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m Relativistic viscous hydrodynamics has become the workhorse of
dynamical modeling of ultra-relativistic heavy-ion collisions
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000 00000000000

Event-by-event shape and flow fluctuations rule!
(Alver and Roland, PRC81 (2010) 054905)

)
x (fm)

e Each event has a different initial shape and density distribution, characterized by different set of
harmonic eccentricity coefficients €,,

e Each event develops its individual hydrodynamic flow, characterized by a set of harmonic flow
coefficients v,, and flow angles 1),

e At small impact parameters fluctuations (“hot spots”) dominate over geometric overlap effects
(Alver & Roland, PRC81 (2010) 054905; Qin, Petersen, Bass, Miiller, PRC82 (2010) 064903)
Definition of flow coefficients:
AN (@) AN @
dyprdprd, ~  dyprdpr

) [1+2 Z v® (y, pr; b) cos (n(qﬁp—\llgi)))

n=1
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https://u.osu.edu/vishnu: A product of the JET Collaboration
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m Relativistic viscous hydrodynamics has become the workhorse of
dynamical modeling of ultra-relativistic heavy-ion collisions

m It has been successfully used in a Bayesian analysis of LHC Pb+Pb
collision data for putting meaningful constraints on the initial
conditions and medium properties of QGP created in heavy-ion
collisions:
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m Relativistic viscous hydrodynamics has become the workhorse of
dynamical modeling of ultra-relativistic heavy-ion collisions

m However, the kinematics of ultra-relativistic heavy-ion collisions
introduces a complication that severely limits the applicability of
standard viscous relativistic fluid dynamics:
large viscous stresses caused by large initial anisotropies
between the longitudinal and transverse expansion rates
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Strong initial longitudinal-transverse pressure anisotropies
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Motivation

m Relativistic viscous hydrodynamics has become the workhorse of
dynamical modeling of ultra-relativistic heavy-ion collisions

m It is an effective macroscopic description based on coarse-graining
(gradient expansion) of the microscopic dynamics
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Motivation

Relativistic viscous hydrodynamics has become the workhorse of
dynamical modeling of ultra-relativistic heavy-ion collisions

It is an effective macroscopic description based on coarse-graining
(gradient expansion) of the microscopic dynamics

Its systematic construction is still a matter of debate, complicated by
the existence of a complex hierarchy of micro- and macroscopic time
scales that are not well separated in relativistic heavy-ion collisions
Exact solutions of the highly nonlinear microscopic dynamics can
serve as a testbed for macroscopic hydrodynamic approximation
schemes, but are hard to come by.

Exact solutions have been found for weakly interacting systems with
highly symmetric flow patterns and density distributions:

Bjorken and Gubser flow (RTA),

FLRW universe (full Boltzmann collision term)

Can be used to test different hydrodynamic expansion schemes for the

Boltzmann equation
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Kinetic theory vs. hydrodynamics

Both simultaneously valid if weakly coupled and small pressure gradients.
Form of hydro equations remains unchanged for strongly coupled systems

Boltzmann Equation in Relaxation Time Approximation (RTA):

i _ _ pu(x)
POuf(x,p) = Cloxsp) = =5 (ool )~ x,))

For conformal systems 7y1(x) = ¢/ T(x) = 5n/(ST) = 57/ T(x).
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Kinetic theory vs. hydrodynamics
Both simultaneously valid if weakly coupled and small pressure gradients.
Form of hydro equations remains unchanged for strongly coupled systems.

Boltzmann Equation in Relaxation Time Approximation (RTA):

i _ _ pu(x)
POuf(x,p) = Cloxsp) = =5 (ool )~ x,))

For conformal systems 7y1(x) = ¢/ T(x) = 5n/(ST) = 57/ T(x).

Macroscopic currents:

j(x) = / o F(xp) = (P TH(x) = / b B Flx,p) = (p5)
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g d*p
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Kinetic theory vs. hydrodynamics

Hydrodynamics from kinetic theory (I):

Expand the solution f(x, p) of the Boltzmann equation as

f(x, p) = fo(x, p) + 6f(x, p) <|5f/fo\ < 1)

where fy is parametrized through macroscopic observables as

Bx.p) = <\/Pu5“”(X)Pu - ﬁ(X)>

T(x)

where  =M(x) = u(x)u”(x) — ®(x)AHY(x) + £ (x).

ut(x) defines the local fluid rest frame (LRF).

