Neutral meson and direct photon measurement in pp and Pb–Pb collisions at midrapidity with the ALICE experiment at the LHC

Lucia Leardini

PI Heidelberg on behalf of the ALICE Collaboration

54th International Winter Meeting on Nuclear Physics Bormio, 25 - 29 January 2016

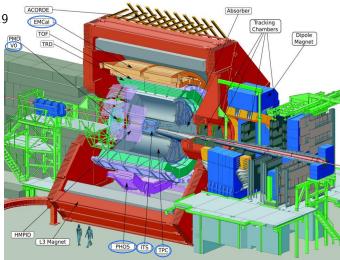
Motivations

Neutral mesons as probes of the Quark Gluon Plasma (QGP) allow

- in pp collisions, the study of particle production and constraint of fragmentation functions
- in Pb–Pb collisions, insights on the bulk properties of the medium, collective effects and particle energy loss
- in both cases, the comparison to models is used to test predictions and improve the theoretical description
- \bullet π^0 and η are input for background estimates to direct photons

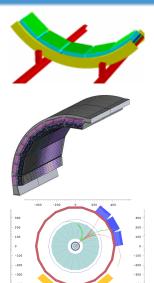
Direct photons are photons not coming from particle decays

- do not interact with the medium, thus carry unmodified information about early stages of the collisions
- hard to measure above a large electromagnetic decay background


The ALICE experiment

Central barrel: $|\eta| < 0.9$

V0: multiplicity estimation

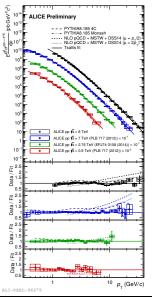

ITS: vertex finding and tracking

TPC: tracking and particle identification

PHOS and EMCal: calorimetry

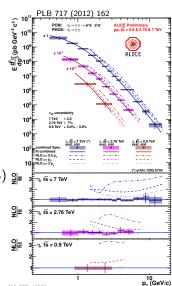
Photon detection with the ALICE experiment (RUN 1)

- PHOS calorimeter:
 - PbWO₄ crystals
 - 3 modules at 4.6 m from IP
 - $|\eta| < 0.13$, $260^{\circ} < \phi < 320^{\circ}$
- EMCal calorimeter:
 - 77 sampling layers, 1.4 mm Pb and 1.7 mm scintillator
 - 10 modules at 4.4 m from IP
 - $|\eta| <$ 0.7, $80^\circ < \phi < 180^\circ$
- Photon Conversion Method (PCM):
 - ITS and TPC
 - $|\eta| < 0.9$, $0^{\circ} < \phi < 360^{\circ}$
 - conversion in detector material:
 - $_{
 m \triangleright}$ conv. probability $\sim 8\%$
 - $> X/X_0 = (11.4 \pm 0.5)\% (|\eta| < 0.9, R < 180 \text{ cm})$
- \rightarrow Photon candidates are extracted from V⁰s (neutral secondary vertex particles) sample


Invariant mass reconstruction

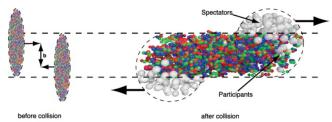
Photon candidates are combined into pairs

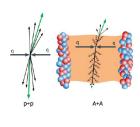
 $M_{\gamma\gamma} = \sqrt{2E_{\gamma_1}E_{\gamma_2}(1-\cos\theta_{12})}$ \rightarrow invariant mass calculated in p_T bins: 5.0<p_<7.0 GeV/c 07.08.2012 pp 0.14 m_{rr} (GeV/c²) m_{rr} (GeV/c²) **PCM EMCal PHOS Histo**: signal + background EMCal $\eta \rightarrow \gamma \gamma$ Pb-Pb, $\sqrt{s_{ss}} = 2.76 \text{ TeV}$ Pb-Pb, √s_m = 2.76 TeV 19 01 2016 19 01 2016 Points: signal after $2 < p_{-}^{\gamma \gamma} < 3 \text{ GeV}/c^2$ 12 < p^{YI}< 14 GeV/c background subtraction Pb-Pb Line: fit (for mass and width) 3%(PCM) 5%(PHOS) at $p_T = 3 \text{ GeV}/c$ M_{vv} (GeV/c²) 7%(EMCal)


