3+1d Anisotropic Hydrodynamics -Phenomenological applications

Michael Strickland Kent State University Kent, OH USA

Relativistic Hydrodynamics: Theory and Modern Applications Mainz ITP October 14, 2016

Some pretty pictures from 3d viscous hydro

350

35

30

25

20

15

- 10 - 5

0.7

0.6

0.5

0.4

0.3

0.2

0.1

- Left panels show output from the Ohio State/Kent State GPU-based viscous hydro code [Bazow, Heinz, and MS, 1608.06577]
- Solves the non-conformal ٠ DNMR (Denicol, Niemi, Molnar, Rischke) equations with a realistic EoS
- Parameterized ζ /s (plot below)
- $\eta/s = 0.2$

•
$$T_0 = 600 \text{ MeV} @ t_0 = 0.5 \text{ fm/c}$$

M. Strickland

Pb-Pb @ 2.76 TeV - Don't worry, be happy

$$\begin{split} \tau_{\Pi}\dot{\Pi} + \Pi &= -\zeta\theta + \mathscr{J} + \mathscr{K} + \mathscr{R} ,\\ \tau_{n}\dot{n}^{\langle\mu\rangle} + n^{\mu} &= \kappa I^{\mu} + \mathscr{J}^{\mu} + \mathscr{K}^{\mu} + \mathscr{R}^{\mu} ,\\ \tau_{\pi}\dot{\pi}^{\langle\mu\nu\rangle} + \pi^{\mu\nu} &= 2\eta\,\sigma^{\mu\nu} + \mathscr{J}^{\mu\nu} + \mathscr{K}^{\mu\nu} + \mathscr{R}^{\mu\nu} . \end{split}$$

- $\mathcal{J}, \mathcal{J}^{\mu}, \text{ and } \mathcal{J}^{\mu\nu} \text{ are O(Kn } \mathbb{R}^{-1})$
- $\mathcal{K}, \mathcal{K}^{\mu}, \text{ and } \mathcal{K}^{\mu\nu}$ are O(Kn²)
- $\mathcal{R}, \mathcal{R}^{\mu}$, and $\mathcal{R}^{\mu\nu}$ are O(R⁻²)
- DNMR derivation assumes that Kn ~ R⁻¹
- For this to be a reasonable approx, the 2nd order terms should be smaller than the O(Kn) Navier-Stokes terms
- In order for code to run stably, it is necessary to "dynamically regulate" the viscous corrections

Pb-Pb @ 2.76 TeV - Don't worry, be happy

	$ au_{\Pi}\dot{\Pi}\!+\!\Pi=\!-\zetaoldsymbol{ heta}+\mathscr{J}\!+\!\mathscr{K}\!+\!\mathscr{R},$
)	$ au_n \dot{n}^{\langle \mu angle} + n^\mu = \kappa I^\mu + \mathscr{J}^\mu + \mathscr{K}^\mu + \mathscr{R}^\mu \; ,$
5	$ au_\pi \dot{\pi}^{\langle \mu u angle} + \pi^{\mu u} = 2\eta \sigma^{\mu u} + \mathscr{J}^{\mu u} + \mathscr{K}^{\mu u} + \mathscr{R}^{\mu u} .$
)	
5	• $\mathcal{J}, \mathcal{J}^{\mu}, \text{ and } \mathcal{J}^{\mu\nu}$ are O(Kn R ⁻¹)
,	• $\mathcal{K}, \mathcal{K}^{\mu}, \text{ and } \mathcal{K}^{\mu\nu}$ are O(Kn ²)
נ	• $\mathcal{R}, \mathcal{R}^{\mu}$, and $\mathcal{R}^{\mu\nu}$ are O(R ⁻²)
5	 DNMR derivation assumes that

- DNMR derivation assumes that Kn ~ R⁻¹
- For this to be a reasonable approx, the 2nd order terms should be smaller than the O(Kn) Navier-Stokes terms
 - In order for code to run stably, it is necessary to "dynamically regulate" the viscous corrections

QGP momentum anisotropy cartoon

What are the largest viscous corrections?

