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Dissipative hydrodynamics

Relativistic Navier-Stokes (NS) equations (Eckart, Landau)
— T ,uµ are the only hydrodynamic variables

energy-momentum conservation

∂µTµνvis = 0 Tµνvis = Euµuν −∆µν(P+ Π) + πµν

number of equations: 5 + 6 (E,P,uµ(3),Π, πµν(5))

number of equations: 4 + 1 (equation of state E(P))

6 extra equations

Π̇+
Π

τΠ
= −βΠθ, θ = ∂µuµ — expansion scalar

π̇〈µν〉+
πµν

τπ
= 2βπσµν, σµν — shear flow tensor constructed from the velocity field uµ

kinetic coefficients: τΠβΠ = ζ→ bulk viscosity, τπβπ = η→ shear viscosity

algebraic equations for the shear stress tensor and the bulk pressure, problems with causality
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Dissipative hydrodynamics

Israel-Stewart (IS) equations — Π, πµν promoted to dynamic variables

energy-momentum conservation

∂µTµνvis = 0 Tµνvis = Euµuν −∆µν(P+ Π) + πµν

number of equations: 5 + 6 (E,P,uµ(3),Π, πµν(5))

number of equations: 4 + 1 (equation of state E(P))

6 extra equations

Π̇ +
Π

τΠ
= −βΠθ+λΠππ

µνσµν

π̇〈µν〉 +
πµν

τπ
= 2βπσµν−τπππ

〈µ
γ σ

ν〉γ + λπΠΠσµν

τΠβΠ = ζ→ bulk viscosity, τπβπ = η→ shear viscosity

non-hydrodynamic modes with the relaxation times τΠ, τπ are introduced,
— act as regulators of the theory
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Dissipative hydrodynamics

Müller-Israel-Stewart (MIS), Muronga

energy-momentum conservation

∂µTµνvis = 0 Tµνvis = Euµuν −∆µν(P+ Π) + πµν

number of equations: 5 + 6 (E,P,uµ(3),Π, πµν(5))

number of equations: 4 + 1 (equations of state E(P))

6 extra equations

Π̇ +
Π

τΠ
= −βΠθ −

ζT
2τΠ

Π ∂λ

(
τΠ

ζT
uλ

)
π̇〈µν〉 +

πµν

τπ
= 2βπσµν −

ηT
2τπ

πµν ∂λ

(
τπ
ηT

uλ
)

derived from the kinetic theory, (probably) the most popular version used in phenomenological
applications
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Dissipative hydrodynamics

New approaches add new terms: Baier, Romatschke, Son, Starinets, Stephanov (BRSSS)

energy-momentum conservation

∂µTµνvis = 0 Tµνvis = Euµuν −∆µν(P+ Π) + πµν

number of equations: 5 + 6 (E,P,uµ(3),Π, πµν(5))

number of equations: 4 + 1 (equations of state E(P))

6 extra equations

Π = 0

π̇〈µν〉 +
πµν

τπ
= 2βπσµν −

4
3
πµνθ+

λ1

τπη2
π
〈µ
λπ

ν〉λ (+ terms including vorticity and curvature)

pure symmetry arguments about the form of Tµνvis due to conformal symmetry and gradient expansion
NS equations used as an additional input to derive the dynamic equations
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Dissipative hydrodynamics

New approaches add new terms: Denicol, Niemi, Molnar, Rischke (DNMR)
simultaneous expansion in the Knudsen number and inverse Reynolds number

similar results by Jaiswal

energy-momentum conservation

∂µTµνvis = 0 Tµνvis = Euµuν −∆µν(P+ Π) + πµν

number of equations: 5 + 6 (E,P,uµ(3),Π, πµν(5))

number of equations: 4 + 1 (equations of state E(P))

6 extra equations

Π̇ +
Π

τΠ
= −βΠθ − δΠΠΠθ+λΠππ

µνσµν

π̇〈µν〉 +
πµν

τπ
= 2βπσµν − δπππµνθ−τπππ

〈µ
γ σ

ν〉γ + λπΠΠσµν

here: RTA version of the Boltzmann kinetic equation, neglected vorticity
additional terms (with new kinetic coefficients) appear — shear-bulk coupling

MIS, BRSS, DNMR are examples of HYDRODYNAMIC EXPANSION — truncated gradient expansion + less
or more heuristic arguments used to construct hydrodynamic equations (hydrodynamic framework) for
practical applications
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Anisotropic hydrodynamics

Anisotropic hydrodynamics - reorganized hydrodynamic expansion

standard approach:

Tµν = Tµν (T ,Uµ, πµν,Π) = Tµνeq (T ,U) + πµν −Π∆µν
≡ Tµνeq + δTµν

reproduced with the distribution function

f (x ,p) = feq(x ,p) + δf (x ,p)

anisotropic hydrodynamics approach:

Tµν = Tµν
(
T ,Uµ, ξµν, φ, π̃µν, Π̃

)
= Tµνa (T ,U, ξµν, φ) + π̃µν − Π̃∆µν

≡ Tµνa + δT̃µν

reproduced with the distribution function

f (x ,p) = fa(x ,p) + δf̃ (x ,p), fa = fiso


√

pµΞµνpν

λ


separation into the leading and next-to-leading orders is not unique, depends on Ξµν

f (x ,p) = feq(x ,p) + δf (x ,p) = fa(x ,p) + δf̃ (x ,p) = fa1(x ,p) + δf̃1(x ,p) = ...
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Romatschke-Strickland form and its generalisation

Romatschke-Strickland form

appropriate for one-dimensional boost-invariant expansion, accounts for the difference between the
longitudinal and transverse pressures

U — flow four-vector, Z — beam four-vector, U2 = 1, Z2 = −1, U · Z = 0

fRS = exp
(
−

1
λ

√
(p · U)2 + ξ (p · Z)2

)
, U = (t/τ, 0, 0, z/τ), Z = (z/τ, 0, 0, t/τ)

yields the energy-momentum tensor

Tµν = (ε+ P⊥) UµUν
− P⊥ gµν

− (P⊥ − P‖)ZµZ ν

generalised Romatschke-Strickland form

fa = fiso


√

pµΞµνpν

λ


1) ANISOTROPIC HYDRODYNAMICS INCLUDES INFINITE NUMBER OF GRADIENTS
SIMILAR TO THE EXPONENTIATION METHOD
2) Heinz, viscous anisotropic hydrodynamics, f = fRS + δf̃ (x ,p) with corrections included
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Two expansion methods

Perturbative approach

Bazow, Heinz, Strickland
PRC 90, 044908 (2014)

f = fRS + δf

the leading order is still described by the
Romatschke-Strickland form (accounting for
the difference between the longitudinal and
transverse pressures)

advanced methods of traditional viscous
hydrodynamics are used to restrict the form
of the correction δf and to derive aHydro
equations — non-trivial dynamics included in
the transverse plane and, more generally, in
(3+1)D case

Molnar, Niemi, Rischke
PRD93 (2016) no.11, 114025 and arXiv:1602.00573

Non-perturbative approach

Nopoush, Ryblewski, Strickland,Tinti, WF

f = fa + δf̃

all effects due to anisotropy included in the
leading order, in the generalised RS form

1. (1+1)D conformal case, two anisotropy
parameters

2. (1+1)D non-conformal case, two anisotropy
parameters + one bulk parameter

3. full (3+1)D case, five anisotropy parameters +
one bulk parameter (shear tensor and bulk
pressure)

Ξµν = uµuν + ξµν −∆µνΦ

uµξµν = 0 ξ
µ
µ = 0 (5 parameters in ξµν)
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Two methods to derive equations of anisotropic hydrodynamics

Moments of the Boltzmann equation

Martinez, Strickland, Ryblewski, WF,...

appropriate number of the moments is
chosen to determine the dynamics of ahydro
parameters

selection based on comparisons with exact
solutions of the kinetic equation

Anisotropic matching principle

Tinti, PRC94 (2016) 044902

the anisotropy parameters should reproduce
exactly Tµν, generalised Landau matching
Tµν = Tµνa

exact equations for the shear stress tensor
and the bulk pressure derived and closed
with the assumption f = fa

see Tinti’s talk
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Two ahydro equations for on-dimensional Bjorken expansion
for the conformal case with τπ = c/T

AH1: L. Tinti, WF, PRC89 (2014) 034907

4
R(ξ)

T
dT
dτ

= −
1
τ

(
R(ξ) +

R‖(ξ)

3

)
−

dξ
dτ

+
2(1 + ξ)

τ
=
ξ T R(ξ)5/4

c
(1 + ξ)3/2

with Martinez-Strickland functions

R(ξ) =
1
2

 1
1 + ξ

+
tanh−1(

√
ξ)

√
ξ

 , R‖(ξ) =
3
ξ

(
R(ξ) −

1
1 + ξ

)

AH2: L. Tinti, PRC94 (2016) 044902

4
R(ξ)

T
dT
dτ

= −
1
τ

(
R(ξ) +

R‖(ξ)

3

)
d ∆P

dτ
= −

T ∆P
c
−

F
τ

with

∆P = −
6kπΛ4

ξ

 ξ+ 3
ξ+ 1

+
(ξ − 3) tan−1(

√
ξ)