AW = gt —yF ¥ is the spatial projector in the LRF.

T(x), fi(x) are the effective temperature and chem. potential in the LRF.
®(x) partially accounts for bulk viscous effects in expanding systems.

&M (x) describes deviations from local momentum isotropy in

anisotropically expanding systems due to shear viscosity.
Ulrich Heinz (Ohio State) Hydrodynamics for HICs MITP, 10/10/2016 15 / 35



Kinetic theory vs. hydrodynamics

Hydrodynamics from kinetic theory (I1):

ut(x), T(x), fi(x) are fixed by the Landau matching conditions:
oY — T o~ M. . — . 2 =

Thut = (T o) (wp) =((wp?) =0
& is the LRF energy density. We introduce the true local temperature
T(T,fi;&, ®) and chemical potential yu(T, fi; €, ®) by demanding
5( Ta [L; 5; q)):gcq( Ta ,U') and N( Ta ﬂ; fa (D)E <U'P>f0 :RO(& q))Ncq( Tv M) (See
cited literature for R functions).
Writing

T =T +6TH = T + N, =g+t =g+ ve,
the conservation laws
N(x) = Neg(x)

7'rel(X)

OuTH(x) =0, 9u"(x) =

are sufficient to determine u*(x), T(x), p(x), but not the dissipative corrections
gY@ MN* and V#* whose evolution is controlled by microscopic physics.
Ulrich Heinz (Ohio State) Hydrodynamics for HICs MITP, 10/10/2016 16 / 35



Kinetic theory vs. hydrodynamics

Hydrodynamics from kinetic theory (llI):

Different hydrodynamic approaches can be characterized by the different assumptions
they make about the dissipative corrections and/or the different approximations they use
to derive their dynamics from the underlying Boltzmann equation:

m Ideal hydro: local momentum isotropy (£# =0), ® = N*" = V# =0.
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Hydrodynamics from kinetic theory (llI):

Different hydrodynamic approaches can be characterized by the different assumptions
they make about the dissipative corrections and/or the different approximations they use
to derive their dynamics from the underlying Boltzmann equation:

m Ideal hydro: local momentum isotropy (£# =0), ® = N*" = V# =0.

m Navier-Stokes (NS) theory: local momentum isotropy (£"” = 0), ® = 0, ignores
microscopic relaxation time by postulating instantaneous constituent relations for
ne vk,

m Israel-Stewart (IS) theory: local momentum isotropy (§#” = 0), ® = 0, evolves
Mn*, V# dynamically, keeping only terms linear in Kn = Am¢p/Amacro

= Denicol-Niemi-Molnar-Rischke (DNMR) theory: improved IS theory that keeps
nonlinear terms up to order Kn?, Kn - Re™! when evolving M*¥, V*,
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Hydrodynamics from kinetic theory (llI):

Different hydrodynamic approaches can be characterized by the different assumptions
they make about the dissipative corrections and/or the different approximations they use
to derive their dynamics from the underlying Boltzmann equation:

Ideal hydro: local momentum isotropy (§*” =0), & =" = V¥ =0.

Navier-Stokes (NS) theory: local momentum isotropy (¢*” =0), ® =0, ignores
microscopic relaxation time by postulating instantaneous constituent relations for
ne vk,

Israel-Stewart (IS) theory: local momentum isotropy (§# = 0), ® = 0, evolves
Mn*, V# dynamically, keeping only terms linear in Kn = Am¢p/Amacro
Denicol-Niemi-Molnar-Rischke (DNMR) theory: improved IS theory that keeps
nonlinear terms up to order Kn?, Kn - Re™! when evolving M*¥, V*,

Anisotropic hydrodynamics (aHydro): allows for leading-order local momentum
anisotropy (£"”, ® # 0), evolved according to equations obtained from low-order
moments of BE, but ignores residual dissipative flows: MN*" = V* = 0.
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Hydrodynamics from kinetic theory (llI):

Different hydrodynamic approaches can be characterized by the different assumptions
they make about the dissipative corrections and/or the different approximations they use
to derive their dynamics from the underlying Boltzmann equation:

Ideal hydro: local momentum isotropy (§*” =0), & =" = V¥ =0.

