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• Left	panels	show	output	from	

the	Ohio	State/Kent	State	

GPU-based	viscous	hydro	code	

• Solves	the	non-conformal	

DNMR	(Denicol,	Niemi,	

Molnar,	Rischke)	equations	

with	a	realistic	EoS

• Parameterized	z/s	(plot	below)
• h/s	=	0.2

• T
0

=	600	MeV	@	t
0

=	0.5	fm/c

Some	pretty	pictures	from	3d	viscous	hydro
ideal shear shear+bulk

[Bazow,	Heinz,	and	MS,	1608.06577]



Pb-Pb @	2.76	TeV - Don’t	worry,	be	happy
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• DNMR	derivation	assumes	that	

Kn ~	R

-1

• For	this	to	be	a	reasonable	approx,	

the	2

nd

order	terms	should	be	

smaller	than	the	O(Kn)	Navier-

Stokes	terms

• In	order	for	code	to	run	stably,	it	is	
necessary	to	“dynamically	
regulate”	the	viscous	corrections

200	MeV

155	MeV



Pb-Pb @	2.76	TeV - Don’t	worry,	be	happy
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• For	this	to	be	a	reasonable	approx,	

the	2

nd

order	terms	should	be	

smaller	than	the	O(Kn)	Navier-

Stokes	terms

• In	order	for	code	to	run	stably,	it	is	
necessary	to	“dynamically	
regulate”	the	viscous	corrections

pA Collision

Figure	(sans	emoticons):		H.	Niemi and	G.	Denicol,	1404.7327



QGP	momentum	anisotropy	cartoon
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H.	Song,	PhD	Dissertation,	0908.3656
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SM-EOS Q

Δ

Δ

initialized by πmn=0
initialized by πmn=2ησmn

S =  pxx +	pyy
D =  pxx - pyy

à System	is	approximately	

spheroidal	in	momentum-space

What	are	the	largest	viscous	corrections?



Viscous	Hydrodynamics	Expansion
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prolate oblate

Isotropic	in	momentum	space

⇠ =
hp2T i
2hp2Li

� 1

See	e.g.

• W.	Florkowski and	R.	Ryblewski,	1007.0130

• M.	Martinez	and	MS,	1007.0889

• D.	Bazow,	U.	Heinz,	and	MS,	1311.6720

• D.	Bazow,	U.	Heinz,	and	M.	Martinez,	1503.07443

• E.	Molnar,	H.	Niemi,	and	D.	Rischke,	1602.00573;	

1606.09019

Spheroidal	expansion	method

f(⌧,x,p) = f
aniso

(p,⇤(⌧,x)| {z }
T?

, ⇠(⌧,x)| {z }
anisotropy

) + �f̃

f(⌧,x,p) = feq(p, T (⌧,x)) + �f

fLRF
aniso

= f
iso

 p
p

2 + ⇠(x, ⌧)p2z
⇤(x, ⌧)

!

Anisotropic	Hydrodynamics	(aHydro)	Expansion

à “Romatschke-Strickland”	form	in	LRF

Treat	this	term	

perturbatively

à “NLO	aHydro”



• What	is	special	about	this	form	at	leading	order?

• Gives	the	ideal	hydro	limit	when	x=0  (	Là T )

• For	longitudinal	(0+1d)	free	streaming,	the	LRF	distribution	function	is	of	

spheroidal	form;	limit	emerges	automatically	in	0+1d	aHydro

• Since	f
iso

≥	0,	the	one-particle	distribution	function	and	pressures	are	≥	0	

(not	guaranteed	in	standard	2

nd

-order	viscous	hydro)

• Reduces	to	2

nd

-order	viscous	hydrodynamics	in	limit	of	small	anisotropies

M.	Strickland 9

Why	spheroidal	form	at	LO?

fLRF
aniso

= f
iso

 p
p

2 + ⇠(x, ⌧)p2z
⇤(x, ⌧)

!

⇠FS(⌧) = (1 + ⇠0)

✓
⌧

⌧0

◆2

� 1

⇧

Eeq =
8

45
⇠ +O(⇠2)

For	3+1d	proof	of	equivalence	to	second-order	
viscous	hydrodynamics	in	the	near-equilibrium	
limit	see	Tinti 1411.7268.

