Quasi-free one-nucleon Knockout Reactions on neutron-rich Oxygen Isotopes

Leyla Atar^{1,2} T. Aumann^{1,2}, C. Bertulani³, S. Paschalis¹ for R³B Collaboration

TU Darmstadt
GSI, Darmstadt
Texas A&M University-Commerce, USA

January 29, 2016

Bundesministerium für Bildung und Forschung

Outline

- Introduction
- Experimental Setup
- Data Analysis
- Experimental Results
- Summary & Outlook

Single-Particle Strength

IPM: Nucleons are single particles moving independently in a mean field created by all nucleons.

Reduction factor

 $R = \sigma_{exp}^{} / \sigma_{IPM}^{}$

relative to the IPM!

30-40% deviation of the single-particle strength relative to the IPM

 Correlations: not included in the IPM such as short-range and tensor, long-range

- \rightarrow configuration mixing
- \rightarrow high momenta

(e,e'p) reactions at NIKHEF

H. Dickhoff, C. Barbieri Prog. Nucl. Phys. 52, 377 (2004) NIKHEF data: L. Lapikas Nucl. Phys. A553, 297c (1993)

• NIKHEF data is limited to stable nuclei

Quenching of Single-Particle Strength

- Latest compilation including exotic nuclei from (e,e'p), proton and neutron removal reactions
- Isospin dependency of singleparticle strength in asymmetric systems?

Quenching of single-particle strength in strongly bound states?

- \rightarrow origin unclear
- Nucleon removal reactions with exotic beams at low energies are limited to surface localized reactions
 - \rightarrow Reaction mechanism?

Reduction factor relative to a certain Shell Model:

$$R_s = \sigma_{exp} / \sigma_{SM}$$

correlations are partially included!

Knockout Reactions vs Quasi-free Scattering

Knockout reactions:

- on light nuclear targets (e.g. Be, C)
 - beam energy ~ 100MeV/u and higher
 - strong absorption \rightarrow surface localized

 $\mathbf{P}_{\mathbf{A}-1} = -\mathbf{P}_{\mathbf{p}/\mathbf{n}}$ residue momentum→ angular momentum of removed nucleon

Quasi-free knockout reactions:

- proton target
- \rightarrow quasi-free NN reactions
- \rightarrow more sensitive to deeply bound states
- relativistic energies (0.2-1 GeV)
- \rightarrow sudden approximation: fast reaction (10⁻²³ s) and spectator core
- \rightarrow minimizing final state interactions (σ_{NN} min ~300 MeV)

Oxygen Isotopic Chain

Changing of single-particle strength with proton-neutron asymmetry

 Oxygen isotopic chain offers a large variation in isospin

 Systematic study of Oxygen isotopes via (p,pn) & (p,2p) reactions

GSI Accelerator Facility

- Fragmentation of primary 490 AMeV ⁴⁰Ar beam on ⁹Be target (3*10¹⁰ ion/spill)
- Selection of radioactive beam at Fragment Separator (FRS)
- Secondary beam ¹³⁻²⁴O delivered to Cave C

S393 Experiment at R³B/LAND Setup @ GSI

Incoming Beam & Outgoing Fragment Identification

Incoming Beam & Outgoing Fragment Identification

Experimental Results

Inclusive Cross Section & Transverse Momentum: ¹⁶O(p,2p)¹⁵N

- IPM description of the projectile ground state
- Inclusive cross section with respect to all bound core states
- Reaction theory: C. Bertulani, Eikonal Theory. T. Aumann, C. Bertulani, J. Ryckebusch Phys. Rev. C88, 064610 (2013)

Partial Cross Sections and Spectroscopic Factors: ¹⁶O(p,2p)¹⁵N

Inclusive Cross Sections for Projectiles ¹⁶⁻¹⁸O and ²¹⁻²³O

Reduction Factors from (p,2p) Cross Sections

• A weak dependency of single-particle strength on isospin asymmetry

 In contrast to the observed trend from one-nucleon removal reactions in low energies using composite targets

Summary

 Quasi-free knockout reactions in inverse kinematics provide a direct tool to obtain spectroscopic information.

• The results for the projectiles ¹⁶⁻¹⁸O and ²¹⁻²³O have been obtained.

 The reduction factor obtained from ¹⁶O(p,2p)¹⁵N reaction is in agreement with the results from (e,e'p) reaction at NIKHEF facility.

 Only weak dependency of single-particle strength on the isospin asymmetry is observed.

 It is necessary to understand reaction mechanism for knockout of deeply bound states at these low energies.