√
ξ

 , F = −2(1 + ξ)
∂∆

∂ξ
, ∆ =

∆P
P

=
P‖ − P⊥

P
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Gradient expansion

M. P. Heller, R. A. Janik, M. Spalinski, P. Witaszczyk
Formal expansion of Tµν in gradients of hydrodynamic variables T and uµ

Tµν = Tµνeq + powers of gradients of T and uµ

Formal tool to make comparisons between different theories and check their close to equilibrium
behaviour, no useful for finding approximate solutions of the theory, unless completed as a transseries

underlying microscopic
model or theory

phenomenological
hydrodynamic model

gradient expansion

gradient expansion

fixing parameters

of hydrodynamic model

underlying microscopic
model or theory

gradient expansion

Knudsen and inverse Reynolds numbers expansion

hydrodynamic model

gradient expansion

gradient expansion

fixing parameters

of hydrodynamic model
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Gradient expansion

Simple structures for boost-invariant flow with the relaxation time τπ = c
T ,

for example, T is expanded around the Bjorken flow

T = T0

(
τ0

τ

)1/3
1 +

∞∑
n=1

(
c

T0τ0

)n

tn

(
τ0

τ

)2n/3


ξ(τ) =

∞∑
n=1

(
2c
τ0T0

)n

ξn

(
τ0

τ

)2n/3
,

Change to g(w)

g =
1
T

dw
dτ

, w = τT , ∆ =
∆P
P

= 3
P‖ − P⊥
ε

= 12
(
g −

2
3

)
The gradient expansion for boost-invariant flow takes the form of an expansion

g(w) =

∞∑
n=0

gnw−n, g0 =
2
3
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Gradient expansion for viscous hydrodynamics

RTA - gradient expansion for the RTA kinetic-theory model – Heller, Kurkela, Spalinski, arXiv:1609.04803
WF, R. Ryblewski, M. Spalinski, arXiv:1608.07558

n RTA BRSSS DNMR MIS
0 2/3 2/3 2/3 2/3
1 4/45 4/45 4/45 4/45
2 16/945 16/945 16/945 8/135
3 −208/4725 −1712/99225 -304/33075 112/2025
3 −0.044 −0.017 -0.009 0.055

MIS τΠφ̇ =
4η
3τ
−

4τΠφ

3τ
− φ φ − shear stress component

BRSS τΠφ̇ =
4η
3τ
−
λ1φ2

2η2
−

4τΠφ

3τ
− φ

DNMR τΠφ̇ =
4η
3τ
−

38
21

τΠφ

τ
− φ

RTA with τπ = c/T , the n=1 term controlled by viscosity, η/s = (9/4)g1

1) BRSS and DNMR equivalent up to n=2, η/s = c/5, agrees with the kinetic-theory result
2) BRSS has two free parameters that are fitted to RTA
3) DNMR reproduces RTA, since the kinetic coefficients correspond to the RTA kinetic equation
4) MIS good only for n=1, opposite sign for n=3
5) DNMR and BRSS differ for larger values of n and far away from equilibrium (Ryblewski)
– physics properties should be defined within a given framework
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Gradient expansion for anisotropic hydrodynamics

n RTA BRSSS AH I AH II
0 2/3 2/3 2/3 2/3
1 4/45 4/45 4/45 4/45
2 16/945 16/945 8/945 16/945
3 −208/4725 −1712/99225 −184/4725 −176/6615
3 −0.044 −0.017 −0.039 −0.027

1) AH1, for n=2 too small (by a factor of two) but for n=3 quite close to RTA
2) AH2 reproduces exactly the first three terms of RTA, not too bad for n=3
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the series gn, has vanishing radius of convergence,the Borel transform of g is introduced, analytic
continuation using diagonal Padé approximants of order 70 is done

gB(ξ) =

∞∑
n=0

gn

n!
ξn, (1)

the cut along the real axis indicates the presence of a single nonhydrodynamic mode, which is is
purely decaying, as in MIS theory (Romatschke, Heller).
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SUMMARY
A comparison of the gradient expansions provides an indication of how successful the various
hydrodynamic approaches are in reproducing close-to-equilibrium dynamics governed by the
underlying microscopic theory

Effective hydrodynamic descriptions tailored to a specific microscopic theory may provide a better
picture for a given system than a general framework

The gradient expansions in hydrodynamic theories are divergent, so their usefulness, apart from formal
comparisons, lies in the fact that a few leading terms give a reasonable approximation at late times.
The theory of asymptotic series provides the concept of optimal truncation, which in the cases
considered is of the order of a few terms
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