Spheroidal expansion method

Why spheroidal form at LO?

• What is special about this form at leading order?

$$f_{\text{aniso}}^{LRF} = f_{\text{iso}} \left(\frac{\sqrt{\mathbf{p}^2 + \xi(\mathbf{x}, \tau) p_z^2}}{\Lambda(\mathbf{x}, \tau)} \right)$$

- Gives the ideal hydro limit when $\xi=0$ ($\Lambda \rightarrow T$)
- For longitudinal (0+1d) free streaming, the LRF distribution function is of spheroidal form; limit emerges automatically in 0+1d aHydro

$$\xi_{\rm FS}(\tau) = (1 + \xi_0) \left(\frac{\tau}{\tau_0}\right)^2 - 1$$

- Since f_{iso} ≥ 0, the one-particle distribution function and pressures are ≥ 0 (not guaranteed in standard 2nd-order viscous hydro)
- Reduces to 2nd-order viscous hydrodynamics in limit of small anisotropies M. Martinez and MS, 1007.0889

$$\frac{\Pi}{\mathcal{E}_{eq}} = \frac{8}{45}\xi + \mathcal{O}(\xi^2)$$

For 3+1d proof of equivalence to second-order viscous hydrodynamics in the near-equilibrium limit see Tinti 1411.7268.

The growing anisotropic hydrodynamics family

- There are two approaches being actively followed in the literature to address this problem
 - A. Linearize around a spheroidal distribution function and treat the perturbations using standard kinetic vHydro methods ["vaHydro"]
 Bazow, Martinez, Molnar, Niemi, Rischke, Heinz, MS
 - B. Introduce a generalized anisotropy tensor which replaces the entire viscous stress tensor at LO and then linearize around that instead

Tinti, Ryblewski, Martinez, Nopoush, Alqahtani, Florkowski, Molnar, Niemi, Rischke Schaefer, Bluhm, MS

- Each of these methods has its own advantages.
- In what I will show today, I will use the generalized method (B) at leading order.

Generalized aHydro formalism

In generalized aHydro, so far one assumes that the distribution function is of the form

$$f(x,p) = f_{eq}\left(\frac{\sqrt{p^{\mu}\Xi_{\mu\nu}(x)p^{\nu}}}{\lambda(x)}, \frac{\mu(x)}{\lambda(x)}\right) + \delta \tilde{f}(x,p)$$

$$u^{\mu}u_{\mu} = 1$$

$$\xi^{\mu}{}_{\mu} = 0$$

$$\Delta^{\mu}{}_{\mu} = 3$$

$$u_{\mu}\xi^{\mu\nu} = u_{\mu}\Delta^{\mu\nu} = 0$$

- $\bullet \quad \ \ 3 \ \ degrees \ of \ freedom \ \ in \ u^{\mu}$
- 5 degrees of freedom in $\xi^{\mu\nu}$
- 1 degree of freedom in Φ
- 1 degree of freedom in λ
- 1 degree of freedom in μ \rightarrow 11 DOFs

See e.g.

- M. Martinez, R. Ryblewski, and MS, 1204.1473
- L. Tinti and W. Florkowski, 1312.6614
- M. Nopoush, R. Ryblewski, and MS, 1405.1355

Equations of Motion

• Herein the EOM are obtained from moments of the Boltzmann equation in the relaxation time approximation (RTA)

$$p^{\mu}\partial_{\mu}f = -\mathcal{C}[f]$$
 $\mathcal{C}[f] = \frac{p^{\mu}u_{\mu}}{\tau_{\text{eq}}}(f - f_{\text{eq}})$

- It is relatively straightforward to use other collisional kernels (forthcoming)
- 1 equation from the Oth moment [number (non-conservation)]
- 4 equations from the 1st moment [energy-momentum conservation]
- 6 equations from the 2nd moment [dissipative dynamics]
- We must also specify the relation between the equilibrium (isotropic) pressure and energy density. More on this later.

