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Plasmas in space and solar environments

The baryonic component in the Universe is almost invariably found in the fourth state of
matter: a plasma, ionized gas where magnetic fields and currents play a crucial role.

The solar corona is threaded by magnetic fields (active regions above Sun spots,
loops, prominences), a continuous supersonic and magnetized outflow fills the whole
heliosphere (the solar wind), interacting with the magnetospheres of planets (aurorae).

Plasma physics is non-relativistic in space and solar environments, either treated
kinetically (non-Maxwellian distributions, PIC or hybrid codes), or with a macroscopic
fluid approach: magnetohydrodynamics (MHD).

L. Del Zanna - Relativistic Hydrodynamics, MITP, October 2016 - Mainz Relativistic magnetohydrodynamic simulations of astrophysical plasmas



From relativistic hydrodynamics to MHD
Numerical modeling of pulsars and their environment

Magnetic dissipation in relativistic plasmas

The importance of magnetic fields in astrophysics
The equations of general relativistic MHD

The interstellar magnetic field

The Plank satellite is able to produce all-sky maps of polarized light, tracing the
magnetic fields in the galactic plane, particularly in the denser molecular clouds.

Magnetic field is crucial for star formation: the turbulent MHD additional pressure
prevents excessive collapse. Disks and jets threaded and collimated by magnetic fields.
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Relativistic plasmas

Strong gravity around compact objects (neutron stars, black holes), high speed
velocities, extremely hot temperatures, huge magnetic fields: relativistic plasmas.

Sources of high-energy astrophysics powered by magnetic fields: pulsars and
magnetars, pulsar wind nebulae (PWNe), X-ray binaries, GRBs, AGNs.

These fascinating systems are nowadays investigated by means of numerical
simulations in the general relativistic magnetohydrodynamic (GRMHD) regime.
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The covariant equations for matter and fields
The equations for general relativistic hydrodynamics are those for baryon number (or
equivalently mass) conservation and energy-momentum conservation

∇µNµ = 0,

∇µTµν = 0,

supplemented by the second law of thermodynamics

∇µS µ ≥ 0,

where Sµ is the entropy current.

In relativistic MHD Tµν is the total (matter and fields) energy-momentum tensor of the
system, and the above equations are unchanged. The electromagnetic field obeys

∇µFµν = −Iν , (∇ν Iν = 0)

∇µF?µν = 0,

where Fµν is the Faraday tensor and F?µν = 1
2 ε
µνλκFλκ its dual (c → 1, 4π → 1).

If we split the energy-momentum tensor and introduce the Lorentz force, we find

∇µTµνm = −∇µTµνf = −Iµ Fµν ,

where Tµνm and Tµνf are the matter and field contributions, the latter given by

Tµνf = FµλFνλ −
1
4 gµνFλκFλκ.
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Decomposition with uµ and the ideal MHD condition

If dissipative effects are neglected and we introduce the fluid velocity uµ, we have

Nµ = nuµ,

Tµνm = euµuν + p∆µν = (e + p)uµuν + pgµν ,

S µ = suµ,

where baryon density, energy density, kinetic pressure, and entropy density are

n = −Nµuµ, e = Tµνm uµuν , p = 1
3 ∆µνTµνm , s = −Sµuµ.

The Faraday tensor and its dual can also be split according to uµ

Fµν = uµeν − uνeµ + εµνλκbλuκ,

F?µν = uµbν − uνbµ − εµνλκeλuκ,

where eµ = Fµνuν and bµ = F?µνuν are the electric and magnetic fields in the
comoving frame (eµuµ = bµuµ = 0). The ideal MHD condition is

eµ = 0,

that is the comoving electric field vanishes, to prevent huge currents due to the
extremely high conductivity of the plasma.
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The equations of ideal GRMHD

The field component of Tµν and the dual of the Faraday tensor simplify to

Tµνf = 1
2 b2uµuν + 1

2 b2∆µν − bµbν = b2uµuν + 1
2 b2gµν − bµbν ,

F?µν = uµbν − uνbµ.