M.	Martinez	and	MS,	1007.0889



The	growing	anisotropic	hydrodynamics	family

• There	are	two	approaches	being	actively	followed	in	the	

literature	to	address	this	problem

A. Linearize	around	a	spheroidal	distribution	function	and	treat	

the	perturbations	using	standard	kinetic	vHydro methods	

[“vaHydro”]

Bazow,	Martinez,	Molnar,	Niemi,	Rischke,	Heinz,	MS

B. Introduce	a	generalized	anisotropy	tensor	which	replaces	the	

entire	viscous	stress	tensor	at	LO	and	then	linearize	around	

that	instead

Tinti,	Ryblewski,	Martinez,	Nopoush,	Alqahtani,	Florkowski,	Molnar,	Niemi,	Rischke Schaefer,	Bluhm,	MS

• Each	of	these	methods	has	its	own	advantages.

• In	what	I	will	show	today,	I	will	use	the	generalized	

method	(B)	at	leading	order.

M.	Strickland 10
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Generalized	aHydro formalism
In	generalized	aHydro,	so	far	one	assumes	that	the	distribution	function	is	of	the	form

f(x, p) = feq

 p
p

µ⌅µ⌫(x)p⌫

�(x)
,

µ(x)

�(x)

!
+ �f̃(x, p)

⌅µ⌫ = uµu⌫ + ⇠µ⌫ ��µ⌫�

Traceless

symmetric	

anisotropy	

tensor

“Bulk”

Transverse	

projector

LRF	four	

velocity

uµuµ = 1

⇠µµ = 0

�µ
µ = 3

uµ⇠
µ⌫ = uµ�

µ⌫ = 0

See	e.g.

• M.	Martinez,	R.	Ryblewski,	and	MS,	1204.1473

• L.	Tinti and	W.	Florkowski,	1312.6614

• M.	Nopoush,	R.	Ryblewski,	and	MS,	1405.1355	

§ 3	degrees	of	freedom	in	u

µ

§ 5	degrees	of	freedom	in	xµn

§ 1	degree	of	freedom	in	F
§ 1	degree	of	freedom	in	l
§ 1	degree	of	freedom	in	µ

à 11	DOFs	
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Equations	of	Motion
• Herein	the	EOM	are	obtained	from	moments	of	the	Boltzmann	equation	in	

the	relaxation	time	approximation	(RTA)

• It	is	relatively	straightforward	to	use	other	collisional	kernels	(forthcoming)

• 1	equation	from	the	0

th

moment	[number	(non-conservation)]

• 4	equations	from	the	1

st

moment	[energy-momentum	conservation]

• 6	equations	from	the	2

nd

moment	[dissipative	dynamics]

• We	must	also	specify	the	relation	between	the	equilibrium	(isotropic)	

pressure	and	energy	density.		More	on	this	later.
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Is	it	really	better?
aHydro better	reproduces	exact	solutions	to	the	Boltzmann	equation	in	a	variety	of	

expanding	backgrounds	better	than	standard	viscous	Hydro.		[See	L.	Tinti’s talk	for	more	details]
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Towards	phenomenology
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3+1d	aHydro Equations	of	Motion
• Assuming	an	ellipsoidal	form	for	the	anisotropy	tensor	(ignoring	off-

diagonal	components	for	now),	one	has	seven	degrees	of	freedom:		

x
x

, x
y,	

x
z

,	u
x

,	u
y

, u
z

,	and	l.
• For	the	EoS	we	use	a	lattice-based	EoS	with	the	effective	temperature	T	

determined	via	Landau	matching.

First	Moment

Second	Moment

Florkowski,	Haque,	Nopoush,	Ryblewski,	MS,	forthcoming



Implementing	the	equation	of	state
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EêESB
PêPSB
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n(⇤, ⇠) =

Z
d3p

(2⇡)3
f
aniso

=
n
iso

(⇤)p
1 + ⇠

R	Ryblewski and	F.	Florkowski,	1204.2624

M.	Alqahtani,	M.	Nopoush,	and	MS,	1509.02913;	1605.02101

Standard	Method

Quasiparticle	Method



Anisotropic	“Cooper-Frye”	Freezeout
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• Use	same	ellipsoidal	form	for	“anisotropic	freeze-out”	at	LO.

• Form	includes	both	shear	and	bulk	corrections	to	to	the	distribution	function.