Outlook

Systematic analysis for entire Oxygen isotopic chain

• A discussion of the results for the (p,pn) channel not attempted due to the more challenging estimation of the efficiency for neutron detection.

 Development of optimized detector system for the future R³B (Reactions with Relativistic Radioactive Beams) program at FAIR.

Leyla Atar | 54th International Winter Meeting on Nuclear Physics, Bormio, Italy | 29.01.2016

Thanks for your attention

Aksouh, Farouk; Al-Khalili, Jim; Algora, Alejandro; Alkhasov, Georgij; Altstadt, Sebastian; Alvarez, Hector; Atar, Leyla; Audouin, Laurent; Aumann, Thomas; Pellereau, Eric; Martin, Julie-Fiona; Gorbinet, Thomas; Seddon, Dave; Kogimtzis, Mos; Avdeichikov, Vladimir; Barton, Charles; Bayram, Murat; Belier, Gilbert; Bemmerer, Daniel; Michael Bendel; Benlliure, Jose; Bertulani, Carlos; Bhattacharya, Sudeb; Bhattacharya, Chandana; Le Bleis, Tudi; Boilley, David; Boretzky, Konstanze; Borge, Maria Jose; Botvina, Alexander: Boudard. Alain; Boutoux, Guillaume; Boehmer, Michael; Caesar, Christoph; Calvino, Francisco; Casarejos, Enrique; Catford, Wilton; Cederkall, Joakim; Cederwall, Bo; Chapman, Robert; Alexandre Charpy; Chartier, Marielle; Chatillon, Audrey; Chen, Ruofu; Christophe, Mayri; Chulkov, Leonid; Coleman-Smith, Patrick; Cortina, Dolores; Crespo, Raguel; Csatlos, Margit; Cullen, David; Czech, Bronislaw; Danilin, Boris; Davinson, Tom; Paloma Diaz; Dillmann, Iris; Fernandez Dominguez, Beatriz; Ducret, Jean-Eric; Duran, Ignacio; Egelhof, Peter; Elekes, Zoltan; Emling, Hans; Enders, Joachim; Eremin, Vladimir; Ershov, Sergey N.; Ershova, Olga; Eronen, Simo; Estrade, Alfredo; Faestermann, Thomas; Fedorov, Dmitri; Feldmeier, Hans; Le Fevre, Arnaud; Fomichev, Andrey; Forssen, Christian; Freeman, Sean; Freer, Martin; Friese, Juergen; Fynbo, Hans: Gacsi, Zoltan: Garrido, Eduardo: Gasparic, Igor: Gastineau, Bernard: Geissel, Hans: Gelletly, William: Genolini, B.; Gerl, Juergen: Gernhaeuser, Roman; Golovkov, Mikhail; Golubev, Pavel; Grant, Alan; Grigorenko, Leonid; Grosse, Eckart; Gulyas, Janos; Goebel, Kathrin; Gorska, Magdalena; Haas, Oliver Sebastian; Haiduc, Maria; Hasegan, Dumitru; Heftrich, Tanja; Heil, Michael; Heine, Marcel; Heinz, Andreas; Ana Henriques; Hoffmann, Jan; Holl, Matthias; Hunyadi, Matyas; Ignatov, Alexander; Ignatyuk, Anatoly V.; Ilie, Cherciu Madalin; Isaak, Johann; Isaksson, Lennart; Jakobsson, Bo; Jensen, Aksel; Johansen, Jacob; Johansson, Hakan; Johnson, Ron; Jonson, Bjoern; Junghans, Arnd; Jurado, Beatriz; Jaehrling, Simon; Kailas, S.; Kalantar, Nasser; Kalliopuska, Juha; Kanungo, Rituparna; Kelic-Heil, Aleksandra; Kezzar, Khalid; Khanzadeev, Alexei; Kissel, Robert; Kisselev, Oleg; Klimkiewicz, Adam; Kmiecik, Maria; Koerper, Daniel; Kojouharov, Ivan; Korsheninnikov, Alexei; Korten, Wolfram; Krasznahorkay, Attila; Kratz, Jens Volker: Kresan, Dima; Anatoli Krivchitch: Kroell, Thorsten: Krupko, Sergey: Kruecken, Reiner: Kulessa, Reinhard: Kurz, Nikolaus; Kuzmin, Eugenii: Labiche, Marc; Langanke, Karl-Heinz; Langer, Christoph; Lapoux, Valerie; Larsson, Kristian; Laurent, Benoit; Lazarus, Ian; Le, Xuan