The system of ideal GRMHD equations in conservative form is

∇µ(ρuµ) = 0,

∇µ[(e + p + b2)uµuν + (p + 1
2 b2)gµν − bµbν ] = 0,

∇µ(uµbν − uνbµ) = 0,

in the unknowns ρ = nm, e, p, uµ, bµ, to be closed with an EoS p = P(ρ, e).

In the laboratory fixed frame and in a Minkowskian spacetime, we have

uµ = (γ, γv), bµ = (γ(v · B),B/γ + γ(v · B)v), b2 = B2/γ2 + (v · B)2.

E is now a derived quantity and the sourceless Maxwell equations are for B only

E = −v× B,
∂B
∂t

= ∇× (v× B), ∇ · B = 0,

the induction equation and the solenoidal condition, as in non-relativistic MHD.
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The ECHO code for GRMHD
For multi-dimensional simulations of relativistic plasmas the Firenze group developed
the shock-capturing Eulerian Conservative High Order code (Del Zanna et al. 2003,
2007), solving the (G)RMHD system of conservation laws (here for a flat metric):

∂

∂t
(ργ) + ∇ · (ργv) = 0,

∂

∂t

“
wγ2v + E × B

”
+ ∇ ·

“
wγ2vv − EE + BB + (p + uem) I

”
= 0,

∂

∂t

“
wγ2 − p + uem

”
+ ∇ ·

“
wγ2v + E × B

”
= 0,

∂B
∂t

+ ∇ · (vB − Bv) = 0,

where w = e + p, uem = 1
2 (E2 + B2) and E = −v × B, p = P(ρ, e).

Extensions and sub-versions of ECHO (www.astro.unifi.it/echo/):

X-ECHO (Bucciantini & Del Zanna 2011) - GRMHD evolution in a variable
spacetime metric (under the extended conformally flat condition),
XNS - equilibrium configurations for magnetized rotating neutron stars,
ECHO-QGP (Del Zanna et al. 2013; Inghirami et al. 2016) - viscous RHD and
ideal RMHD for heavy-ion collisions.
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Magnetized neutron stars and pulsars

Neutron stars are compact objects (M ∼ 1− 2M�, R ∼ 10− 12 km), main actors of
high-energy astrophysics, nuclear physics, and theoretical physics.

Spindown energy emission due to fast rotation (P ∼ 3× 10−2 − 3 s) and strong
magnetic fields (B ∼ 1011 − 1013 G) relevant for young objects. Brief history:

predicted to be the outcome of SN explosions (Baade & Zwicky 1934)

predicted to produce EM winds powering PWNe (Pacini 1967)

discovered as radio pulsars (Hewish et al. 1968, now > 2000)

discovered as gamma-ray emitters (FERMI 2008, now > 150)

sources of GWs in binary systems (Hulse & Taylor 1975, LIGO/Virgo 2017?)
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From pulsars to magnetars

Besides rotation-powered pulsars (RPPs) there are other classes of isolated NSs with
B ∼ 1014 − 1015 G and longer periods (P ∼ 10 s), namely magnetars:

such a high B may form via MHD dynamo during core collapse in a SN event
provided initial P ∼ 1− 3 ms (Thompson & Duncan 1992),

irregular X-ray activity (AXPs) and γ-ray flares up to 1046 erg (SGRs),

spindown power inefficient: sporadic release of magnetic energy.

A complex structure of magnetic fields / currents is needed (Turolla et al. 2015).
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The millisecond-magnetar model for long and short GRBs
Provided a millisecond magnetar can form during SN core-collapse or after a binary
NS merger, spindown driven relativistic winds with Γ ∼ σ ∼ 103 and Ė ∼ 1049 erg/s
are expected (Metzger et al. 2007, 2011, Bucciantini et al. 2012):

confinement of the proto-magnetar wind by the external envelopes collimates
GRB jets within a hot, magnetized bubble ∼PWN (Bucciantini et al. 2008),

X-ray plateau (Rowlinson et al. 2010) due to spindown activity (Dall’Osso et al. 2011),

time-reversal scenario, (Siegel & Ciolfi 2015, Rezzolla & Kumar 2015): hyper-massive
magnetar and Kerr-BH could be both involved?