Bazow,	Heinz,	Martinez,	Nopoush,	Ryblewski,	MS,	1506.05278

Florkowski,	Haque,	Nopoush,	Ryblewski,	MS,	forthcoming

f(x, p) = f

iso

✓
1

�

p
pµ⌅µ⌫

p⌫

◆

⇠µ⌫LRF ⌘ diag(0, ⇠
x

, ⇠
y

, ⇠
z

)

⇠µµ = 0 uµ⇠
µ
⌫ = 0

✓
p

0 dN

dp

3

◆

i

=
Ni

(2⇡)3

Z
fi(x, p) p

µ
d⌃µ ,

NOTE: Usual	2nd-order	viscous	hydro	form

f(p, x) = feq

"
1 + (1� afeq)

pµp⌫⇧µ⌫

2(✏+ P )T 2

#

feq = 1/[exp(p · u/T ) + a] a = -1, +1, or 0

• This	form	suffers	from	the	problem	that	the	

distribution	function	can	be	negative	in	some	regions	

of	phase	space	à unphysical

• Problem	becomes	worse	when	including	the	bulk	
viscous	correction	(see	forthcoming	slides).

• Use	energy	density	(scalar)	to	

determine	the	freeze-out	hyper-

surface	S à e.g.	Teff,FO =	150	MeV

isotropic anisotropy

tensor

bulk

correction



The	phenomenological	setup
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• As	a	first	pass	let’s	see	if	we	can	get	close	to	the	data	with	this	simple	

model	using	smooth	optical	Glauber	initial	conditions.

• For	initial	conditions	we	use	a	mixture	of	wounded	nucleon	and	binary	

collision	profiles	with	a	binary	mixing	fraction	of	0.15	(empirically	

suggested).

• In	the	rapidity	direction,	we	use	a	rapidity	profile	with	a	“tilted”	central	

plateau	and	Gaussian	“wings”.

• We	take	all	anisotropy	parameters	to	be	1	initially	(isotropic	IC).

• We	then	run	the	code	and	extract	the	freeze-out	hypersurface.

• The	primordial	particle	production	is	then	Monte-Carlo	sampled	using	

the	Therminator 2.	[Chojnacki,	Kisiel,	Florkowski,	and	Broniowski,	arXiv:1102.0273]

• Therminator	also	takes	care	of	all	resonance	feed	down.

• We	do	not	have	a	kinetic	“afterburner”	e.g.	URQMD,	yet.

• All	data	shown	are	from	the	ALICE	collaboration.		Error	bars	are	statistical	

only.		Systematic	errors	are	(unfortunately)	not	provided	in	the	ALICE	

tables.
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• We	currently	have	a	problem	get	the	total	multiplicities	right

• This	is	related	to	the	under	prediction	of	the	particle	spectra	

at	low	transverse	momenta
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• Not	entirely	sure	why	the	low-p
T

spectra	

and	hence	multiplicities	are	off.

• I	think	that	the	problem	is	related	to	the	

way	we	have	implemented	the	realistic	

equation	of	state.

• In	the	standard	approach	I	took	the	

massless	limit	of	the	1

st

and	2

nd

moment	

equations	and	simply	enforced	a	realistic	

EoS	by	hand.

• I	think	we	have	to	include	the	non-

conformality in	the	2

nd

moment	equation	

or	use	aHydroQP (numerically	too	

demanding	at	the	moment).

What’s	wrong?
vHydro

aHydro

aHydroQP
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M.	Alqahtani,	M.	Nopoush,	and	MS,	1605.02101



Conclusions	and	Outlook
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• Anisotropic	hydrodynamics	builds	upon	prior	advances	in	

relativistic	hydrodynamics	in	an	attempt	to	create	a	(hopefully)	

more	quantitatively	reliable	model	of	QGP	evolution.

• It	incorporates	some	“facts	of	life”	specific	to	the	conditions	

generated	in	relativistic	heavy	ion	collisions	and,	in	doing	so,	

optimizes	the	dissipative	hydrodynamics	approach.

• We	now	have	a	running	3+1d	aHydro code	with	realistic	EoS,	

anisotropic	freeze-out,	and	fluctuating	initial	conditions.

• Our	preliminary	fits	to	experimental	data	using	optical	Glauber	

look	“reasonable”;	however,	we	have	a	problem	at	the	moment	

with	the	low-momentum	part	of	the	spectra	and	multiplicities	

• Also	need	to	add	the	off-diagonal	anisotropies	and	turn	on	the	

fluctuating	initial	conditions	.	.	.	Lots	of	work	yet	to	do.



