Measurement of the beam normal single-spin asymmetry of ^{12}C
Weak Mixing Angle

- Weinberg angle / weak mixing angle:
 - Important parameter in standard model
 - Relative coupling strength of weak and electromagnetic force
 \[e = g \cdot \sin \theta_w \]

- Measurement by Parity Violation (PV):
 - Polarised electrons, scattered on protons
 - Cross section dominated by electromagnetic interaction
 - Small contribution from Z^0 exchange → Parity violation
 - Measurement of PV asymmetry → Z^0 contribution

\[\begin{align*}
 & \text{Parity conserving} \\
 & \text{Large cross section} \\
 & \text{Parity violating} \\
 & \text{small cross section}
\end{align*} \]
Neutron Skin

- Heavy nuclei contain more neutrons than protons
- Spacial distribution of neutrons might be larger

- Z^0 Boson couples more strongly to Neutron
 \[Q_w^n \approx -0.99 \]
 \[Q_w^p \approx 0.07 \]

- Measurement by parity violation:
 - Electron scattering on nuclei
 - Parity violating contribution to cross section from Z^0 exchange
 - Measurement of PV asymmetry
 \[\rightarrow \text{Neutron distribution} \]
• Difficulties of PV measurements:
 ● Large electromagnetic cross section, small asymmetry $\sim 10^{-6}$
 ● Long run times
 ● Necessary: Good understanding of background
 ● Especially: Helicity correlated background

• Beam normal (single spin) asymmetry:
 ● Helicity correlated background contribution
 ● Caused by transversal polarisation component

• Necessary to measure for all targets used in PV experiment
- Measurement of beam normal single spin asymmetry at PREX

\[A_n \text{ [ppm]} \]

\[Q \text{ [GeV]} \]

\[E_{\text{Beam}} = 1 - 3 \text{ GeV} \]
Theoretical Predictions

- Origin of asymmetry
 - Interference of 1 and 2 photon exchange

- Calculations:
 - Gorchtein & Horowitz
 - Two photon exchange approximation
 - Including full range of intermediate excitation states
 - Cooper & Horowitz
 [Phys. Rev. C72, 034602 (2005)]
 - All orders of photon exchange
 - Coulomb distortion effects
 - Only elastic intermediate state

=> No consistent Theory but
 - Contribution to every PV experiment
 - Contribution to other measurements (e.g. proton radius)

\[E_{\text{Beam}} = 850 \text{ MeV} \]
• Measurement of beam normal asymmetry on 12C
 • $E_{\text{Beam}} = 570$ MeV
 • Scattering angles = 15° - 26°
 • $Q^2 = 0.02$ – 0.05 GeV2/c2
 ($Q = 0.14$ – 0.22 GeV/c)

• Requirements:
 • High quality transversely polarised electron beam of known polarisation
 • High rate capable detector system
• **MAinz MIcrotron**
 - 5-Stage electron accelerator
 - Continuous wave beam:
 \[
 E = 180 \text{ MeV} - 1.6 \text{ GeV} \\
 I_{\text{max}} = 100 \mu\text{A}
 \]
No polarimeter for direct vertical transversal polarisation measurement available

- Mott: horizontal transversal @ source
- Compton: longitudinal @ source
- Møller: longitudinal @ target

Polarimetry:
- Maximise and measure longitudinal polarisation at target
- Maximise transversal horizontal component at source
- Minimise longitudinal and horizontal component at source and target
Experimental Set-up

- Electron Beam:
 - $E = 570$ MeV
 - $I = 20 \mu A$

- Target:
 - $10 \text{ mm } ^{12}\text{C}$

- Magnetic Spectrometers:
 - Define angular acceptance (angles 15.11° - 25.9°)
 - Select elastic events

- Detectors:
 - Quartz-Cherenkov-Detectors
 - Reduced amplification → High rate capability
Low rate particle tracking mode:

Precise positioning of detectors & magnetic field setting
→ Only elastic line in detector acceptance
Minimising False Asymmetries

Beam related sources:
- beam current, energy, position, angle

=> beam stabilisation

- Remaining asymmetry:
 - beam current: ~ 1 ppm
 - other parameters: < 0.1 ppm

=> Correction in offline analysis

Non beam related sources:
- Ground noise,
- Gate length fluctuations,
- Electrical cross talk

- Hardware suppression
 - Synchronised with power grid
 - Random polarity sequence
 - Inversions of general sign