double GRB events may be explained by quark-deconfinement (Pili et al. 2016).
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Axisymmetric FFE and MHD equilibria in GR

The main characters of high-energy astrophysics (PWNe, GRBs, AGNs) are invariably
powered by magnetized plasma interacting with rotating NSs/BHs. Modeling requires:

gravity in the strong regime→ general relativity,

magnetic fields in conducting plasmas→ FFE or MHD,

rotation→ frame dragging and/or fluid-like velocities,

axisymmetry and steady-state→ reasonable minimal assumptions.

The covariant equations for plasmas in a strong gravitational field are:

∇µNµ = 0, ∇µTµνm = −IµFµν ,

∇µFµν = −Iν , ∇µF?µν = 0.

GRMHD: matter and electromagnetic energies are comparable, a main (baryonic)
current Nµ = nuµ is defined and the electric field is assumed to vanish in the
comoving frame of the fluid: eµ ≡ Fµνuν = 0.

Force-Free Electrodynamics: the Lorentz force dominates, the first equation is
irrelevant and the second reduces to: Lµ ≡ Fµν Iν = 0.

In vacuum, as often assumed in NS magnetospheric modeling, especially for rotating
cases, one simply sets Iµ = 0 for numerical convenience.
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Stationary and axisymmetric Maxwell’s equations
Consider now a stationary and axisymmetric 3 + 1 metric with ∂t = ∂ϕ = 0 in the form

ds2 = −α2dt2 + γ11(dx1)2 + γ22(dx2)2 + R2(dϕ− ωdt)2,

where α is the lapse function, β = −ωReϕ̂ the shift vector (frame dragging velocity),
γ33 = R2. The stationary Maxwell equations are (Thorne & Macdonald 1982)

∇× (αE + β × B) = 0, ∇ · B = 0,

∇× (αB− β × E) = αJ− ρeβ, ∇ · E = ρe.

From the solenoidal constraint we define the magnetic flux function Ψ ≡ Aϕ such that

B =
∇Ψ

R
× eϕ̂ +

I
αR

eϕ̂,

and any function f satisfying B · ∇f = 0 will be constant over magnetic surfaces and
f = f (Ψ) alone. The last two Maxwell equations provide the conduction current

J =
∇I
αR
× eϕ̂ + Jϕ̂eϕ̂,

α

R
Jϕ̂ = −∇ ·

“ α
R2
∇Ψ

”
+ E · ∇ω,

whereas the first Maxwell equation implies Eϕ = 0 and, using Φ ≡ At

αE + β × B = ∇Φ⇒ E =
∇Φ + ω∇Ψ

α
.
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FFE case (NS magnetosphere): the Grad-Shafranov equation

If in vacuum, ρe = J = 0 and two coupled PDEs for Ψ and Φ are derived.

Inside a highly conducting plasma holds the degenerate condition

E · B = 0,

then B · ∇Φ = 0⇒ Φ = Φ(Ψ) and a drift velocity v can be always defined, such that

E = −v× B = −
v
R
∇Ψ, v ≡ vϕ̂ =

Ω− ω
α

R, Ω = −
dΦ

dΨ
.

The Lorentz force acting on the plasma is

L = ρeE + J× B =

„
Jϕ̂
R
− ρe

v
R

«
∇Ψ−

I ∇I
α2R2

+
∇I×∇Ψ · eϕ̂

αR2
eϕ̂,

The FFE condition L = 0 implies I = I(Ψ) and the Grad-Shafranov equation

∇·
h α

R2

“
1−v2

”
∇Ψ

i
+

v
R

dΩ

dΨ
|∇Ψ|2 +

I
αR2

dI
dΨ

= 0.

a PDE providing the magnetic structure Ψ for given I(Ψ) and Ω(Ψ), with extra
conditions at the light cylinder v = 1⇒ R = RL ≡ α/(Ω− ω).