Connection	to	Viscous	Hydro
For	small	departures	from	equilibrium	we	can	linearize

f(x, p) = feq

✓
p

µ
uµ

T

◆
(1 + �f(x, p))

For	viscous	hydro	one	expands	df in	a	gradient	expansion:		nth order	in	gradients	
à n

th

-order	viscous	Hydro

• 1

st

order	Hydro	:	Relativistic	Navier-Stokes	(parabolic	diff	eqsà acausal)	

[e.g.	Eckart and	Landau-Lifshitz]

• 2

nd

order	Hydro	:	Including	quadratic	gradients	fixes	causality	problem;	

hyperbolic	diff	eqs

[e.g.	Israel-Stewart]

• …
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Tµ⌫ = Tµ⌫
ideal +

Z
dP pµp⌫feq �f

⌘ Tµ⌫
ideal +⇧µ⌫

⇧µ⌫ =

Z
dP pµp⌫feq �f



1st Order	Hydro
• Expand	kinetic	equations	to	first	order	in	gradients.		

• For	now	simplicity,	I	will	ignore	the	bulk	viscosity	

• If	feq is	a	Boltzmann	distribution	one	finds	

f(x, p) = feq
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T
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1 +

p

↵
p

�
⇡↵�

2(E + P)T 2

�

h = Shear
Viscosity

z = Bulk	
Viscosity

Approximation:		1st order	in	gradients	of	un à Relativistic	Navier-Stokes

⇧µ⌫ = ⇡µ⌫ +�µ⌫� ⇡µ
µ = 0

⇡µ⌫ = ⌘rhµu⌫i � = ⇣r↵u
↵

rhµu⌫i ⌘ 2r(µu⌫) � 2

3
�µ⌫r↵u

↵
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1st Order	Hydro	– 0+1d

⇡µ⌫ = ⌘rhµu⌫i

uµ
= (cosh &, 0, 0, sinh &) =

✓
t

⌧
, 0, 0,

z

⌧

◆

rhµu⌫i ⌘ 2r(µu⌫) � 2

3
�µ⌫r↵u

↵

P
T

⌘ Peq + ⇡xx = Peq +
2⌘

3⌧

P
L

⌘ Peq + ⇡zz = Peq �
4⌘

3⌧

PT 6= PL

Longitudinal	pressure	

can	become	negative!
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1st Order	Hydro	– 0+1d
Additionally	one	finds	for	the	first	order	distribution	function

f(x, p) = feq
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• Distribution	function	becomes	anisotropic	in	momentum	space

• There	are	also	regions	where	f(x,p) < 0
• Anisotropy	and	regions	of	negativity	increase	as	t or	T decrease	OR	h/S	

increases

T  = 1	GeV
t  =  0.1	GeV-1

h/S	=	1/4p
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h/S	=	0	(isotropic)
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1st Order	Hydro	– 0+1d
Additionally	one	finds	for	the	first	order	distribution	function

f(x, p) = feq
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• Distribution	function	becomes	anisotropic	in	momentum	space

• There	are	also	regions	where	f(x,p) < 0
• Anisotropy	and	regions	of	negativity	increase	as	t or	T decrease	OR	h/S	

increases
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h/S	=	0	(isotropic)

p2f
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• Number	(entropy)	

production	vanishes	

in	two	limits:		ideal	

hydrodynamic	and	

free	streaming	limits

• In	the	conformal	

model	which	we	are	

testing	with,	number	

density	is	

proportional	to	

entropy	density

[D.	Bazow,	U.	Heinz,	and	MS,	1311.6720]
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Exact	0+1d	Solution

t
0

=	0.25	fm/c

T
0

=	600	MeV	

T
g

=	150	MeV	

Conformal	0+1d	aHydro results
[W.	Florkowski,	R.	Ryblewski,	and	MS,	1304.0665	and	1305.7234]



M.	Strickland 33

Conformal	0+1d	aHydro results
• Since	our	earlier	

papers,	others	

have	shown	how	to	

make	things	even	

better	by	a	

judicious	choice	of	

moments.

• Results	on	the	left	

are	from	the	

recent	paper	of	

Molnar,	Rischke,	

and	Niemi

[1606.09019]
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Kinetic Exact

aHydro

DNMR
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4ph/s = 3

1+1d	aHydro solution	for	Gubser Flow
M.	Nopoush,	R.	Ryblewski,	and	MS,	1410.6790	

Exact	kinetic	solution:		G.	Denicol,	U.W.	Heinz,	M.	Martinez,	J.	Noronha,	and	MS,	1408.5646	and	1408.7048

Once	again,	aHydro solution	can	be	shown	to	reproduce	the	free	streaming	limit	

analytically.		[M.	Nopoush,	R.	Ryblewski,	and	MS,	1410.6790]
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Non-conformal	0+1d	aHydro results

• Also	works	well	in	the	non-conformal	case

• Results	on	the	left	are	from	Bazow,	Heinz,	and	Martinez	[1503.07443]

• Results on	the right are	from Tinti	[1506.07164]


