Forward Neutron Production in Fragmentation of High-Energy Heavy Nuclei

Vladimir Yurevich

Joint Institute for Nuclear Research, Dubna

Neutron production in high-energy reactions with heavy nuclei

p + Pb, C + Pb

Source 1 - Cascade stage

Source 2 - Hot source decay

Source 3 - Multifragmentation

Source 4 - Evaporation

Neutron energy and angular distributions

Lorentz transformation

Moving Source Model fit

with 4 decay stages (neutron sources)

$$\frac{d^2\sigma}{dE_{kin}d\Omega} = \sum_{i=1}^4 pA_i \exp\{-(\frac{E_{kin} + m - p\beta_i \cos \theta}{(1 - \beta_i^2)^{1/2}} - m)/T_i\}$$

Parameters: A_i – amplitude, T_i – temperature, $\beta_i = v/c$

Angular distribution becomes narrow with energy and peaked at 0°

Gaussian-like energy distribution with $\sigma_E/E \le 4\%$ for neutron energies E > 6 GeV

Beam of high-energy neutrons

A scheme of neutron beam line

Available HI beams at AGS and SPS

AGS/BNL – beam of Au ions with energy of 11 A GeV SPS/CERN – beam of Pb ions with energies of 20 – 158 A GeV

Example

Pb ion beam intensity = 1×10^6 ion/s (SPS energy) 5%-target (1.4-mm carbon or 1.9-mm polyethylene) Trigger of central and semi-central collisions, $\varepsilon \approx 0.6$ Rate of neutron pulses = 3×10^4 pulses/s Neutrons in pulse (in beam spot) <Mn> ≈ 34 n/pulse

Neutron beam intensity ≈1×10⁶ n/s Picosecond time duration of neutron pulse

Picosecond pulses of GeV neutrons at 0° with energy resolution $\sigma_E/E \le 4\%$ can be realized with available beams of Pb and Au ions at SPS/CERN and AGS/BNL. The interaction rate in neutron production target defines the rate of neutron pulses.

Application in experiments

Parasitic neutron beams at HI accelerators