The pulsar equation is retrieved in flat space for α = 1 and Ω = const.
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GRMHD case (NS interior): the Bernoulli equation

Consider now matter in a NS assuming v = veϕ̂ and uniform rotation:

uµ = (Γ/α, 0, 0,ΩΓ/α), Γ = (1− v2)−1/2, Ω ≡ uϕ/ut = const,

where v retains the previous form. The Euler equation, including the Lorentz force is

ρhaµ + ∂µp + uµuν∂νp = Lµ ⇒ ∂i p − ρh∂i ln(Γ/α) = Li .

If we now make the simplifying assumptions:

barotropic EoS p = P(ρ) (e.g. polytropic law): p = Kρ1+1/n,

conservative Lorentz force with potentialM: L = ρh∇M,

the equation can be solved, providing the GRMHD Bernoulli integral

ln(h/hc) + ln(α/αc)− ln Γ =M.

Further compatibility conditions are I = I(Ψ),M =M(Ψ), and the GS equation is

∇·
h α

R2Γ2
∇Ψ

i
+
I
αR2

dI
dΨ

+ αρh
dM
dΨ

= 0,

with the previous case retrieved by simply letting ρ→ 0.
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Einstein equations in the (X)CFC approximation

The stationary and circular metric is conveniently approximated to the conformally flat
form (CFC assumption, e.g. Wilson & Mathews 2003):

ds2 = −α2dt2 + ψ4[dr2 + r2dθ2 + r2sin2θ(dφ− ωdt)2],

with ψ the conformal factor. The Einstein equations simplify to the system

∆ψ = −[2πE + 1
8 Kij K ij ]ψ5,

∆(αψ) = [2π(E + 2S) + 7
8 Kij K ij ]αψ5,

∆ω = −16παψ4Sφ − 2ψ10Kφj∂j (αψ
−6),

where Kij is the extrinsic curvature, computed via derivatives of ω, whereas sources E ,
S, and Sφ are determined by the fluid quantities and EM fields.

In the rotating case, a more efficient and very robust method is the eXtended CFC
approximation (XCFC, Cordero-Carrión 2009, Bucciantini & Del Zanna 2011) allowing for a
hierarchical scheme and uniqueness of solution (one extra equation needed).

Numerical models for rotating NS are consistent with full GR within accuracy of 10−4.

XCFC metric also employed in dynamical Einstein+GRMHD evolution: X-ECHO code.
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The XNS code

Nonlinear PDEs solved via decomposition in scalar and vector spherical harmonics

u(r , θ) =
X

[Al (r)Yl (θ)], Xφ̂(r , θ) =
X

[Cl (r)Y ′l (θ)],

grid discretization, and direct inversion of tridiagonal matrices.

XNS code (www.arcetri.inaf.it/science/ahead/XNS). Iterative scheme:

provide initial static and radially symmetric guess (TOV equations),

solve Einstein equations for the XCFC metric → α,ψ, ω,

solve Maxwell equations (or GS) for EM fields → Ψ,Φ → B,E,

solve Bernoulli integral for matter (polytropic or tabulated EoS) → ρ, p, v.
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Purely toroidal fields
For purely toroidal fields Ψ = 0 and we needM =M(I), a solution is (m ≥ 1):

∇I + α2R2ρh∇M = 0, I = αRBφ̂ = Km(α2R2ρh)m.

The Lorentz force produces axial compression, providing prolate static configurations.
For increasing m the field is confined to a narrow torus farther from the axis.

If an NS with eccentricity ē = 1− Ixx/Izz ∼ 10−3 is born with initial slight tilt and later
orthogonalize, GWs will be detectable (Dall’Osso et al. 2009). For Bmax ≤ 1017 G we find:

ē ' −9× 10−3(Bmax/1017 G)2 + 3× 10−3(P/10 ms)−2.
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Purely poloidal fields
The free functions for GS are chosen as (Pili et al. 2014, Bucciantini et al. 2015):

M(Ψ) ∝ Ψ[1 + ξ 1
ν+1 (Ψ/Ψmax)ν ], I(Ψ) ∝ 1

ζ+1 (Ψ/Ψmax − 1)ζ+1,

providing currents confined inside the NS. Here I = 0 for purely poloidal fields.