$$D_{u}n + n\theta_{u} = \frac{1}{\tau_{eq}}(n_{eq} - n)$$

$$\partial_{\mu}T^{\mu\nu} = 0$$

$$\partial_{\mu}\mathcal{I}^{\mu\nu\lambda} = \frac{1}{\tau_{eq}}(u_{\mu}\mathcal{I}^{\mu\nu\lambda}_{eq} - u_{\mu}\mathcal{I}^{\mu\nu\lambda})$$

Is it really better?

aHydro better reproduces exact solutions to the Boltzmann equation in a variety of expanding backgrounds better than standard viscous Hydro. [See L. Tinti's talk for more details]

Towards phenomenology

3+1d aHydro Equations of Motion

- Assuming an ellipsoidal form for the anisotropy tensor (ignoring offdiagonal components for now), one has seven degrees of freedom: ξ_x , ξ_y , ξ_z , u_x , u_y , u_z , and λ .
- For the EoS we use a lattice-based EoS with the effective temperature T determined via Landau matching.

$$\begin{split} D_{u}\mathcal{E} + \mathcal{E}\theta_{u} + \mathcal{P}_{x}u_{\mu}D_{x}X^{\mu} + \mathcal{P}_{y}u_{\mu}D_{y}Y^{\mu} + \mathcal{P}_{z}u_{\mu}D_{z}Z^{\mu} &= 0 ,\\ D_{x}\mathcal{P}_{x} + \mathcal{P}_{x}\theta_{x} - \mathcal{E}X_{\mu}D_{u}u^{\mu} - \mathcal{P}_{y}X_{\mu}D_{y}Y^{\mu} - \mathcal{P}_{z}X_{\mu}D_{z}Z^{\mu} &= 0 ,\\ D_{y}\mathcal{P}_{y} + \mathcal{P}_{y}\theta_{y} - \mathcal{E}Y_{\mu}D_{u}u^{\mu} - \mathcal{P}_{x}Y_{\mu}D_{x}X^{\mu} - \mathcal{P}_{z}Y_{\mu}D_{z}Z^{\mu} &= 0 ,\\ D_{z}\mathcal{P}_{z} + \mathcal{P}_{z}\theta_{z} - \mathcal{E}Z_{\mu}D_{u}u^{\mu} - \mathcal{P}_{x}Z_{\mu}D_{x}X^{\mu} - \mathcal{P}_{y}Z_{\mu}D_{y}Y^{\mu} &= 0 . \end{split}$$
First Moment

$$D_{u}\mathcal{I}_{x} + \mathcal{I}_{x}(\theta_{u} + 2u_{\mu}D_{x}X^{\mu}) = \frac{1}{\tau_{eq}}(\mathcal{I}_{eq} - \mathcal{I}_{x}),$$

$$D_{u}\mathcal{I}_{y} + \mathcal{I}_{y}(\theta_{u} + 2u_{\mu}D_{y}Y^{\mu}) = \frac{1}{\tau_{eq}}(\mathcal{I}_{eq} - \mathcal{I}_{y}),$$

$$D_{u}\mathcal{I}_{z} + \mathcal{I}_{z}(\theta_{u} + 2u_{\mu}D_{z}Z^{\mu}) = \frac{1}{\tau_{eq}}(\mathcal{I}_{eq} - \mathcal{I}_{z}).$$
Second Moment

Florkowski, Hague, Nopoush, Ryblewski, MS, forthcoming

Implementing the equation of state

R Ryblewski and F. Florkowski, 1204.2624 M. Alqahtani, M. Nopoush, and MS, 1509.02913; 1605.02101

Standard Method

$$n(\Lambda,\xi) = \int \frac{d^{3}\mathbf{p}}{(2\pi)^{3}} f_{\text{aniso}} = \frac{n_{\text{iso}}(\Lambda)}{\sqrt{1+\xi}}$$
$$\mathcal{E}(\Lambda,\xi) = T^{\tau\tau} = \mathcal{R}(\xi) \frac{\mathcal{E}_{\text{iso}}(\Lambda)}{\mathcal{P}_{\perp}(\Lambda,\xi)}$$
$$\mathcal{P}_{\perp}(\Lambda,\xi) = \frac{1}{2} \left(T^{xx} + T^{yy}\right) = \mathcal{R}_{\perp}(\xi) \frac{\mathcal{P}_{\text{iso}}(\Lambda)}{\mathcal{P}_{\text{iso}}(\Lambda)}$$
$$\mathcal{P}_{L}(\Lambda,\xi) = -T_{\varsigma}^{\varsigma} = \mathcal{R}_{L}(\xi) \frac{\mathcal{P}_{\text{iso}}(\Lambda)}{\mathcal{P}_{\text{iso}}(\Lambda)}$$