Navier-Stokes (NS) theory: local momentum isotropy (¢*” =0), ® =0, ignores
microscopic relaxation time by postulating instantaneous constituent relations for
ne vk,

Israel-Stewart (IS) theory: local momentum isotropy (§# = 0), ® = 0, evolves
Mn*, V# dynamically, keeping only terms linear in Kn = Am¢p/Amacro
Denicol-Niemi-Molnar-Rischke (DNMR) theory: improved IS theory that keeps
nonlinear terms up to order Kn?, Kn - Re™! when evolving M*¥, V*,

Anisotropic hydrodynamics (aHydro): allows for leading-order local momentum
anisotropy (£"”, ® # 0), evolved according to equations obtained from low-order
moments of BE, but ignores residual dissipative flows: MN*" = V* = 0.

Viscous anisotropic hydrodynamics (vaHydro): improved aHydro that
additionally evolves residual dissipative flows MN*”, V#* with IS or DNMR theory.
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Exact BE solutions

Overview

Exact solutions of the Boltzmann equation
m Systems undergoing Bjorken flow
m Systems undergoing Gubser flow
m Hydrodynamics of Gubser flow
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Exact BE solutions
°

Bjorken flow

BE for systems with highly symmetric flows: |. Bjorken flow

m Longitudinal boost invariance, transverse homogeneity ( “physics on the light
cone”, no transverse flow) = u* = (1,0, 0,0) in Milne coordinates (7, r, ¢, n)
where 7 = (t2—z%)Y/? and n = tin[(t—2)/(t+2)] = v. = z/t
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Exact BE solutions
°

Bjorken flow

BE for systems with highly symmetric flows: |. Bjorken flow

m Longitudinal boost invariance, transverse homogeneity ( “physics on the light
cone”, no transverse flow) = u* = (1,0, 0,0) in Milne coordinates (7, r, ¢, n)
where 7 = (t*—2z?)"/? and n = tin[(t—2)/(t+2)] = v. = z/t

m Metric: ds? = dr?—dr® — r’d¢? — m2dn?, guw = diag(1, -1, —r*, —72)

m Symmetry restricts possible dependence of distribution function f(x, p)

(Baym '84, Florkowski et al. '13, '14):

f(x,p) = f(7; pL,w) where w = tp, — zE = 7my sinh(y—n).
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m Symmetry restricts possible dependence of distribution function f(x, p)

(Baym '84, Florkowski et al. '13, '14):
f(x,p) = f(7; pL,w) where w = tp, — zE = 7my sinh(y—n).

m RTA BE simplifies to ordinary differential equation

_ f(T; PL, W) — eq(T; PL, W)

Trel(T) '

0, F(7ipL,w) =
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m Symmetry restricts possible dependence of distribution function f(x, p)

(Baym '84, Florkowski et al. '13, '14):
f(x,p) = f(7; pL,w) where w = tp, — zE = 7my sinh(y—n).

m RTA BE simplifies to ordinary differential equation

_ f(T; PL, W) — fe(l(T; PL, W)

Trel(T) '

0, F(7ipL,w) =

m Solution:

f(7:p1, w) = D(7, 7o) fo(pr, w) + /T

70

™ 1"
where D(m2,m1) = exp(—/ %)

1

dr’

D ! fec /;
Trcl(Tl) (T7T) 1(7— pJ—7W)
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Exact BE solutions
°

Gubser flow

BE for systems with highly symmetric flows: |lI. Gubser flow

m Longitudinal boost invariance, azimuthally symmetric radial dependence (“physics
on the light cone” with azimuthally symmetric transverse flow)
(Gubser '10, Gubser & Yarom '11)
= u* = (1,0,0,0) in de Sitter coordinates (p, 0, ¢, n) where

p(r,r) = —sinh™! (M) and 0(r,r) = tan~? (L)

2q1 1+q2m2—q2r2

= v, =2z/tand v, = — where g is an arbitrary scale parameter.

2q°Tr
1+q272+q?
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m Longitudinal boost invariance, azimuthally symmetric radial dependence (“physics
on the light cone” with azimuthally symmetric transverse flow)
(Gubser '10, Gubser & Yarom '11)
= u* = (1,0,0,0) in de Sitter coordinates (p, 0, ¢, n) where

p(r,r) = —sinh™! (M) and 0(r,r) = tan~? (L)

2q1 1+q2m2—q2r2

= v, =2z/tand v, = — where g is an arbitrary scale parameter.