Magnetosphere calculated self-consistently (FFE if static, vacuum in the rotating case).

Global eccentricity always positive (oblate configurations), increasing with rotation

ē ' 5× 10−3(Bmax/1017 G)2 + 3× 10−3(P/10 ms)−2.
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Structure of electrosphere in rotating stars
In the uniformly rotating case Ω = const, inside the NS holds the MHD condition

Φ = −ΩΨ + C,

whereas Φ is independent in the vacuum magnetosphere (continuity is enforced).

The constant C is determined by either imposing (Pili et al. in prep.):
vanishing net charge of NS (extraction of e− from polar caps),
vanishing electric field at poles (NS is globally charged).
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Twisted-torus configurations

Twisted-torus mixed configurations required for stability, different current distributions
attempted all provide a too small value Htor/Htot ≤ 10% (Bucciantini et al. 2015),
contrary to previous studies where Htor/Htot ≤ 90% (Ciolfi & Rezzolla 2013).

Twist angle increases with Btor/Bpol, saturating at ∼ 2 rad (self-regulation).

The presence of magnetospheric currents comparable to the internal ones leads to a
change in fieldlines topology and to plasmoid-like (unstable) solutions.

Poloidal field always dominant, global eccentricity positive (oblate configurations).
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Application: quark deconfinement and double-peaked GRBs
The two-families scenario of Hadronic Stars and Quark Stars (Drago et al. 2014, 2016,
Bombaci et al. 2016) may match observations, provided strangeness enters the EoS.

The spindown evolution equation is solved on top of XNS rotating equilibria models,
providing tracks in M − ρc or M − R diagrams (Pili et al. 2016). The scenario is:

a HS ms-magnetar (in the yellow region) produces a first GRB,
large spindown leads to increase of ρc and quark deconfinement (M0, J = const),
the new ms-magnetar, in the QS branch, produces a second event.

A model for the double-event GRB110709B. An initial HS with

B ' 2× 1015G, M0 ' 1.7M�, P ' 1− 1.5ms

provides the correct energetics of both bursts and characteristic timescales.
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Pulsar winds and nebulae

The spindown energy losses from a young pulsar drive a relativistic plasma wind made
of pairs and (mainly toroidal) magnetic fields, after light cylinder magnetization σ � 1.

Impact with expanding SN ejecta creates the PWN (e.g. the Crab Nebula) shining in
synchrotron light from radio to γ-rays (Rees & Gunn 1974; Kennel & Coroniti 1984).

The millennium challenge from Chandra to theorists: can you explain all that?!?

Multidimensional relativistic MHD simulations are powerful tools to investigate the
properties of pulsar winds (magnetization, anisotropy, composition).
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Formation of the polar jets

A jet/torus structure as observed in X-rays needs two ingredients (Lyubarsky 2002):

an axisymmetric anisotropic pulsar wind (stronger equatorial flux→ oblate TS);

a moderate magnetization σ ∼ 1− 5% at termination shock (10 times than in 1D).

Indeed, in axisymmetric relativistic MHD simulations polar jets form due to post-shock
magnetic hoop stresses (Komissarov & Lyubarsky 2003/4, Del Zanna et al. 2004).

No prescriptions needed for PWN: self-consistently computed by the numerical code!
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Torus, jets, rings, wisps, knots, . . .

Simulated synchrotron maps from 2D axisymmetric relativistic MHD computations
(here from our ECHO code): with little fine tuning of parameters, the challenge is won!

Detailed recipes, including boosting, polarization, IC, in (Del Zanna et al. 2006; Volpi 2008).
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Wisps as probes for acceleration mechanisms

Wisp-like motions with v/c ∼ 0.1− 0.4 due to turbulent advection beyond TS with
periods P ' 1− 2 yr (Volpi et al. 2008; Camus et al. 2009; Olmi et al. 2014).