Chung; Leifels, Yvonne; Lemmon, Roy; Lenske, Horst; Lepine-Szily, Alinka; Leray, Sylvie; Letts, Simon; Li, Songlin; Liang, Xiaoying; Lindberg, Simon; Lindsay, Scott; Litvinov, Yuri; Lukasik, Jerzy; Loeher, Bastian; Mahata, Kripamay; Maj, Adam; Marganiec, Justyna; Meister, Mikael; Mittig, Wolfgang; Movsesyan, Alina; Mutterer, Manfred; Muentz, Christian; Nacher, Enrique; Najafi, Ali; Nakamura, Takashi; Neff, Thomas; Nilsson, Thomas; Nociforo, Chiara; Nolan, Paul; Nolen, Jerry; Nyman, Goran; Obertelli, Alexandre; Obradors, Diego; Ogloblin, Aleksey; Oi, Makito; Palit, Rudraivoti: Panin, Valerii: Paradela, Carlos: Paschalis, Stefanos: Pawlowski, Piotr: Petri, Marina: Pietralla, Norbert: Pietras, Ben: Pietri, Stephane: Plag, Ralf: Podolvak, Zsolt: Pollacco, Emanuel; Potlog, Mihai; Datta Pramanik, Ushasi; Prasad, Rajeshwari; Fraile Prieto, Luis Mario; Pucknell, Vic; Galaviz -Redondo, Daniel; Regan, Patrick; Reifarth, Rene; Reinhardt, Tobias; Reiter, Peter; Rejmund, Fanny; Ricciardi, Maria Valentina; Richter, Achim; Rigollet, Catherine; Riisager, Karsten; Rodin, Alexander; Rossi, Dominic; Roussel-Chomaz, Patricia; Gonzalez Rozas, Yago; Rubio, Berta; Roeder, Marko; Saito, Takehiko; Salsac, Marie-Delphine; Rodriguez Sanchez, Jose Luis; Santosh, Chakraborty; Savajols, Herve; Savran, Deniz; Scheit, Heiko; Schindler, Fabia; Schmidt, Karl-Heinz; Schmitt, Christelle; Schnorrenberger, Linda; Schrieder, Gerhard; Schrock, Philipp; Sharma, Manoj Kumar; Sherrill, Bradley; Shrivastava, Aradhana; Shulgina, Natalia; Sidorchuk, Sergey; Silva, Joel; Simenel, Cedric; Simon, Haik; Simpson, John; Singh, Pushpendra Pal: Sonnabend, Kerstin: Spohr, Klaus: Stanoju, Mihai: Stevenson, Paul: Strachan, Jon: Streicher, Brano: Stroth, Joachim: Syndikus, Ina: Suemmerer, Klaus: Taieb, Julien; Tain, Jose L.; Tanihata, Isao; Tashenov, Stanislav; Tassan-Got, Laurent; Tengblad, Olof; Teubig, Pamela; Thies, Ronja; Togano, Yasuhiro; Tostevin, Jeffrey A.; Trautmann, Wolfgang; Tuboltsev, Yuri; Turrion, Manuela; Typel, Stefan; Udias-Moinelo, Jose; Vaagen, Jan; Velho, Paulo; Verbitskaya, Elena; Veselsky, Martin; Wagner, Andreas; Walus, Wladyslaw; Wamers, Felix; Weick, Helmut; Wimmer, Christine; Winfield, John; Winkler, Martin; Woods, Phil; Xu, Hushan; Yakorev, Dmitry; Zegers, Remco; Zhang, Yu-Hu; Zhukov, Mikhail; Zieblinski, Miroslaw; Zilges, Andreas;

Backup Slides

y-projection of transverse momentum distributions

Leyla Atar | 54th International Winter Meeting on Nuclear Physics, Bormio, Italy | 29.01.2016

y-projection of transverse momentum distributions

Leyla Atar | 54th International Winter Meeting on Nuclear Physics, Bormio, Italy | 29.01.2016

Separation energies of Oxygen & Nitrogen Isotopes

Isotope	S _n [MeV]	S _p [MeV]	Isotope	S _n [MeV]	S _p [MeV]
¹⁵ O	13.2	7.3	¹⁵ N	10.9	10.2
¹⁶ O	15.7	12.1	¹⁶ N	2.5	11.5
¹⁷ O	4.1	13.8	¹⁷ N	5.9	13.1
¹⁸ O	8.0	15.9	¹⁸ N	2.8	15.2
¹⁹ O	4.0	17.1	¹⁹ N	5.3	16.4
²⁰ O	7.6	19.4	²⁰ N	2.2	18.4
²¹ O	3.8	21.0	²¹ N	4.6	19.6
²² O	6.9	23.3	²² N	1.3	21.2
²³ O	2.7	24.7	²³ N	1.7	22.2

Transfer reactions