2q°Tr
T+2r2+q2r?
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BE for systems with highly symmetric flows: |lI. Gubser flow

m Longitudinal boost invariance, azimuthally symmetric radial dependence (“physics

on the light cone” with azimuthally symmetric transverse flow)
(Gubser '10, Gubser & Yarom '11)
= u* = (1,0,0,0) in de Sitter coordinates (p, 0, ¢, n) where

p(r,r) = —sinh™! (M) and 0(r,r) = tan~? (L)

2q1 1+q2m2—q2r2
= v, = z/t and v,=1+q§"_l_72"'+"72
m Metric: d§* = ds*/72 = dp®— cosh®p (d6? + sin® 0 d¢?) — dn?,
guv = diag(1, — cosh? p, — cosh? p sin? 0, —1)
m Symmetry restricts possible dependence of distribution function f(x, p)

p;

and p, = w.
sin? 0 Pn

f(x,p) = f(p; Pa. Py) where pg = pj+
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Exact BE solutions
°

Gubser flow

BE for systems with highly symmetric flows: |lI. Gubser flow

m Longitudinal boost invariance, azimuthally symmetric radial dependence (“physics
on the light cone” with azimuthally symmetric transverse flow)
(Gubser '10, Gubser & Yarom '11)
= u* = (1,0,0,0) in de Sitter coordinates (p, 0, ¢, n) where

p(r,r) = —sinh™! (M) and 0(r,r) =tan™* (22+)

2q 14+¢?72—q%r?
Hléf_ﬁ where q is an arbitrary scale parameter.
m Metric: d§* = ds*/72 = dp®— cosh®p (d6? + sin® 0 d¢?) — dn?,
guv = diag(1, — cosh? p, — cosh? p sin? 0, —1)
m Symmetry restricts possible dependence of distribution function f(x, p)
Az

= v, =2z/tand v, =

f(x,p) = f(p; ﬁé,ﬁn) where p3 = pa —|— 0 and p, = w.

m With T(r,r) = T(p(r,r))/r RTA BE simplifies to the ODE
§p (07 P B) = —M [F(pi 8. 8.) = (/T ()] -
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= u* = (1,0,0,0) in de Sitter coordinates (p, 0, ¢, n) where

p(r,r) = —sinh™! (M) and 0(r,r) =tan™* (22+)

2q 1+q272—q%r2
= v; = z/t and v,=1+q§:’_72"+’qzr
m Metric: d§* = ds*/72 = dp®— cosh®p (d6? + sin® 0 d¢?) — dn?,
guv = diag(1, — cosh? p, — cosh? p sin? 0, —1)
m Symmetry restricts possible dependence of distribution function f(x, p)
B2
f(x,p) = f(p; ﬁé,ﬁn) where p3 = pa —|— 0 and p, = w.
» With T(r,r) = T(p(r,r))/m RTA BE simplifies to the ODE
19} 2 A p 22 A ap 5
8[7 ( ?Z? C) = _L |:f<pvpgl7p<) - féq(pﬂ/T(p))] N
m Solution:
f(pi B, w) = D(p, po)fo(Ba, w) + ¢ [7 dp'T(p") D(p. p') fealp'; B2, w)

Ulrich Heinz (Ohio State) Hydrodynamics for HICs MITP, 10/10/2016
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Exact BE solutions
°

Gubser hydro

Hydrodynamic equations for systems with Gubser flow*:

m The exact solution for f can be worked out for any “initial” condition
fo(p3, w) = f(po; pa, w). We here use equilibrium initial conditions, fy = fu,.

*For Bjorken flow, including (0+1)-d vaHydro, see UHOQM14
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m By taking hydrodynamic moments, the exact f yields the exact evolution of all
components of T#”. Here, [1*" has only one independent component, 7",
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Exact BE solutions
°

Gubser hydro

Hydrodynamic equations for systems with Gubser flow*

m The exact solution for f can be worked out for any “initial” condition
fo(p3, w) = f(po; pa, w). We here use equilibrium initial conditions, fy = fu,.

m By taking hydrodynamic moments, the exact f yields the exact evolution of all
components of T#”. Here, [1*" has only one independent component, 7",

m This exact solution of the BE can be compared to solutions of the various
hydrodynamic equations in de Sitter coordinates, using identical initial conditions.
.7 _ 7
m ldeal: Tidea](p) = ﬁ%()
m NS: 197 2 2tanhp = $77(p) tanhp  (viscous T-evolution)

~

with 7 = & /(TS) and A1 = 1) tanh p where El =i =tTHa
dall ﬂ.n
m IS: d: +3 (7rn) tanh p + %ml = st tanhp

tanh P+ 217r,, tanh p

dll
= DNMR: -+ ‘—3’ (71',])
aHydro: see M. Nopoush et aI., PRD 91 (2015) 045007
vaHydro: in preparation — stay tuned!

