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Introduction
@ Hydrodynamics describes the long-wavelength, low-frequency limit of
the microscopic dynamics of a system.

@ Relativistic hydrodynamics has been used to study high-energy
heavy-ion collisions with considerable success.

@ As all fluids are non-ideal in nature, dissipation must be included in
the formulation of hydrodynamic equations.

@ Relativistic generalization of the Navier-Stokes theory (first-order in
gradients) shows acausal behavior.

o Israel-Stewart theory (second-order corrections) restores causality.

@ However there are several ways in which one can derive a
second-order theory of relativistic dissipative hydrodynamics.

@ Here I discuss formulations based on kinetic theory.
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Ideal and dissipative hydrodynamics

@ Hydrodynamic equations are conservation of energy-momentum and
particle current, i.e., 9, T* =0 and 9, N* = 0.

] Ideal H

Dissipative

|

T = eutu” — PAM
NH = nut

Unknowns: ¢, P, n, u* =6
—_————

TH = eutu” — (P + M)A 4 7
N* = nu* + nt

e, P, n, u* I, 7" nt* =15

141+ 1+ 3 141+ 1+3+1+5+3
Equations: 0, 7" =0, 9O,N*=0, EOS =6
4+ 1 4+ 1

Closed set of equations

9 more equations required

o Here A* = gt — utu”.

@ Landau frame chosen: TH"u, = eut.
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Relaivistic kinetic theory

@ Kinetic theory: calculation of macroscopic quantities by means of
statistical description in terms of distribution function.

@ For large no. of particles, one can introduce a function f(x, p) which
gives a distribution of particle momenta at each space-time point.

@ In terms of the distribution function, the energy momentum tensor

and particle four-current can be written as:
TH(x) = = d3 P F(xp) i NE(X) = oo d3 “F(x, p)

For a system which is not in equilibrium, f = fy + 6f.

With suitable projections, the dissipative quantities can be written in
terms of 0f as:

1
M= —30as [dP pp’ of, w‘”’ZAilfﬁ/dppapﬂéf, n''= Ay [dp p® of.
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Dissipative evolution equations

@ In order to preserve causality, it is necessary to have relaxation-type
equations for dissipative quantities rather than constituent equations.

@ The best prescription [Denicol, Koide, Rischke, PRL 2010] is to consider

M= —%Aaﬁ dP p®p of, = Agg/dp pep?of, Al = Ag/dp pe of,

where 1 = ut9, M, Fluv) = Aggfraﬁ and AW = A [

@ To obtain 5.7", one can use the Boltzmann equation in the relaxation
time approximation:
u .
prof = ——PLsf.
TR

@ Keeping in mind that f = fy + 6f, and after some rearrangements,
: - 1 of
O0f = —fo— ——p'Vyf — —.
u-p TR
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Dissipative evolution equations contd.

o Substituting 6f in expressions for 1, ) and A"

. Mn A,
My — = =25
TR

.1
/dpp“pﬁ [fo TP V(o +5f)} :

Ay ™

v - 1
= —Ay; / dp p°p” [fo +——p'V, (fo+ 6f)} ,
TR u-p

n# . 1
Al 4 — = —Ag/dppa [fo + ——p'V, (fo + 5f)} .
TR u-p
@ The above equations are relaxation-type equations with a single
relaxation time-scale 7g.
@ Now the form of df needs to be specified.
e Grad's 14-moment method.

e Chapman-Enskog like iterative solution of the Boltzmann equation.

Amaresh Jaiswal MITP Workshop 6



Grad's 14-moment method

@ The equilibrium distribution functions can be written as
fo = [exp{yo(x,p)} + ™Y, wo=-B(u-p)+a, r=0,+1
o Away from equilibrium, f = [exp{y(x, p)} + r]~1, where
¢(x,p) = y(x,p) = yo(x, p) = e(x) = eu(x)p" + £ (x)P"p" + - --

@ Approximations: Taylor expansion around equilibrium up to linear in ¢
and truncated up to quadratic in p#

f="f+0df, Of =ffyp, where, fo=1—rf
@ Assumption: ¢, €, and ¢, are linear in I, n, and 7,
e =AM, e, =ANu+Bony, & = Aa(3upuy—2A2,)—Brug,n,)+Comu

