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The Little Bang (credit: Paul Sorensen/Chun Shen)
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Prologue

Initial production of new matter
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(After M. Strickland, arXiv:1410.5786)
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Prologue

Relativistic viscous hydrodynamics has become the workhorse of
dynamical modeling of ultra-relativistic heavy-ion collisions
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Event-by-event shape and flow fluctuations rule!
(Alver and Roland, PRC81 (2010) 054905)

• Each event has a different initial shape and density distribution, characterized by different set of

harmonic eccentricity coefficients εn

• Each event develops its individual hydrodynamic flow, characterized by a set of harmonic flow

coefficients vn and flow angles ψn

• At small impact parameters fluctuations (“hot spots”) dominate over geometric overlap effects

(Alver & Roland, PRC81 (2010) 054905; Qin, Petersen, Bass, Müller, PRC82 (2010) 064903)

U. Heinz RETUNE2012, 20-24 June 2012 20(47)

How anisotropic flow is measured:

Definition of flow coefficients:

dN (i)

dy pTdpT dφp
(b) =

dN (i)

dy pTdpT
(b)

(
1 + 2

∞∑

n=1

v(i)
n (y, pT ; b) cos

(
n(φp−Ψ(i)

n )
))

.

Define event average {. . .}, ensemble average 〈. . .〉

Flow coefficients vn typically extracted from azimuthal correlations (k-particle cumu-
lants). E.g. k = 2, 4:

cn{2} = 〈{eni(φ1−φ2)}〉 = 〈{eni(φ1−ψn)}{e−ni(φ2−ψn)} + δ2〉 = 〈v2n + δ2〉
cn{4} = 〈{eni(φ1+φ2−φ3−φ4)}〉 − 2〈{eni(φ1−φ2)}〉 = 〈−v4n + δ4〉

vn is correlated with the event plane while δn is not (“non-flow”). δ2 ∼ 1/M , δ4 ∼ 1/M3.
4th-order cumulant is free of 2-particle non-flow correlations.

These measures are affected by event-by-event flow fluctuations:

〈v22〉 = 〈v2〉2 + σ2, 〈v42〉 = 〈v2〉4 + 6σ2〈v2〉2

vn{k} denotes the value of vn extracted from the kth-order cumulant:

v2{2} =
√

〈v22〉, v2{4} = 4
√

2〈v22〉2 − 〈v42〉
U. Heinz Argonne National Lab, 9/5/2014 16(45)
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https://u.osu.edu/vishnu: A product of the JET Collaboration
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Prologue

Relativistic viscous hydrodynamics has become the workhorse of
dynamical modeling of ultra-relativistic heavy-ion collisions

It has been successfully used in a Bayesian analysis of LHC Pb+Pb
collision data for putting meaningful constraints on the initial
conditions and medium properties of QGP created in heavy-ion
collisions:
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temperature-dependent viscosities from 
the calibrated posterior:

Calibrated Posterior Distribution

Key Results:
• excellent agreement with data, simultaneous

description of v2, v3 and v4 data
• initial condition favors scaling properties of IP-Glasma
• non-zero bulk viscosity
• temperature dependence of η/s requires data at

several beam energies to pin down

p≈0: IP-Glasma type scaling

Tsw⩽Tc

(J. Bernhard et al., PRC94 (2016) 024907) 
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Prologue

Relativistic viscous hydrodynamics has become the workhorse of
dynamical modeling of ultra-relativistic heavy-ion collisions

However, the kinematics of ultra-relativistic heavy-ion collisions
introduces a complication that severely limits the applicability of
standard viscous relativistic fluid dynamics:
large viscous stresses caused by large initial anisotropies
between the longitudinal and transverse expansion rates
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Strong initial longitudinal-transverse pressure anisotropies

(From M. Strickland, arXiv:1410.5786)
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Motivation

Relativistic viscous hydrodynamics has become the workhorse of
dynamical modeling of ultra-relativistic heavy-ion collisions
It is an effective macroscopic description based on coarse-graining
(gradient expansion) of the microscopic dynamics

Its systematic construction is still a matter of debate, complicated by
the existence of a complex hierarchy of micro- and macroscopic time
scales that are not well separated in relativistic heavy-ion collisions
Exact solutions of the highly nonlinear microscopic dynamics can
serve as a testbed for macroscopic hydrodynamic approximation
schemes, but are hard to come by.
Exact solutions have been found for weakly interacting systems with
highly symmetric flow patterns and density distributions:
Bjorken and Gubser flow (RTA),
FLRW universe (full Boltzmann collision term)
Can be used to test different hydrodynamic expansion schemes for the
Boltzmann equation

