Lambda_{\pi \omega} \omega^{\langle \mu}_{\rho} \omega^{\nu \rangle \rho} + \chi_{1} \dot{b}_{2} \pi^{\mu \nu} + \chi_{2} \dot{\mathbf{u}}^{\langle \mu} \nabla^{\nu \rangle} b_{2} + \chi_{3} \nabla^{\langle \mu} \nabla^{\nu \rangle} b_{2}. \end{split}$$

• Where $\tilde{a}=(1-a)$, $\dot{X}=u^{\mu}\partial_{\mu}X$ and "8 terms" ("9 terms") involve second-order, scalar (vector) combinations of derivatives of b_1, b_2 .