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Sources of Fluctuations in High
Energy Nuclear Collisions

e |nitial state fluctuations

msp ¢ Hydrodynamic fluctuations due
to finite particle number

 Energy and momentum
deposition by jets traversing the
medium

e Freeze-out fluctuations



Expansion away from equilibrium states using Landau theory
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Incorporates correct critical exponents and amplitudes - Kapusta (2010)
Static univerality class: 3D Ising model & liquid-gas transition



But this Is for a small system
In contact with a heat and
particle reservaorr.

How do you treat fluctuations
INn an expanding and cooling
system as in heavy ion collisions?

Kapusta, Muller, Stephanov



Hydrodynamic Fluctuations!

Hydrodynamic fluctuations (noise) have been applied to a
wide variety of physical, chemical, and biological systems.

There are fluctuations in high energy heavy ion collisions
due to the finite size and finite particle content of the system.

VOLUME 89, NUMBER 8 PHYSICAL REVIEW LETTERS 19 AUGUST 2002

Dynamics of Liquid Nanojets

Jens Eggers
Universitit Gesamthochschule Essen, Fachbereich Physik, 45117 Essen, Germany
(Received 31 January 2002: published 6 August 2002)

We study the breakup of a liquid jet a few nanometers in diameter, based on a stochastic differential
equation derived recently by Moseler and Landman [Science 289, 1165 (2000)]. In agreement with their
simulations, we confirm that noise qualitatively changes the characteristics of breakup, leading to
symmetric profiles. Using the path integral description, we find a self-similar profile that describes the
most probable breakup mode. As illustrated by a simple physical argument, noise is the driving force
behind pinching, speeding up the breakup to make surface tension irrelevant.
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PRL 98, 064504 (2007) PHYSICAL REVIEW LETTERS 9 FEBRUARY 2007

Universality Crossover of the Pinch-Off Shape Profiles of Collapsing Liquid Nanobridges
in Vacuum and Gaseous Environments

Wei Kang and Uzi Landman
School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430, USA
(Received 5 June 2006; published 7 February 2007)

Liquid propane nanobridges were found through molecular dynamics simulations to exhibit in vacuum
a symmetric break-up profile shaped as two cones joined in their apexes. With a surrounding gas of
sufficiently high pressure, a long-thread profile develops with an asymmetric shape. The emergence of a
long-thread profile, discussed previously for macroscopic fluid structures, originates from the curvature-
dependent evaporation-condensation processes of the nanobridge in a surrounding gas. A modified
stochastic hydrodynamic description captures the crossover between these universal break-up regimes.

Molecular Dynamics

Lubrication Equation

Stochastic Lubrication
Equation




Relativistic Dissipative Fluid Dynamics
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In the Landau-Lifshitz approach u is the velocity of energy transport.

ATH = n(A”uV +Avu”)+ (%n—{)H ”V@pup

H" =uu”"-g", A, =0, _uﬂuﬁaﬁ’ Q,=0,T-Tu"d,u,

2
AJ Z(Tj Aﬂ(&j N

W T




Extend Landau’s theory of hydrodynamic
fluctuations to the relativistic regime

T4 =Tjew T AT + 8%

ideal

Stochastic source SH =84 4 SHY

vis heat
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Similar expressions arise in the Eckart approach.



Procedure

« Solve equations of motion for arbitrary source function
e Perform averaging to obtain correlations/fluctuations

 Stochastic fluctuations need not be perturbative



Example: Boost Invariant Bjorken Model

u* =(coshz,,0,0,sinhy,) T=T(r) s(z)=25
T

Sy OT(7,7)
vo(r) T(z)

Fluctuation  X(7.7)=
noise

Solution X(k,7)=-[de'G(K;7,2') f (k,7")

T

response function
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calculable
and similarly for fluctuations in the local flow velocity...



In the small viscosity limit
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This leads to delta functions and their derivatives.

Cause: Space-time delta functions (white noise)
In the original correlation functions.
Cure: Use finite range correlations (colored noise).



Why colored noise?
In the local rest frame:
($""(x,1)) =0, (S"S"(x,1))=27TS(X)5(t)M™

This Is white noise (Fourier transform Is a constant).
It iIs OK for hydrodynamics if noise is treated as a
perturbation, but creates havoc If it Is treated
nonperturbatively as there will be a dependence on
the coarse-grained cell size.
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Reqgular part of response function

0.20 Correlations are cut - off at the

sound horizon An =2v.In(z, /z,)

ST but there are singular terms at

_ the origin and the sound horizon.
0.10 -
0.05 |




Fluctuations in the local temperature
and flow velocity fields

u, =sinh (1, + o(n,,7))

give rise to a nontrivial 2-particle
correlation function when the fluid
elements freeze-out to free-streaming
hadrons.