Ulrich Heinz (Ohio State) Hydrodynamics for HICs MITP, 10/10/2016 12 / 35



Prologue Kinetic theory vs. hydrodynamics Exact BE solutions Results Conclusions

Motivation

Relativistic viscous hydrodynamics has become the workhorse of
dynamical modeling of ultra-relativistic heavy-ion collisions
It is an effective macroscopic description based on coarse-graining
(gradient expansion) of the microscopic dynamics
Its systematic construction is still a matter of debate, complicated by
the existence of a complex hierarchy of micro- and macroscopic time
scales that are not well separated in relativistic heavy-ion collisions

Exact solutions of the highly nonlinear microscopic dynamics can
serve as a testbed for macroscopic hydrodynamic approximation
schemes, but are hard to come by.
Exact solutions have been found for weakly interacting systems with
highly symmetric flow patterns and density distributions:
Bjorken and Gubser flow (RTA),
FLRW universe (full Boltzmann collision term)
Can be used to test different hydrodynamic expansion schemes for the
Boltzmann equation

Ulrich Heinz (Ohio State) Hydrodynamics for HICs MITP, 10/10/2016 12 / 35



Prologue Kinetic theory vs. hydrodynamics Exact BE solutions Results Conclusions

Motivation

Relativistic viscous hydrodynamics has become the workhorse of
dynamical modeling of ultra-relativistic heavy-ion collisions
It is an effective macroscopic description based on coarse-graining
(gradient expansion) of the microscopic dynamics
Its systematic construction is still a matter of debate, complicated by
the existence of a complex hierarchy of micro- and macroscopic time
scales that are not well separated in relativistic heavy-ion collisions
Exact solutions of the highly nonlinear microscopic dynamics can
serve as a testbed for macroscopic hydrodynamic approximation
schemes, but are hard to come by.

Exact solutions have been found for weakly interacting systems with
highly symmetric flow patterns and density distributions:
Bjorken and Gubser flow (RTA),
FLRW universe (full Boltzmann collision term)
Can be used to test different hydrodynamic expansion schemes for the
Boltzmann equation

Ulrich Heinz (Ohio State) Hydrodynamics for HICs MITP, 10/10/2016 12 / 35



Prologue Kinetic theory vs. hydrodynamics Exact BE solutions Results Conclusions

Motivation

Relativistic viscous hydrodynamics has become the workhorse of
dynamical modeling of ultra-relativistic heavy-ion collisions
It is an effective macroscopic description based on coarse-graining
(gradient expansion) of the microscopic dynamics
Its systematic construction is still a matter of debate, complicated by
the existence of a complex hierarchy of micro- and macroscopic time
scales that are not well separated in relativistic heavy-ion collisions
Exact solutions of the highly nonlinear microscopic dynamics can
serve as a testbed for macroscopic hydrodynamic approximation
schemes, but are hard to come by.
Exact solutions have been found for weakly interacting systems with
highly symmetric flow patterns and density distributions:
Bjorken and Gubser flow (RTA),
FLRW universe (full Boltzmann collision term)

Can be used to test different hydrodynamic expansion schemes for the
Boltzmann equation

Ulrich Heinz (Ohio State) Hydrodynamics for HICs MITP, 10/10/2016 12 / 35



Prologue Kinetic theory vs. hydrodynamics Exact BE solutions Results Conclusions

Motivation

Relativistic viscous hydrodynamics has become the workhorse of
dynamical modeling of ultra-relativistic heavy-ion collisions
It is an effective macroscopic description based on coarse-graining
(gradient expansion) of the microscopic dynamics
Its systematic construction is still a matter of debate, complicated by
the existence of a complex hierarchy of micro- and macroscopic time
scales that are not well separated in relativistic heavy-ion collisions
Exact solutions of the highly nonlinear microscopic dynamics can
serve as a testbed for macroscopic hydrodynamic approximation
schemes, but are hard to come by.
Exact solutions have been found for weakly interacting systems with
highly symmetric flow patterns and density distributions:
Bjorken and Gubser flow (RTA),
FLRW universe (full Boltzmann collision term)
Can be used to test different hydrodynamic expansion schemes for the
Boltzmann equation

Ulrich Heinz (Ohio State) Hydrodynamics for HICs MITP, 10/10/2016 12 / 35



Prologue Kinetic theory vs. hydrodynamics Exact BE solutions Results Conclusions

Overview

1 Prologue

2 Kinetic theory vs. hydrodynamics

3 Exact solutions of the Boltzmann equation
Systems undergoing Bjorken flow
Systems undergoing Gubser flow
Hydrodynamics of Gubser flow

4 Results: Comparison of hydrodynamic approximations with exact BE
Bjorken flow
Gubser flow

5 Conclusions

Ulrich Heinz (Ohio State) Hydrodynamics for HICs MITP, 10/10/2016 13 / 35



Prologue Kinetic theory vs. hydrodynamics Exact BE solutions Results Conclusions

Kinetic theory vs. hydrodynamics

Both simultaneously valid if weakly coupled and small pressure gradients.