Detailed characterization of single wisps at various frequencies (Olmi et al. 2015):

radio population with fR(ε) ∝ ε−pR and pR ' 1.5 uniform (reconnection? High σ)

X-ray population injected in a narrow equatorial belt at TS with fX (ε) ∝ ε−pX and
pX > 2 (Fermi I process? Low σ, as in striped equatorial wind)
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3D dynamics: velocity and magnetic fields
3D-AMR simulations (see also Porth et al. 2014) with the PLUTO code aimed at:

allowing extra degrees of freedom for B, kink instabilities and magnetic dissipation,
reaching realistic evolution times, at least the self-similar expansion phase,
reproducing the jet-torus structure and all the detailed features as in 2D,
finally obtaining the full sync+IC SED without any ad-hoc hypotheses.

magnetic/kinetic flux equipartition just before the TS (σ = 1),
very strong jet collimation by hoop stresses (here striped wind is narrow),
B strong in the inner part, where toroidal field dominates, poloidal field in jets.
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3D results: surface brightness maps

Surface brightness maps from 3D simulations, radio and X-rays (here in log scale):

First results in (Olmi et al. 2016), additional simulations with larger striped wind region
are ongoing (brighter torus? SED matched?).

Future: inclusion of test particles for a better modeling of emission.

L. Del Zanna - Relativistic Hydrodynamics, MITP, October 2016 - Mainz Relativistic magnetohydrodynamic simulations of astrophysical plasmas



From relativistic hydrodynamics to MHD
Numerical modeling of pulsars and their environment

Magnetic dissipation in relativistic plasmas

The quest for fast reconnection
Resistive relativistic MHD simulations

Magnetic dissipation in relativistic plasmas

L. Del Zanna - Relativistic Hydrodynamics, MITP, October 2016 - Mainz Relativistic magnetohydrodynamic simulations of astrophysical plasmas



From relativistic hydrodynamics to MHD
Numerical modeling of pulsars and their environment

Magnetic dissipation in relativistic plasmas

The quest for fast reconnection
Resistive relativistic MHD simulations

Reconnection in solar, space, and laboratory plasmas

Magnetic reconnection is a rearrangement of magnetic topology in conducting plasmas
with finite resistivity. It is the most efficient way to convert the energy of a magnetically
dominated plasma into heat and particle acceleration.

Energy release is typically violent and occurs on very rapid timescales.

In the solar-terrestrial environment it is responsible for solar flares and geomagnetic
storms (thus crucial for space weather).

It is also important in laboratory and fusion reactors (tokamaks: ITER), causing
sawtooth instabilities and eventually collapse of core temperature.
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Reconnection in relativistic plasmas

In astrophysical sources it may explain several high-energy phenomena:

the SGR events of magnetars (Lyutikov 2003; Elenbaas et al. 2016)

jet launching in AGN/microquasar systems (Romanova & Lovelace 1992)

jet launching in GRB engines (Drenkhahn & Spruit 2002)

energy conversion in pulsar winds (Coroniti 1990, Sironi & Spitkovsky 2011)

gamma-ray flares observed in the Crab Nebula (Cerutti et al. 2013, 2014)
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Basic theory: steady-state, driven reconnection (SP model)

Within classical resistive MHD the magnetic field evolution is governed by the induction
equation (flux freezing in ideal MHD with η = 0):

∂~B
∂t

= ∇× (~v × ~B) + η∇2~B

Fluid advection and Ohmic diffusion occur on very different timescales:

τA =
L
vA
, τD =

L2

η
, S =

L vA

η
=
τD

τA
� 1

where S is the Lundquist number, defined on the Alfvén speed vA.

The steady, incompressible Sweet-Parker (1957)
model predicts a rate of reconnected flux

R =
vin

vA
=
δ

L
∼ S−1/2

leading to time scales τ/τA ∼ S1/2, far too slow to
explain solar flares (τ ∼ τA ∼ 103s, S > 1012).
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Basic theory: spontaneous reconnection (tearing mode)

The linear stability of current sheets was investigated by Furth et al. (1963); Coppi et al.
(1976). In resistive MHD the equilibrium is unstable to the tearing mode leading to the
formation of X-points and plasmoids.