Noise in MUSIC

Numerical 3+1d hydrodynamics
Event by event
LHC energy — shear viscosity only
Noise treated perturbatively

Young; Young, Kapusta, Gale, Jeon, Schenke



y [fm/c]

y [fm/c]

25

20

15

10

25

20

15

10

=237 fm/c

-25 20 15 110 5 0 5 10 15 20 25
t=10.24fm/c
-25 20 15 110 5 0 5 10 15 20 25

x [fric]

10

10

dele

dele

y [fm/c]
e}

y [fm/c]

t=6.30fm/c
25

20

15

10

-25 <20 115 10 -5 0 5

= 1418 fm/c
25

10

15 20

20

15

10

25 <20 -15 -10 -5 0 5
x [fric]

10

15 20

10

dele

dele



dN/de ,

Eccentricity Fluctuations
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Simpler example:
Baryon diffusion.

Kapusta & Young



The need for causality

The diffusion equation propagates information
iInstantaneously. No good for hydrodynamic
modeling of high energy nuclear collisions!

J" =nu“+AJ”
A" = oTAN (Su), A, :8ﬂ—u”(u-8)
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The need for colored noise
Add noise to the current; in the local rest frame:
(1, 1) =0, (1'l)(x,1)) =26T5(X)5(t)3,;

This Is white noise (Fourier transform Is a constant).
It iIs OK for hydrodynamics if noise is treated as a
perturbation, but creates havoc If it Is treated
nonperturbatively as there will be a dependence on
the coarse-grained cell size.



Descriptions of heat conduction

Ordinary diffusion equation - 1st order
(Q — DVZNn =0
ot )

Cattaneo equation (1948) - 2nd order
2
Q—DV2+2'1 0 n=0
ot ot’
Gurtin - Pipkin equation (1968) - 3rd order

2 3
Q—DV +rla +7228 —TSDaV n=0
ot ot ot’ ot



The Associated Baryon Current

1+7,(u-0)

AJ* = oTA" > > >
1+7,(u-0)+7,(u-0)" +7,DA

pu

Ordinary diffusionequation:z, =7, =7, =17, =0

Cattaneoequation:z, =7,=7, =0

Here z,'=7, + 7,



Fluctuation-Dissipation Theorem
iDk’(1—i7,m)
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Ordinary Diffusion Equation

(hon(x,t)) =T (S;Z](A;mj exp(— e /4Dt)

(1'V(x,1)) = 26T5(X)3(1)5,



Cattaneo Equation

For the density correlator there is a pair of
Imaginary poles for k < k_, and a pair of complex

poles for k > k_where k’ = 1/411D.

Group velocity v, = , V= |—

\/kz k2 7

(Infinite group velocity Is not an issue; Brillouin.)

<I | J'(x,t)> - i&(x)exp(— t]/7,)5,

(21



Gurtin-Pipkin Equation

For the noise and for 7, > 2z,there are a pair of
Imaginary poles for k <k, and a pair of complex

V, K

ke -k

For 7, < 2z,there are a pair of complex poles with

V, = VoK where VOZ\/T3D/T22.

Tk K

poles for k >k, with V, =




Dimensionless noise
 exp(-zt/z,)

5(F o f) + greg (F1 f)

- 2
with 7, =0 and v; =1/3.
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When 7, = 2z, there is no wake.



Summary

* Fluctuations and dissipation are intimately

related.

 Noise can be implemented perturbatively but
non-perturbative implementation is a
challenge.

 Colored noise seems to be needed which
might require 3" order fluid dynamics!

Supported by the Office Science, U.S. Department of Energy.




	How to Implement Noise in Relativistic Hydrodynamics?
	Sources of Fluctuations in High Energy Nuclear Collisions
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Why colored noise?
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	The need for causality
	The need for colored noise
	Slide Number 21
	The Associated Baryon Current
	Slide Number 23
	Ordinary Diffusion Equation
	Cattaneo Equation
	Gurtin-Pipkin Equation
	Dimensionless noise
	Summary