Form of hydro equations remains unchanged for strongly coupled systems.

Boltzmann Equation in Relaxation Time Approximation (RTA):

pµ∂µf (x , p) = C (x , p) =
p·u(x)

τrel(x)

(
feq(x , p)−f (x , p)

)

For conformal systems τrel(x) = c/T (x) = 5η/(ST ) ≡ 5η̄/T (x).

Macroscopic currents:

jµ(x) =

∫

p
pµ f (x , p) ≡ 〈pµ〉; Tµν(x) =

∫

p
pµ pν f (x , p) ≡ 〈pµpν〉

where

∫

p
· · · ≡ g

(2π)3

∫
d3p

Ep
· · · ≡ 〈. . . 〉
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Hydrodynamics from kinetic theory (I):

Expand the solution f (x , p) of the Boltzmann equation as

f (x , p) = f0(x , p) + δf (x , p)
(∣∣δf /f0

∣∣� 1
)

where f0 is parametrized through macroscopic observables as

f0(x , p) = f0

(√
pµΞµν(x)pν − µ̃(x)

T̃ (x)

)

where Ξµν(x) = uµ(x)uν(x)− Φ(x)∆µν(x) + ξµν(x).

uµ(x) defines the local fluid rest frame (LRF).
∆µν = gµν−uµuν is the spatial projector in the LRF.
T̃ (x), µ̃(x) are the effective temperature and chem. potential in the LRF.
Φ(x) partially accounts for bulk viscous effects in expanding systems.
ξµν(x) describes deviations from local momentum isotropy in

anisotropically expanding systems due to shear viscosity.
Ulrich Heinz (Ohio State) Hydrodynamics for HICs MITP, 10/10/2016 15 / 35
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Hydrodynamics from kinetic theory (II):

uµ(x), T̃ (x), µ̃(x) are fixed by the Landau matching conditions:

Tµ
νu
ν = E(T̃ , µ̃; ξ,Φ)uµ;

〈
u·p
〉
δf

=
〈

(u·p)2
〉
δf

= 0

E is the LRF energy density. We introduce the true local temperature
T (T̃ , µ̃; ξ,Φ) and chemical potential µ(T̃ , µ̃; ξ,Φ) by demanding
E(T̃ , µ̃; ξ,Φ)=Eeq(T , µ) and N (T̃ , µ̃; ξ,Φ)≡〈u·p〉f0 =R0(ξ,Φ)Neq(T , µ) (see
cited literature for R functions).
Writing

Tµν = Tµν
0 + δTµν ≡ Tµν

0 + Πµν , jµ = jµ0 + δjµ ≡ jµ0 + V µ,

the conservation laws

∂µT
µν(x) = 0, ∂µj

µ(x) =
N (x)−Neq(x)

τrel(x)

are sufficient to determine uµ(x), T (x), µ(x), but not the dissipative corrections
ξµν , Φ, Πµν , and V µ whose evolution is controlled by microscopic physics.
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Hydrodynamics from kinetic theory (III):

Different hydrodynamic approaches can be characterized by the different assumptions
they make about the dissipative corrections and/or the different approximations they use
to derive their dynamics from the underlying Boltzmann equation:

Ideal hydro: local momentum isotropy (ξµν = 0), Φ = Πµν = V µ = 0.

Navier-Stokes (NS) theory: local momentum isotropy (ξµν = 0), Φ = 0, ignores
microscopic relaxation time by postulating instantaneous constituent relations for
Πµν , V µ.

Israel-Stewart (IS) theory: local momentum isotropy (ξµν = 0), Φ = 0, evolves
Πµν , V µ dynamically, keeping only terms linear in Kn = λmfp/λmacro

Denicol-Niemi-Molnar-Rischke (DNMR) theory: improved IS theory that keeps
nonlinear terms up to order Kn2, Kn · Re−1 when evolving Πµν , V µ.

Anisotropic hydrodynamics (aHydro): allows for leading-order local momentum
anisotropy (ξµν , Φ 6= 0), evolved according to equations obtained from low-order
moments of BE, but ignores residual dissipative flows: Πµν = V µ = 0.