(a) **Quasiparticle Method** (b) 0.3 10 0.2 $T_{\rm eq}^{\mu\nu} = T_{\rm kinetic, eq}^{\mu\nu} + g^{\mu\nu}B_{\rm eq}$ $p^{\mu}\partial_{\mu}f + \frac{1}{2}\partial_{i}m^{2}\partial_{(p)}^{i}f = -\mathcal{C}[f]$ 0.18 0.0 $B_{\rm eq}/\,T^4$ m/T 6 -0.1 -0.22 -0.3 $\partial_{\mu}B = -\frac{1}{2}\partial_{\mu}m^2 \int dPf(x,p)$ -0.40.50 0.01 0.50 0.05 0.10 1 0.01 0.05 0.10 1 T [GeV] T [GeV]

M. Strickland

Anisotropic "Cooper-Frye" Freezeout

Bazow, Heinz, Martinez, Nopoush, Ryblewski, MS, 1506.05278 Florkowski, Haque, Nopoush, Ryblewski, MS, forthcoming

- Use same ellipsoidal form for "anisotropic freeze-out" at LO.
- Form includes both shear and bulk corrections to to the distribution function.
- Use energy density (scalar) to determine the freeze-out hypersurface $\Sigma \rightarrow$ e.g. $T_{\rm eff,FO}$ = 150 MeV

$$f(x,p) = f_{\rm iso}\left(\frac{1}{\lambda}\sqrt{p_{\mu}\Xi^{\mu\nu}p_{\nu}}\right)$$

$$\Xi^{\mu\nu} = \frac{u^{\mu}u^{\nu}}{_{\text{isotropic}}} + \frac{\xi^{\mu\nu}}{_{\text{anisotropy}}} - \frac{\Phi\Delta^{\mu\nu}}{_{\text{bulk}}}$$

$$\xi^{\mu\nu}_{\text{LRF}} \equiv \text{diag}(0, \xi_x, \xi_y, \xi_z)$$
$$\xi^{\mu}_{\ \mu} = 0 \qquad u_{\mu} \xi^{\mu}_{\ \nu} = 0$$

$$\left(p^0 \frac{dN}{dp^3}\right)_i = \frac{\mathcal{N}_i}{(2\pi)^3} \int f_i(x,p) \, p^\mu d\Sigma_\mu \,,$$

NOTE: Usual 2nd-order viscous hydro form

$$f(p,x) = f_{\rm eq} \left[1 + (1 - af_{\rm eq}) \frac{p_{\mu} p_{\nu} \Pi^{\mu\nu}}{2(\epsilon + P)T^2} \right]$$

 $f_{\rm eq} = 1/[\exp(p \cdot u/T) + a]$ a = -1, +1, or 0

- This form suffers from the problem that the distribution function can be negative in some regions of phase space → <u>unphysical</u>
- Problem becomes worse when including the bulk viscous correction (see forthcoming slides).

The phenomenological setup

- As a first pass let's see if we can get close to the data with this simple model using smooth optical Glauber initial conditions.
- For initial conditions we use a mixture of wounded nucleon and binary collision profiles with a binary mixing fraction of 0.15 (empirically suggested).
- In the rapidity direction, we use a rapidity profile with a "tilted" central plateau and Gaussian "wings".
- We take all anisotropy parameters to be 1 initially (isotropic IC).
- We then run the code and extract the freeze-out hypersurface.
- The primordial particle production is then Monte-Carlo sampled using the Therminator 2. [Chojnacki, Kisiel, Florkowski, and Broniowski, arXiv:1102.0273]
- Therminator also takes care of all resonance feed down.
- We do not have a kinetic "afterburner" e.g. URQMD, yet.
- All data shown are from the ALICE collaboration. Error bars are statistical only. <u>Systematic errors are (unfortunately) not provided in the ALICE</u> <u>tables.</u>

LHC 2.76 TeV Pb+Pb collisions; top row shows spectra, bottom row shows differential v₂

- We currently have a problem get the total multiplicities right
- This is related to the under prediction of the particle spectra at low transverse momenta

What's wrong?