@ Ao, A1, Az, By, By and ( are determined from the definitions of
dissipative quantities, matching conditions and frame definition.
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Iterative solution of the Boltzmann equation

@ Botzmann equation in the relaxation-time approximation:

PO f=——L(F—f) = F=fo— 5 pro.f
TR u-p

o Writing f = fy + 6f(Y) 46 ... and solving iteratively,

62 = T—pp p” o, (—8 fo>

TR

5FD — _

e Using 6f(1) in the definition of dissipative quantities, one gets
N=—-0ntr0, =« =201rc", n* =p,7r V'a.
o Using these first-order relations in 6f(1),
0f = ()\nl'l + Annap® + Aﬂﬂagpo‘pﬁ) fofo.

@ ldentical to small anisotropy expansion in aHydro; see talk by L. Tinti.
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Second-order viscous corrections

@ For a system of massless particles at vanishing chemical potential,
6f = 0f(M 45 can be written as

pop T,

f . BB
sf= 10 OB[T p PP wgy —

5
———— P’ ap— —
26, (u-p) Y Br Luep 148, (u-p)

Tr 07, . u-p Tr
F3up) PP el T P s o 7 + 5 (V)

3.

__2Tn ey Tn o8,
(wp)2 PP P masty 4 0 g PUPTP " (Vymag)
B+ wp)™ 55 3

AT T p® 5°).
4(U‘P)2Bﬂ- P P P P TapT~s +O( )

[R. S. Bhalerao, AJ, S. Pal, and V. Sreekanth, PRC 89, 054903 (2014)]
@ The first-order correction can be compared to that due to Grad's
14-moment approximation
fo

5f
Stce = *pr, Sfe = —————— p°p’r,
9
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Effect of viscous corrections on observables

EITT T[T T T T[T T T T[T T T T[T T T TTTT[TTT1T3 L LI L T T ™
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E C ]
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o = 10 s, 09F . 14
2 Ldeal E r & 08 N - 1
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Figure: Effect of viscous corrections on pion spectra and longitudinal HBT radii.

[R. S. Bhalerao, AJ, S. Pal, and V. Sreekanth, PRC 89, 054903 (2014)]

e Grad's approximation for 0f violate 1/,/mt scaling of the
longitudinal HBT radii.
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Shear evolution for low density fluids of massless particles
e For uyp =m=20,
1 1%
nt = Atfdp p® 5f, M= —gAag dP p*pP 6f, = Agg/dppapﬁ Sf.
@ Using 14-moment approximation [G. S. Denicol, T. Koide and D. H. Rischke,

PRL 105, 162501 (2010)],

o 4 10 4P
LI 2ﬁﬂa‘”’ffw“”9+27T§“w”>77—7r,<y“0”>7, Br = —.

= (uv)
[ 3 7 5
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Shear evolution for low density fluids of massless particles
e For uyp =m=20,
1 1%
nt = Atfdp p® 5f, M= _gAaﬁ dP p*pP 6f, = Agg/dppapﬁ Sf.
@ Using 14-moment approximation [G. S. Denicol, T. Koide and D. H. Rischke,

PRL 105, 162501 (2010)],

o 4 10 4P
LI 2ﬁﬂa‘”’ffw“”9+277§“w”>77—7r,<y“0”>7, Br = —.

= (uv)
[ 3 7 5
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Shear evolution for low density fluids of massless particles
e For uyp =m=20,
1
nt = Atfdp p® 5f, M= _gAaﬁ dP p*pP 6f, = Agg/dppapﬁ Sf.

@ Using 14-moment approximation [G. S. Denicol, T. Koide and D. H. Rischke,
PRL 105, 162501 (2010)],

. i 4 10 4P

) 4 — 2,8770‘“'75%“”9+2W§“w”>7777r,<y“01’>7, Br = 5
@ Using Champan-Enskog like iterative solution of the Boltzmann

equation [AJ, PRC 87, 051901 (2013)],

oy T L 4 A~ 10 y 4P

ik )—I—; = 2Br0" —57'('“ 9+27T§“w >”’—77r§“0 ", Br = 5

@ Identical in the conformal case, not in general!
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Third-order hydrodynamics