Viscous anisotropic hydrodynamics (vaHydro): improved aHydro that
additionally evolves residual dissipative flows Πµν , V µ with IS or DNMR theory.
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Bjorken flow

BE for systems with highly symmetric flows: I. Bjorken flow

Longitudinal boost invariance, transverse homogeneity (“physics on the light
cone”, no transverse flow) =⇒ uµ = (1, 0, 0, 0) in Milne coordinates (τ, r , φ, η)
where τ = (t2−z2)1/2 and η = 1

2
ln[(t−z)/(t+z)] =⇒ vz = z/t

Metric: ds2 = dτ 2−dr 2 − r 2dφ2 − τ 2dη2, gµν = diag(1, −1, −r 2, −τ 2)

Symmetry restricts possible dependence of distribution function f (x , p)
(Baym ’84, Florkowski et al. ’13, ’14):

f (x , p) = f (τ ; p⊥,w) where w = tpz − zE = τm⊥ sinh(y−η).

RTA BE simplifies to ordinary differential equation

∂τ f (τ ; p⊥,w) = − f (τ ; p⊥,w)− feq(τ ; p⊥,w)

τrel(τ)
.

Solution:

f (τ ; p⊥,w) = D(τ, τ0)f0(p⊥,w) +

∫ τ

τ0

dτ ′

τrel(τ ′)
D(τ, τ ′) feq(τ ′; p⊥,w)

where D(τ2, τ1) = exp

(
−
∫ τ2

τ1

dτ ′′

τrel(τ ′′)

)
.
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Gubser flow

BE for systems with highly symmetric flows: II. Gubser flow
Longitudinal boost invariance, azimuthally symmetric radial dependence (“physics
on the light cone” with azimuthally symmetric transverse flow)
(Gubser ’10, Gubser & Yarom ’11)
=⇒ uµ = (1, 0, 0, 0) in de Sitter coordinates (ρ, θ, φ, η) where

ρ(τ, r) = − sinh−1
(

1−q2τ2+q2r2

2qτ

)
and θ(τ, r) = tan−1

(
2qr

1+q2τ2−q2r2

)
.

=⇒ vz = z/t and vr =
2q2τ r

1+q2τ2+q2r2 where q is an arbitrary scale parameter.

Metric: dŝ2 = ds2/τ 2 = dρ2− cosh2ρ (dθ2 + sin2 θ dφ2)− dη2,
gµν = diag(1, − cosh2 ρ, − cosh2 ρ sin2 θ, −1)

Symmetry restricts possible dependence of distribution function f (x , p)

f (x , p) = f (ρ; p̂2
Ω, p̂η) where p̂2

Ω = p̂2
θ +

p̂2
φ

sin2 θ
and p̂η = w .

With T (τ, r) = T̂ (ρ(τ, r))/τ RTA BE simplifies to the ODE

∂

∂ρ
f (ρ; p̂2

Ω, p̂ς) = − T̂ (ρ)

c

[
f
(
ρ; p̂2

Ω, p̂ς
)
− feq

(
p̂ρ/T̂ (ρ)

)]
.

Solution:
f (ρ; p̂2

Ω,w) = D(ρ, ρ0)f0(p̂2
Ω,w) + 1

c

∫ ρ
ρ0

dρ′T̂ (ρ′)D(ρ, ρ′) feq(ρ′; p̂2
Ω,w)
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Gubser hydro

Hydrodynamic equations for systems with Gubser flow*:

The exact solution for f can be worked out for any “initial” condition
f0(p̂2

Ω,w) ≡ f (ρ0; p̂2
Ω,w). We here use equilibrium initial conditions, f0 = feq.

By taking hydrodynamic moments, the exact f yields the exact evolution of all
components of Tµν . Here, Πµν has only one independent component, πηη.

This exact solution of the BE can be compared to solutions of the various

hydrodynamic equations in de Sitter coordinates, using identical initial conditions.

Ideal: T̂ideal(ρ) = T̂0

cosh2/3(ρ)

NS: 1

T̂

dT̂
dρ

+ 2
3

tanh ρ = 1
3
π̄ηη(ρ) tanh ρ (viscous T -evolution)

with π̄ηη ≡ π̂ηη/(T̂ Ŝ) and π̂ηηNS = 4
3
η̂ tanh ρ where η̂

Ŝ ≡ η̄ = 1
5
T̂ τ̂rel

IS:
dπ̄ηη
dρ

+ 4
3

(
π̄ηη
)2

tanh ρ+
π̄ηη
τ̂rel

= 4
15

tanh ρ

DNMR:
dπ̄ηη
dρ

+ 4
3

(
π̄ηη
)2

tanh ρ+
π̄ηη
τ̂rel

= 4
15

tanh ρ+ 10
21
π̄ηη tanh ρ

aHydro: see M. Nopoush et al., PRD 91 (2015) 045007

vaHydro: in preparation – stay tuned!