- Not entirely sure why the low-p_T spectra and hence multiplicities are off.
- I think that the problem is related to the way we have implemented the realistic equation of state.
- In the standard approach I took the massless limit of the 1st and 2nd moment equations and simply enforced a realistic EoS by hand.
- I think we have to include the nonconformality in the 2nd moment equation or use aHydroQP (numerically too demanding at the moment).

Conclusions and Outlook

- Anisotropic hydrodynamics builds upon prior advances in relativistic hydrodynamics in an attempt to create a (hopefully) more quantitatively reliable model of QGP evolution.
- It incorporates some "facts of life" specific to the conditions generated in relativistic heavy ion collisions and, in doing so, optimizes the dissipative hydrodynamics approach.
- We now have a running 3+1d aHydro code with realistic EoS, anisotropic freeze-out, and fluctuating initial conditions.
- Our preliminary fits to experimental data using optical Glauber look "reasonable"; however, we have a problem at the moment with the low-momentum part of the spectra and multiplicities
- Also need to add the off-diagonal anisotropies and turn on the fluctuating initial conditions . . . Lots of work yet to do.

Connection to Viscous Hydro

For small departures from equilibrium we can linearize

$$f(x,p) = f_{\rm eq}\left(\frac{p^{\mu}u_{\mu}}{T}\right)\left(1 + \delta f(x,p)\right)$$

$$T^{\mu\nu} = T^{\mu\nu}_{\text{ideal}} + \int dP \ p^{\mu}p^{\nu}f_{\text{eq}} \,\delta f$$

$$\equiv T^{\mu\nu}_{\text{ideal}} + \Pi^{\mu\nu}$$
$$\longrightarrow \qquad \Pi^{\mu\nu} = \int dP \ p^{\mu}p^{\nu}f_{\text{eq}} \,\delta f$$

For viscous hydro one expands δf in a gradient expansion: nth order in gradients \rightarrow nth-order viscous Hydro

- 1st order Hydro : Relativistic Navier-Stokes (parabolic diff eqs → acausal) [e.g. Eckart and Landau-Lifshitz]
- 2nd order Hydro : Including quadratic gradients fixes causality problem; hyperbolic diff eqs
 - [e.g. Israel-Stewart]

• .

1st Order Hydro

• Expand kinetic equations to first order in gradients.

 $\begin{array}{l} \text{Approximation: } 1^{\text{st}} \text{ order in gradients of } u^{\nu} \not \rightarrow \text{Relativistic Navier-Stokes} \\ \hline \Pi^{\mu\nu} = \pi^{\mu\nu} + \Delta^{\mu\nu} \Phi & \pi^{\mu}{}_{\mu} = 0 \\ \pi^{\mu\nu} = \eta \nabla^{\langle \mu} u^{\nu \rangle} & \Phi = \zeta \nabla_{\alpha} u^{\alpha} \\ \hline \zeta = \text{Bulk} \\ \text{Viscosity} \\ \nabla^{\langle \mu} u^{\nu \rangle} \equiv 2 \nabla^{(\mu} u^{\nu)} - \frac{2}{3} \Delta^{\mu\nu} \nabla_{\alpha} u^{\alpha} \end{array}$

- For now simplicity, I will ignore the bulk viscosity
- If f_{eq} is a Boltzmann distribution one finds

$$f(x,p) = f_{eq}\left(\frac{p^{\mu}u_{\mu}}{T}\right) \left[1 + \frac{p^{\alpha}p^{\beta}\pi_{\alpha\beta}}{2(\mathcal{E}+\mathcal{P})T^{2}}\right]$$