If measured on top of the only available scale, the sheet width a, the instability growth
rate γ = 1/τ is, again, far too slow

γ τ̄A ∼ S̄−1/2 , kmaxa ∼ S̄−1/4 (τ̄A = a/vA, S̄ = a vA/η)

This is the same scaling of SP, so once more we would need extremely small scales to
explain the observations. Sub-MHD Hall/kinetic effects?
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Tearing instability of a SP sheet (plasmoid instability)

Revival of one-fluid resistive MHD: discovery of the plasmoid instability or super-tearing
of a SP current sheet (Loureiro et al. 2007; Lapenta 2008; Samtaney et al. 2009; Bhattacharjee
et al. 2009; Cassak et al. 2009; Huang & Bhattacharjee 2010).

Basically, if we apply the tearing mode to the SP current sheet with a ≡ δ = LS−1/2

and normalize with the macroscopic τA and L, we find

γ τA ∼ S1/4 � 1, kmaxL ∼ S3/8 � 1

(for S > Sc ∼ 104) which is clearly a PARADOX!

Also relativistic resistive MHD simulations basically confirmed the same scenario
(Watanabe & Yokoyama 2006; Zenitani et al. 2010; Takahashi et al. 2013, Takamoto 2013), with a
higher Sc according to simulations with Galerkin methods by Zanotti & Dumbser (2011).
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The ideal tearing instability
For a generic dependence of the aspect ratio with S, the growth rate is

a/L ∼ S−α ⇒ γ ∼ τ̄−1
A S̄−1/2 = τ−1

A S−1/2S3/2α

thus, there is a critical value for an ideal tearing mode:

α = 1/3⇒ γ ∼ τ−1
A

For S = 1012 the threshold a/L ∼ S−1/3 = 104 is 100 times larger than the SP one.
Thus reconnection occurs on ideal timescales and the SP configuration cannot be
realized in nature (Pucci & Velli, 2014).

The dispersion relation γ(k) for varying S clearly shows an ideal limit

γmax ' 0.63 τ−1
A , kmaxa ' 1.4 S−1/6, S � 1

Simulations (Landi et al. 2015; Tenerani et al. 2015) have fully confirmed this scenario.
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Resistivity in the relativistic MHD case
For high-energy astrophysics applications, consider now a relativistic plasma where

σ = B2/ρ ∼ 1, β = 2p/B2 ∼ 1.

The conservative form of resistive relativistic MHD in Minkowski spacetime is

∂t (ρΓ) + ∇ · (ρΓv) = 0

∂t (wΓ2v + E × B) + ∇ · (wΓ2vv − EE − BB + (p + uem)I) = 0

∂t (wΓ2 − p + uem) + ∇ · (wΓ2v + E × B) = 0

∂t B + ∇× E = 0

∂t E −∇× B = −J

with Γ = 1/
p

1− v2, w = e + p, uem = 1
2 (E2 + B2), p = P(ρ, e). The electric field is

not simply provided by E + v × B = 0 but in the resistive case must be evolved by
Maxwell’s equations, with the eletric current provided by the relativistic Ohm law

J = qv + η−1 Γ[E + v × B − (E · v)v ],

for isotropic resistivity, where q = ∇ · E . This can be derived from the covariant form:

eµ = ηjµ, jµ ≡ Iµ − q0uµ = (q − q0Γ, J − q0Γv), (q0 = −Iµuµ).

IMEX (IMplicit-EXplicit) Runge-Kutta high-order methods to treat stiff terms ∝ η−1

employed in the ECHO code (Del Zanna et al. 2007, 2014).
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The tearing instability in relativistic MHD: linear analysis
We consider 2D, incompressible, linear perturbations of force-free current sheet

B0 = B0[tanh(x/a)ŷ + sech(x/a)ẑ]

and retrieve exactly the same equations of the classical MHD with the only exception
ρ0 → w0 + B2

0 as the plasma inertial term (Del Zanna et al. 2016):

∂t B1 = ∇× (v1 × B0) + η∇2B1,

∂t (w0v1 + E1 × B0) = −∇(p1 + B0 · B1) + (B0 ·∇)B1 + (B1 ·∇)B0,

The maximum growth rate then depends of the relativistic Alfvén speed as

γmaxτ̄c ' 0.6 cA S̄−1/2, cA = B0/
q

w0 + B2
0 = 0.5 (σ0 = β0 = 1)

where τ̄c = a/c and S̄ = acA/η, here from 104 to 106. Generalization to high S and to
relativistic MHD of FFE results (Komissarov et al. 2007).