π^0 and η in pp collisions

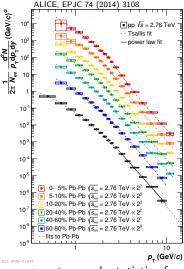
Neutral mesons invariant cross section (PCM + PHOS)

 $ightarrow \pi^0$ compared to PYTHIA8 and NLO pQCD (PRD 91 (2015) 014035)


- \rightarrow models give good description at intermediate $p_{\rm T}$ but a larger discrepancy towards higher $p_{\rm T}$
- $\begin{tabular}{ll} \triangleright η compared to NLO \\ $pQCD$ by W. Vogelsang \\ $(PDF: CTEQ6M5, FF: AES)$ $\begin{tabular}{ll} $\S_{\mathbb{R}}$ & \mathbb{R} & $\mathbb{$
- ightharpoonup reference at $\sqrt{s}=2.76$ TeV is used to calculate nuclear modification factor ($R_{\rm AA}$) in Pb-Pb at the same center of mass energy

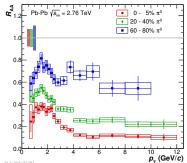

 π^0 and η in Pb–Pb collisions

Quark-Gluon Plasma (QGP) in A-A collisions


QGP forms in A-A collisions: hot and dense medium, strongly interacting

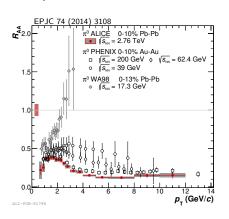
- collective expansion
- deconfined quarks and gluons, interact with medium
- parton interactions result in energy loss (jet quenching): can be highlighted through the comparison with pp collisions (vacuum scenario)

π^0 from 2010 data (PCM + PHOS)

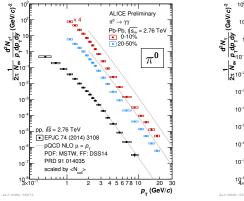


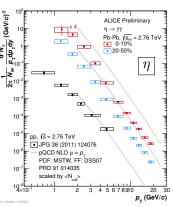
• not enough statistics for η measurement in 2010 data

 pp reference measurement at 2.76 TeV is used to calculate the nuclear modification factor


$$R_{AA}(p_T) = \frac{\mathrm{d}^2 N/\mathrm{d} p_T \mathrm{d} y|_{\mathrm{AA}}}{\langle T_{AA} \rangle \times \mathrm{d}^2 \sigma/\mathrm{d} p_T dy|_{\mathrm{pp}}}$$

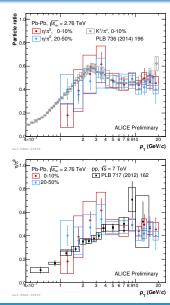
 suppression due to interaction with medium is larger for more central collisions


Neutral pion R_{AA} collision energy dependence

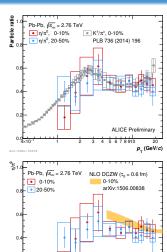

- **ALICE** π^0 $R_{\rm AA}$ in 0-10% central collisions compared with results from **PHENIX** (PRL 109 (2012) 152301 and PRL 101 (2008) 232301) and **SPS** results (PRL 100 (2008) 242301)
- R_{AA} supression stronger for higher collisions energy: decrease due to higher energy density dominates over increase expected from harder initial parton spectra
- maximum value of the ratio also shifts towards lower p_T going to higher energy
- at high p_T, R_{AA} is expected to rise due to a flatter spectra in A-A than in pp

Neutral mesons from 2011 data (PCM + EMCal)

- increased luminosity Pb−Pb run in 2011, ~10 times more statistics
- > combined PCM and EMCal measurement