=> Offline corrections
Results

Inversion of general sign

Runs with equal spectrometer angles

Beam normal spin asymmetry, A_L [ppm]

PMT A1-A5
B1-B3
Summed Signals A
B
Total -23.8 ± 1.0 ppm

General Sign ($\lambda/2$ plate)

Run number

Inversion of general sign
Results

PREX ($E_{\text{Beam}} = 1 - 3 \text{ GeV}$)

Transverse Beam Asymmetry [ppm]

Q^2 [GeV2/c2]
Implications

- **Observations**
 - Data points don't agree with theory
 - Data shows different slope

- **Theory limitations**
 - Only 2 photon exchange
 - No Coulomb distortion effects included
 - Nuclear structure for heavy nuclei similar to hydrogen
 - Scattering angle: $\Theta \approx 0$

\Rightarrow Theory present in many physical measurements needs to be improved
Parity violation experiments allow measurement of
 - Weinberg angle
 - Neutron Skin

Beam-normal asymmetry:
 - important background
 - Direct probe for two-photon exchange

Experiment:
 - Vertically polarised electron beam & Elaborate polarisation measurement
 - Spectrometers to select elastic events & Quartz Cherenkov detectors
 - Suppression & Correction for false asymmetries

Disagreement between theoretical prediction and measurement

Continuation of program:
 - Upcoming beam time in April:
 - Energy dependence of asymmetry
 - Different target material: Silicon
Theoretical Calculations

- Cooper and Horowitz
 [Phys Rev C 72, 034602 (2005)]
 - All orders of photon exchanges
 - Coulomb distortion effects
 - Only elastic intermediate state

- Gorchtein and Horowitz
 [Phys Rev C 77, 044606 (2008)]
 - Two photon exchange approximation
 - Including full range of intermediate excited states

Data from:
HAPPEX / PREX @ J-Lab

\(E_{\text{Beam}} = 1 - 3 \, \text{GeV} \)

\(E_{\text{Beam}} = 850 \, \text{MeV} \)

kinematic range of this experiment
• Intrinsic reduction of false asymmetries:
 • Spin flip synchronised with power grid frequency
 → ground noise
 • Polarity patterns: ↑↓↓↑ or ↓↑↑↓
 → low frequency noise, monotonous changes
 • Random sequence of Polarity patterns
 → monotonous changes
 • Inversion of … pola inverter every 5 minutes
 → electrical cross-talk in DAQ electronics
 • Inversion of absolute sign every day
 → Unknown sources of false asymmetries

• Random Variations of beam parameters cancel out
• Offline correction of remaining false asymmetries
Beam Stability

Current stabilisation disabled

Active beam stabilisation:
- Current (AC / DC)
- Position (AC / DC)
- Energy

Correlation of asymmetries in both spectrometers

Position stabilisation disabled
Polarity Correlated Beam Variations

- Beam Current Asymmetry [ppm]
- Horizontal Position Difference [µm]
- Vertical Position Difference [µm]
- Beam Energy Difference [eV]
- Horizontal Angle Difference [urad]
- Vertical Angle Difference [urad]
• Polarity-correlated variations cause false asymmetries:
 • Beam-current: directly influences measure Asymmetry
 • Beam-energy & beam-angle influence cross-section
 • Beam position on target influences Spectrometer-acceptance

• Correction factors:
 • Calculated: Current, Energy, Angle
 • Simulated: Beam Positions

<table>
<thead>
<tr>
<th></th>
<th>Correction Factor</th>
<th>Mean Value</th>
<th>Correction [ppm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam Current</td>
<td>1 ppm / ppm</td>
<td>-0.94 ppm</td>
<td>-0.94</td>
</tr>
<tr>
<td>Beam Energy</td>
<td>-3.517 ppm/keV</td>
<td>0.0023 keV</td>
<td>-0.0079</td>
</tr>
<tr>
<td>Hor. Position</td>
<td>-19.9 ppm / µm</td>
<td>-0.002 µm</td>
<td>0.0398</td>
</tr>
<tr>
<td>Vert. Position</td>
<td>0.061 ppm /µm</td>
<td>-0.013 µm</td>
<td>-0.0008</td>
</tr>
<tr>
<td>Hor. Angle</td>
<td>-8.95 ppm/µrad</td>
<td>-0.0007 µrad</td>
<td>0.006</td>
</tr>
<tr>
<td>Vert. Angle</td>
<td>0 ppm / µrad</td>
<td>-0.011 µrad</td>
<td>0</td>
</tr>
</tbody>
</table>