@ Third-order equation for shear stress tensor [AJ, PRC 88, 021903 (2013)]:

p 1 4 )
ﬂ;_ﬂ + 26 ot + 27T<“w V)Y 707.[.’(#0.1/)7 _ gﬂ.ulfg 62 uu02

76 44
+7, {mewuw% — mﬁlw oG, — @Wﬂﬂlnggm

i) —

26< W) 2

V)Y 2 v
_ S aplu, >/wm _ ?wpww MW/W + i ving — gﬂua >19}

_%vw( Wy m)+ o, (Tﬂm</1,z/>)+ A ol ( vﬂm)
—%Vv (re vl )—fv (Fev ) +7v7 (eitin).

@ 14 new transport coefficients obtained; 15 predicted from conformal
analysis [S. Grozdanov and N. Kaplis, PRD 93, 066012 (2016)].

)

. . - 14
@ Misses cu”<”cu”>7wmY similar to w”{Hw p at second-order.
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One dimensional Bjorken evolution of pressure anisotropy

1ET 7
-\ T, =300 MeV, 1, =025 fmc ;
08l 4 Exact solution of the BE:
L Ts=1/4n ] [W. Florkowski, R. Ryblewski
0.6_— ] and M. Strickland, PRC 88,
R ] 024903 (2013); NPA 0916,
& 04 7 249 (2013); W. Florkowski,
Al L T 7 _ _
02— N e E. Maksymiuk, R. Ryblewski and
“t NI P M. Strickland, PRC 89,054908
N N/s = 10/4n (2014); W. Florkowski and
- - Exactsolutionof BE ] E. Maksymiuk, JPG 42, 045106
[ —-- Second-order hydrodynamics ] ’ ' '
-0.2 — Third-order hydrodynamics - (2015)]
I 11 1 I 11 1 I 11 | I 11| I 11 | I I_

025 05 1 2 4 8
T (fm/c)

[AJ, PRC 88, 021903 (2013)]
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Low density fluids of massive particles
@ Massive particles m # 0 and low net Baryon number density p, = 0
1
nt= Ag/dppa of, M= _§Aa5 dP p©pP 6f, = Agg/dppapﬁ of.

@ Second-order evolution equations are obtained as,
Mn

M= —— —Bnf — nnlo + Anxm o,
m
Sy _ T pv (b )Y _ (b )y _ pv v
T = + 2Br0t +2mw Tan oo Ornm 0 4+ ArnMot”.
T

@ In relaxation-time approximation, Tn = 7 = TR = (/1 = Bn/Bx.

e For m/T « 1, 75 for MB
¢ (1 L) ) 48 for FD
E =A 3 ) A= oo for BE

15 Weinberg
[AJ, R. Ryblewski, M. Strickland, PRC 90, 044908 (2014); W. Florkowski, AJ, E. Maksymiuk,

R. Ryblewski, M. Strickland, PRC 91, 054907 (2015)]
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One dimensional Bjorken evolution

— Exact
---- 14-moment
— - Chap.-Ens.
To=600 MeV
m=1 GeV
Teq=0.5 fm/c

Figure: [AJ, R. Ryblewski, M. Strickland, PRC 90, 044908 (2014);

7 [fm/c]

— Exact
-+ 14-moment
— - Chap.-Ens.
To=600 MeV
m=300 MeV
Teq=0.5 fm/c

7 [fm/c]

W. Florkowski, AJ,

E. Maksymiuk, R. Ryblewski, M. Strickland, PRC 91, 054907 (2015)].

@ Chapman-Enskog method performs better than moment method.

@ Results valid for all distributions.
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High density fluids of massless particles

@ Massless particles m = 0 and net Baryon number density up # 0,
1
nt= A" [dpp*5f, T= _gAaﬁ dP p*pP 6f, 7= Agg/dp pp” of.
@ Second-order evolution equations are obtained as,

# 9
a4 BnVFa — nyw'* — n*0 — =n,o"*,
Tn 5

i 4 10

- = 2B,0" + zﬂjyuwvw _ gﬂwfg - fy“a v
o Charge: kn/n = Bn/Br; heat: kq/n = (Bn/Bx)(e + P)/nT]2.
@ Wiedemann-Franz law [AJ, B. Friman, K. Redlich, PLB 751, 548 (2015)]:

37/27 for 2 flavor QGP, u/T < 1

7'T<HV> +

Kq 2T 95/81 for 3 flavor QGP, u/T <« 1
=0, C=
n 1 5/3 for p/ T >1
8/9 AdS/CFT Son & Starinets, JHEP 0603, 052 (2006)]

(w: quark chemical potential)
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Heat and charge conductivity

18—y 0.25 e
ro—N=2 5/3 1 C N ]

L6 —-N=3 . 02F ™ ]

[ - AdS/CFT ] t N i

=~ L g L \ ]
“e 14F 37727 / . 0.15F \ .
a3 i / 1 £ N \ ]
= / 1 B [ ]
\5_— o / - @ L 4
l2p BB ) ] 0.1 ]
X ] L ] . ]
L i N — N=2 ]

1_— b 0.05_— o N=3 ]

. & i - f E

I TR TTTE BTITEN PR Y U BPUPY FTRPI EPUE PP B Y

08 0.25 1 4 16 64 0 0.25 0.5 1 2 4 8

WT WT

[AJ, B. Friman, K. Redlich, PLB 751, 548 (2015)].
@ Intriguing similarity with AdS/CFT results for heat conductivity.

@ At high densities, charge conductivity of QGP is small compared to
shear viscosity.
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Summary

One can derive causal hydrodynamics from Boltzmann equation
without resorting to moment method for §f.

The simplest case with relaxation-time approximation is presented
here.

It is consistent with aHydro in the limit of small anisotropy [L. Tinti,
PRC 94, 044902 (2016)].

The method presented here seems to work better than 14-moment
approximation.

Interesting features for the ratio of transport coefficients observed
within relaxation-time approximation.

RG method can be used to solve the Boltzmann equation with 2 <> 2
collision kernel and derive second-order hydro equations [K. Tsumura,
Y. Kikuchi, T. Kunihiro, PRD 92, 085048 (2015); PRC 92, 064909 (2015); 1604.07458].
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Thank you for your attention!
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Backup slide 1: Non-local Collision term

@ Collision term generalised to include non-local effects by including
gradients of f(x, p)

Clflgen = C[f] + Ou (A*f) + 0,0, (B""'f)
Where A* and B* are tensor coefficients of the non-local terms.

@ This form of collision term explicitly derived for 2 +» 2 elastic collision:
1 .
clfl =5 / b dk dK' Wy ie (fifr ol )
Where, W,y _ i is the transition matrix element and f, = f(k, x).

@ Probability of the process (kk" — pp’) fkfk/fpfp/ <+ occurs at x
Probability of the process (pp’ — kk') o <+ also occurs at x

[AJ, R. S. Bhalerao and S. Pal, PLB 720, 347 (2013)]
Amaresh Jaiswal MITP Workshop 20



Backup slide 2: Non-local effects

INFINITESIMAL VOLUME ELEMENT IN A FLUID

size R

o
~

Interparticle __ gg << SYStem

spacing I€|

Assumption that the two proccesses (kk’ — pp’) and (pp’ — kk’) occur at the
same space-time point relaxed to include a seperation &.
[AJ, R. S. Bhalerao and S. Pal, PLB 720, 347 (2013)]
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Backup slide 3: Dissipative equations with non-locality

@ Final evolution equations for the dissipative fluxes:

M= &Mxs = Bamll +7man + i — Inpd - n = nnMo + Anan - Vo
+ )\HWWMVUMV =+ /\HIJL./ S U+ /\I_Iww,uz/wl/u + )

nt = anjg — BirnA™ 4 Ay’ — Spant0 + l,a VAT — Inz APV Oy )
— 7ond* — 1m0y, + Apen, ™ 4+ ApnMn? + A, p0™ 0y,
+ Ao APD WYY ,

T — 571% _ ﬁﬂ_ﬂrﬁ-ww + Twnn<"u”> + ,mvw,,w + /\mﬂﬁuwvm

— AtV o — Tﬂwﬂﬁ“awp — O+ Ny )

+ ArwwfwP + + -

o Where 5= (1 —a), X = v, X and " e ") involve

second-order, scalar (vector) combinations of derivatives of by, bs.
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