

Measurement of the beam normal single-spin asymmetry of ¹²C

54th Int. Winter Meeting, Bormio, 27.01.2016

Dr. Anselm Esser

- Weinberg angle / weak mixing angle:
 - Important parameter in standard model
 - Relative coupling strength of weak and electromagnetic force $e = g \cdot \sin \theta_W$
- Measurement by Parity Violation (PV):
 - Polarised electrons, scattered on protons
 - Cross section dominated by electromagnetic interaction
 - Small contribution from Z^0 exchange \rightarrow Parity violation
 - Measurement of PV asymmetry $\rightarrow Z^0$ contribution

Parity conserving Large cross section

- Heavy nuclei contain more neutrons than protons
- Spacial distribution of neutrons might be larger
- Z⁰ Boson couples more strongly to Neutron $Q_W^n \approx -0.99$ ρ $Q_W^p \approx 0.07$
- Measurement by parity violation:
 - Electron scattering on nuclei
 - Parity violating contribution to cross section from Z⁰ exchange
 - Measurement of PV asymmetry
 - → Neutron distribution

- Difficulties of PV measurements:
 - Large electromagnetic cross section, small asymmetry $\sim 10^{-6}$
 - Long run times
 - Necessary: Good understanding of background
 - Especially: Helicity correlated background
- Beam normal (single spin) asymmetry:
 - Helicity correlated background contribution
 - Caused by transversal polarisation component

• Necessary to measure for all targets used in PV experiment

• Measurement of beam normal single spin asymmetry at PREX

Theoretical Predictions

- Origin of asymmetry
 - Interference of 1 and 2 photon exchange
- Calculations:
 - Gorchtein & Horowitz [Phys. Rev. C77, 044606 (2008)]
 - Two photon exchange approximation
 - Including full range of intermediate excitation states
 - Cooper & Horowitz [Phys. Rev. C72, 034602 (2005)]
 - All orders of photon exchange
 - Coulomb distortion effects
 - Only elastic intermediate state
 - => No consistent Theory but
 - Contribution to every PV experiment
 - Contribution to other measurements (e.g. proton radius)

E_{Beam} = 850 MeV

- Measurement of beam normal asymmetry on ¹²C
 - E_{Beam} = 570 MeV
 - Scattering angles = 15° 26°
 - $Q^2 = 0.02 0.05 \text{ GeV}^2/c^2$ (Q = 0.14 - 0.22 GeV/c)

kinematic range of this experiment

- Requirements:
 - High quality transversely polarised electron beam of known polarisation
 - High rate capable detector system

MAMI Accelerator

- No polarimeter for direct vertical transversal polarisation measurement available
 - Mott: horizontal transversal @ source
 - Compton: longitudinal @ source
 - Møller: longitudinal @ target
- Polarimetry:
 - Maximise and measure longitudinal polarisation at target
 - Maximise transversal horizontal component at source
 - Minimise longitudinal and horizontal component at source and target

Experimental Set-up

- Electron Beam:
 - E = 570 MeV
 - I = 20 μA
- Target:
 - 10 mm ¹²C
- Magnetic Spectrometers:
 - Define angular acceptance (angles 15.11° - 25.9°)
 - Select elastic events
- Detectors:
 - Quartz-Cherenkov-Detectors
 - Reduced amplification
 → High rate capability

Benefits of the Spectrometers

Low rate particle tracking mode:

Precise positioning of detectors & magnetic field setting

 \rightarrow Only elastic line in detector acceptance

Minimising False Asymmetries

counts

Beam related sources:

- beam current, energy, position, angle
- => beam stabilisation

- Remaining asymmetry: beam current: ~ 1 ppm other parameters: < 0.1 ppm
 - => Correction in offline analysis

Non beam related sources:

- Ground noise,
- Gate length fluctuations,
- Electrical cross talk
- Hardware suppression
 - Synchronised with power grid
 - Random polarity sequence
 - Inversions of general sign

Results

General Sign (\u03c6/2 plate)

Results

Implications

- Observations
 - Data points don't agree with theory
 - Data shows different slope
- Theory limitations
 - Only 2 photon exchange
 - No Coulomb distortion effects included
 - Nuclear structure for heavy nuclei similar to hydrogen
 - Scattering angle: $\Theta \approx 0$

=> Theory present in many physical measurements needs to be improved

- Parity violation experiments allow measurement of
 - Weinberg angle
 - Neutron Skin
- Beam-normal asymmetry:
 - important background
 - Direct probe for two-photon exchange
- Experiment:
 - Vertically polarised electron beam & Elaborate polarisation measurement
 - Spectrometers to select elastic events & Quartz Cherenkov detectors
 - Suppression & Correction for false asymmetries
- Disagreement between theoretical prediction and measurement
- Continuation of program:
 - Upcoming beam time in April:
 - Energy dependence of asymmetry
 - Different target material: Silicon

Backup

Theoretical Calculations

- Cooper and Horowitz [Phys Rev C 72, 034602 (2005)]
 - All orders of photon exchanges
 - Coulomb distortion effects
 - Only elastic intermediate state

Gorchtein and Horowitz [Phys Rev C 77, 044606 (2008)]

- Two photon exchange approximation
- Including full range of intermediate excited states

kinematic range of this experiment

- Intrinsic reduction of false asymmetries:
 - Spin flip synchronised with power grid frequency
 - \rightarrow ground noise
 - Polarity patterns: $\uparrow \downarrow \downarrow \uparrow$ or $\downarrow \uparrow \uparrow \downarrow$
 - \rightarrow low frequency noise, monotonous changes
 - Random sequence of Polarity patterns
 - → monotonous changes
 - Inversion of ... pola inverter every 5 minutes
 - \rightarrow electrical cross-talk in DAQ electronics
 - Inversion of absolute sign every day
 - \rightarrow Unknown sources of false asymmetries
- Random Variations of beam parameters cancel out
- Offline correction of remaining false asymmetries

Beam Stability

AI

Current stabilisation disabled

Position stabilisation disabled

Active beam stabilisation:

- Current (AC / DC)
- Position (AC / DC)
- Energy

Correlation of asymmetries in both spectrometers

Polarity Correlated Beam Variations

- Polarity-correlated variations cause false asymmetries:
 - Beam-current: directly influences measure Asymmetry
 - Beam-energy & beam-angle influence cross-section
 - Beam position on target influences Spectrometer-acceptance
- Correction factors:
 - Calculated: Current, Energy, Angle
 - Simulated: Beam Positions

	Correction Factor	Mean Value	Correction [ppm]
Beam Current	1 ppm / ppm	-0.94 ppm	-0.94
Beam Energy	-3.517 ppm/keV	0.0023 keV	-0.0079
Hor. Position	-19.9 ppm / µm	-0.002 μm	0.0398
Vert. Position	0.061 ppm /µm	-0.013 μm	-0.0008
Hor. Angle	-8.95 ppm/µrad	-0.0007 µrad	0.006
Vert. Angle	0 ppm / μrad	-0.011 µrad	0