1st Order Hydro – 0+1d

$$u^{\mu} = (\cosh \varsigma, 0, 0, \sinh \varsigma) = \left(\frac{t}{\tau}, 0, 0, \frac{z}{\tau}\right)$$

$$\rightarrow \pi^{\mu\nu} = \eta \nabla^{\langle \mu} u^{\nu \rangle}$$

$$\nabla^{\langle \mu} u^{\nu \rangle} \equiv 2\nabla^{(\mu} u^{\nu)} - \frac{2}{3} \Delta^{\mu\nu} \nabla_{\alpha} u^{\alpha}$$

$$\pi^{xx} = \eta \left(2 \nabla^{(x} u^{x)} - \frac{2}{3} \Delta^{xx} \partial_{\mu} u^{\mu}\right) = \frac{2\eta}{3\tau} = \pi^{yy}$$

$$\pi^{zz} = -(\pi^{xx} + \pi^{yy}) = -\frac{4\eta}{3\tau}$$

$$\mathcal{P}_{T} \equiv \mathcal{P}_{eq} + \pi^{xx} = \mathcal{P}_{eq} + \frac{2\eta}{3\tau}$$

$$\mathcal{P}_{L} \equiv \mathcal{P}_{eq} + \pi^{zz} = \mathcal{P}_{eq} - \frac{4\eta}{3\tau}$$

$$\mathcal{L}_{eq} = \mathcal{L}_{eq} + \pi^{zz} = \mathcal{P}_{eq} - \frac{4\eta}{3\tau}$$

1st Order Hydro – 0+1d

Additionally one finds for the first order distribution function

$$f(x,p) = f_{\rm eq}\left(\frac{p^{\mu}u_{\mu}}{T}\right) \left[1 + \frac{p^{\alpha}p^{\beta}\pi_{\alpha\beta}}{2(\mathcal{E}+\mathcal{P})T^2}\right] \longrightarrow f_{\rm eq}\left(\frac{E}{T}\right) \left[1 + \frac{\eta}{\mathcal{S}}\frac{p_x^2 + p_y^2 - 2p_z^2}{3\tau T^3}\right]$$

- Distribution function becomes anisotropic in momentum space
- There are also regions where f(x,p) < 0
- Anisotropy and regions of negativity increase as τ or T decrease OR η /S increases

1st Order Hydro – 0+1d

Additionally one finds for the first order distribution function

$$f(x,p) = f_{\rm eq}\left(\frac{p^{\mu}u_{\mu}}{T}\right) \left[1 + \frac{p^{\alpha}p^{\beta}\pi_{\alpha\beta}}{2(\mathcal{E}+\mathcal{P})T^2}\right] \longrightarrow f_{\rm eq}\left(\frac{E}{T}\right) \left[1 + \frac{\eta}{\mathcal{S}}\frac{p_x^2 + p_y^2 - 2p_z^2}{3\tau T^3}\right]$$

- Distribution function becomes anisotropic in momentum space
- There are also regions where f(x,p) < 0
- Anisotropy and regions of negativity increase as τ or T decrease OR η /S increases

Conformal 0+1d aHydro results

- Number (entropy) production vanishes in two limits: ideal hydrodynamic and free streaming limits
- In the conformal model which we are testing with, number density is proportional to entropy density

Conformal 0+1d aHydro results

- Since our earlier papers, others have shown how to make things even better by a judicious choice of moments.
- Results on the left are from the recent paper of Molnar, Rischke, and Niemi [1606.09019]

1+1d aHydro solution for Gubser Flow

M. Nopoush, R. Ryblewski, and MS, 1410.6790 Exact kinetic solution: G. Denicol, U.W. Heinz, M. Martinez, J. Noronha, and MS, 1408.5646 and 1408.7048

Once again, aHydro solution can be shown to reproduce the free streaming limit analytically. [M. Nopoush, R. Ryblewski, and MS, 1410.6790]

Non-conformal 0+1d aHydro results

- Also works well in the non-conformal case
- Results on the left are from Bazow, Heinz, and Martinez [1503.07443]
- Results on the right are from Tinti [1506.07164]