*For Bjorken flow, including (0+1)-d vaHydro, see UHOQM14
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Results

Overview

Results: Comparison of hydrodynamic approximations with exact BE

m Bjorken flow
m Gubser flow
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Bjorken flow

Bjorken flow (1)
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Pressure anisotropy P /Pt vs. T:
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In the right plot, IS theory yields negative P; /Pt < 0!
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Prologue Kinetic theory vs. hydrodynamics

Bjorken flow

Bjorken flow (I1)

t BE solutions

&= 10, 4m/8 = 10, Ty= 0.6 GeV

Conclusions
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vaHydro agrees within a few % with exact result, even for very large 1/S!
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Results

(e]e] lele]
Bjorken flow
Bjorken flow (11I)
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Results
000@0

Bjorken flow

Bjorken flow (1V)

Note: The analysis just presented (from Bazow, UH, Strickland, PRC 90 ('14)
054910) used the zeroth moment of the BE to close the set of equations, and did
not enforce the dynamical matching condition for P, — Pt to be fully captured by
the dynamical evolution of €. As a result of this weakness, a df correction 77"
needed to be propagated dynamically to achieve agreement with the exact
solution of the BE.

This flaw of Bazow, UH, Strickland, PRC 90 ('14) 054910 was recently fixed in
Molnar, Niemi, Rischke, arXiv:1606.09019. If £ is properly matched to P, —Pr,
for Bjorken flow vaHydro exactly reduces to aHydro, i.e. there are no 6f
correction at all! aHydro then reproduces the hydrodynamic moments of the
exact BE solution f.a.p.p. exactly.
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Prologue

Bjorken flow

Bjorken flow (V)

Molnar, Niemi, Rischke, arXiv:1606.09019

Kinetic theory vs. hydrodynamics

Exact BE solutions
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Results
©00000

Gubser flow

Gubser flow I: temperature profile in (x,y) and (x, z)
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Results

0@0000
Gubser flow
Gubser flow Il: p-evolution of temperature and shear stress
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Note: ¢ = 7)1 Thermal equil. initial conditions at po = 0.
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Gubser flow

Gubser flow ll:

Results

00e@000

temperature evolution in de Sitter time p
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IS seems to work better than DNMR (!7?)
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Results

Gubser flow

Gubser flow IV: shear stress evolution in de Sitter time p
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IS seems to work better than DNMR (!7?)
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Results
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Gubser flow

Gubser flow V: temperature evolution in Minkowski space
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IS seems to work better than DNMR (!?)

Both seem to have problems at large r <> large negative p
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Prologue Kinetic theory vs. hydrodynamics Exact BE solutions Conclusions

Gubser flow

Gubser flow in aHydro: p-evolution of T and shear stress

M. Nopoush, R. Ryblewski, M. Strickland, PRD 91 (2015) 045007
4mn/s =1 4mn/s =3 4mn/s = 10
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Thermal equil. initial conditions at pp — —oo. aHydro works better than 1S-& DNMR
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Overview

Conclusions
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Conclusions

Conclusions

m Exact solutions of the Boltzmann equation with a relaxation time collision term for
systems undergoing Bjorken or Gubser flow enable precise tests of hydrodynamic
approximation schemes.

m The new Gubser flow solution of the BE extends these tests to a situation that
resembles heavy-ion collisions where the created matter undergoes simultaneous
longitudinal and transverse expansion.

m When compared with the exact solution, second-order viscous hydrodynamics (IS
and DNMR) works better than NS theory, anisotropic hydrodynamics (aHydro)
works better than hydrodynamic schemes based on an expansion around local
mometum isotropy (IS and DNMR), and viscous anisotropic hydrodynamic
(vaHydro) (which treats small viscous corrections as IS or DNMR but resums the
largest viscous terms) outperforms aHydro.

Performance hierarchy: vaHydro > aHydro > DNMR ~ IS > NS > ideal fluid.
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