———————-

*For Bjorken flow, including (0+1)-d vaHydro, see UH@QM14
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3
η̂ tanh ρ where η̂
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Bjorken flow

Bjorken flow (I)

Pressure anisotropy PL/PT vs. τ :
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In the right plot, IS theory yields negative PL/PT < 0!
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Bjorken flow

Bjorken flow (II)
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vaHydro agrees within a few % with exact result, even for very large η/S!
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Bjorken flow

Bjorken flow (III)
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Bjorken flow

Bjorken flow (IV)

Note: The analysis just presented (from Bazow, UH, Strickland, PRC 90 (’14)
054910) used the zeroth moment of the BE to close the set of equations, and did
not enforce the dynamical matching condition for PL−PT to be fully captured by
the dynamical evolution of ξ. As a result of this weakness, a δf̃ correction π̃ηη

needed to be propagated dynamically to achieve agreement with the exact
solution of the BE.

This flaw of Bazow, UH, Strickland, PRC 90 (’14) 054910 was recently fixed in
Molnar, Niemi, Rischke, arXiv:1606.09019. If ξ is properly matched to PL−PT ,
for Bjorken flow vaHydro exactly reduces to aHydro, i.e. there are no δf̃
correction at all! aHydro then reproduces the hydrodynamic moments of the
exact BE solution f.a.p.p. exactly.
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Bjorken flow

Bjorken flow (V)

Molnar, Niemi, Rischke, arXiv:1606.09019
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Gubser flow

Gubser flow I: temperature profile in (x , y) and (x , z)
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Gubser flow

Gubser flow II: ρ-evolution of temperature and shear stress

Kinetic Exact

2nd-order Hydro

1st-order Hydro

Ideal Hydro

Free Streaming
-4 -2 0 2 40.0

0.2

0.4

0.6

0.8

1.0
T` êT`
Hr 0L

4phês = 1

-4 -2 0 2 4-0.5

0.0

0.5

1.0

r

p
ππ

Kinetic Exact

2nd-order Hydro

1st-order Hydro

Ideal Hydro

Free Streaming

-3 -2 -1 0 1 2 30.0

0.2

0.4

0.6

0.8

1.0

T` êT`
Hr 0L

4phês = 10

-3 -2 -1 0 1 2 3-0.1

0.0

0.1

0.2

0.3

0.4

0.5

r

p
ππ

Note: π̄ςς ≡ π̄ηη ! Thermal equil. initial conditions at ρ0 = 0.
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Gubser flow

Gubser flow III: temperature evolution in de Sitter time ρ
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IS seems to work better than DNMR (!?)
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Gubser flow

Gubser flow IV: shear stress evolution in de Sitter time ρ
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Gubser flow

Gubser flow V: temperature evolution in Minkowski space
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Both seem to have problems at large r ↔ large negative ρ

Ulrich Heinz (Ohio State) Hydrodynamics for HICs MITP, 10/10/2016 32 / 35



Prologue Kinetic theory vs. hydrodynamics Exact BE solutions Results Conclusions

Gubser flow

Gubser flow in aHydro: ρ-evolution of T and shear stress

M. Nopoush, R. Ryblewski, M. Strickland, PRD 91 (2015) 045007
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Thermal equil. initial conditions at ρ0 → −∞. aHydro works better than IS & DNMR
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Conclusions

Exact solutions of the Boltzmann equation with a relaxation time collision term for
systems undergoing Bjorken or Gubser flow enable precise tests of hydrodynamic
approximation schemes.

The new Gubser flow solution of the BE extends these tests to a situation that
resembles heavy-ion collisions where the created matter undergoes simultaneous
longitudinal and transverse expansion.

When compared with the exact solution, second-order viscous hydrodynamics (IS
and DNMR) works better than NS theory, anisotropic hydrodynamics (aHydro)
works better than hydrodynamic schemes based on an expansion around local
mometum isotropy (IS and DNMR), and viscous anisotropic hydrodynamic
(vaHydro) (which treats small viscous corrections as IS or DNMR but resums the
largest viscous terms) outperforms aHydro.
Performance hierarchy: vaHydro > aHydro > DNMR ∼ IS > NS > ideal fluid.
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