L. Del Zanna - Relativistic Hydrodynamics, MITP, October 2016 - Mainz Relativistic magnetohydrodynamic simulations of astrophysical plasmas



From relativistic hydrodynamics to MHD
Numerical modeling of pulsars and their environment

Magnetic dissipation in relativistic plasmas

The quest for fast reconnection
Resistive relativistic MHD simulations

The ideal tearing instability in relativistic MHD
Let us study the tearing instability for the critical (inverse) aspect ratio

a/L = S−1/3 = 0.01, S = LcA/η = 106

Single-mode runs show a clear linear phase and the predicted dispersion relation.

We thus find that the ideal tearing mode effectively grows, independently on S, as

γmax ' 0.6cA/L ∼ c/L ,

that is on light-crossing timescales.
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The fully nonlinear case

In our recent paper (Del Zanna et al. 2016) not only the linear phase is described
analytically and numerically, but also the subsequent evolution.

In the fully nonlinear and multi-mode case secondary reconnection events occur and
the initial ∼ 5 islands of the tearing instability start to merge.

Colors refer to to |∇ × B| in log scale. The final evolution is very rapid and we end up
with an X-point, two symmetric exhausts, and a major plasmoid where additional
instabilities occur (the plasmoid instability is hidden by periodical boundaries).
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MHD shocks and Petschek fast reconnection

We find a quasi-stationary Petschek scenario for relativistic plasmas (Lyubarsky 2005):
channels delimited by slow shocks originating from the X-point,
fast magnetosonic jets propagating in the exhausts and feeding the plasmoid,
maximum velocity in funnels does not exceed the external cA (here 0.5),
we measure R ' 0.05− 0.06, matching the expected fast reconnection rate:

R ≡ MA =
|vx |
cA

=
π

4 ln S
,

universal growth of perturbations for various σ0 and β0, up to cA = 0.98.
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Application to magnetars giant flares

The (standard) tearing instability in current sheets above large coronal loops has been
recently employed to model giant flares (SGRs) in magnetars (Elenbaas et al. 2016).

The observed e-folding and peak times in the gamma-ray light curves are

τe ∼ 0.1− 1 ms, τpeak ∼ 1− 10 ms

Our model for fast reconnection predicts, independently on S (thus on microphysics!):

τe '
1
γmax

'
L

0.6cA
' 0.2 ms, (L ' 5R? = 50 km, cA ' c)

provided a thinning process has shrunk the current sheet down to δ/L ∼ S−1/3. A
similar mechanism may operate at Crab Nebula’s termination shock (Olmi et al. 2016).
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Summary
In this presentation I have shown theory and numerical applications of the physical
regimes typically employed for the modeling of relativistic plasmas in astrophysics.

In the ideal case, the relativistic MHD condition is that of a vanishing electric field
in the frame comoving with the fluid, to be used in the evolution equations:

eµ = 0⇒ E = −v × B;

When magnetic forces are dominant, the Lorentz force must be balanced as:

Lµ = Fµν Iν = 0,

characterizing the force-free electrodynamics, or magnetodynamics, regime;
We have used pulsars (magnetars) and their environment as an astrophysical
laboratory for relativistic plasmas, where both regimes apply;
In the dissipative case, the primary ingredient used in astrophysics is typically a
non-zero resistivity η, rather than viscosity. In this case Ohm’s law is

eµ = ηjµ ⇒ J = (∇ · E)v + η−1 Γ[E + v × B − (E · v)v ];

Numerical simulation of fast reconnection in thin current sheets used to model
sudden high-energy emission observed in magnetically dominated plasmas, e.g.
in magnetars (SGRs) and in pulsar wind nebulae (γ-ray flares in the Crab Nebula).

Thank you!
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