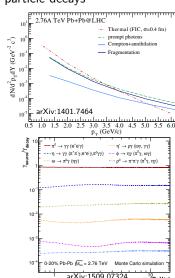
- ho π^0 consistent with 2010 data, measurement extended to 20 GeV/c
- \triangleright first η measurement in Pb–Pb at the LHC


η/π^0 ratio in Pb–Pb 2011 data (PCM + EMCal)

- η/π^0 measured in Pb–Pb collisions in two centrality classes
- compared to other results from ALICE:
 - η/π^0 shows behaviour similar to K^\pm/π^\pm result at same energy and centrality (0-10%)
 - with current uncertainties, no differences are observed between η/π^0 ratio measured in Pb–Pb and pp collisions

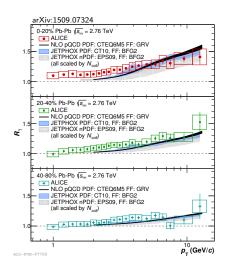
η/π^0 ratio in Pb–Pb 2011 data (PCM + EMCal)

- η/π^0 measured in Pb–Pb collisions in two centrality classes
- compared to other results from ALICE:
 - η/π^0 shows behaviour similar to K^\pm/π^\pm result at same energy and centrality (0-10%)
 - with current uncertainties, no differences are observed between η/π^0 ratio measured in Pb–Pb and pp collisions
- pQCD NLO calculation for 0-10% cent. class agrees within uncertainties
 → p_T region 4–6 GeV/c sensitive to transport coefficient (= parameter describing energy loss in medium)

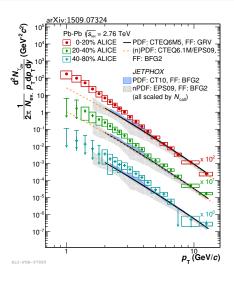

p_ (GeV/c)

Direct photons in Pb-Pb collisions

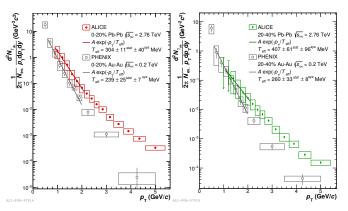
Direct photons in Pb-Pb collisions


- □ direct photons = photons not coming from particle decays
- - thermal photons: dominant at low p_T , coming from thermal radiation of QGP and hadron gas
 - prompt photons: dominant at high p_T , from initial hard scattering
 - from jet-medium interaction: hard partonic scattering, in-medium bremsstrahlung
- > extraction of direct photon measurement:

$$\gamma_{
m direct} = \gamma_{
m inc} - \gamma_{
m decay} = (1 - rac{1}{R_{\gamma}}) \cdot \gamma_{
m inc}$$
 with $R_{\gamma} = rac{\gamma_{
m inc}}{\pi^0} / rac{\gamma_{
m decay}}{\pi_{
m operam}^0}$


Direct photons in 2010 Pb–Pb data (PCM + PHOS)

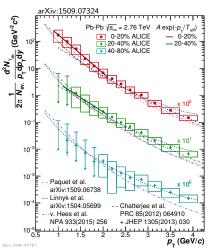
- \triangleright inclusive photon spectra measured with combined PCM + PHOS (arXiv:1509.07324) in 3 centrality classes with 2010 Pb–Pb data
- \triangleright R_{γ} excess at high p_T for all centralities
- \triangleright in agreement with NLO/JETPHOX pQCD above 5 GeV/c
- \triangleright at low p_T , \sim 20% excess in 0-20% and \sim 9% in 20-40% due to thermal radiation of the medium


Direct photons in 2010 Pb–Pb data (PCM + PHOS)

- ho direct photon spectra measured in 3 centrality classes in the range 0.9< p_T <14 GeV/c
- \triangleright at low p_T , upper limits with 90% CL given for more peripheral collisions
- comparison with pQCD NLO and JETPHOX shows again good agreement above 5 GeV/c and excess yields for 0-20% and 20-40% central collisions

Comparison direct photon spectra PHENIX - ALICE

ALICE results compared with PHENIX direct photon measurement in Au–Au at 200 GeV (PRL104 (2010)132301, PRC91/6 (2015) 064904)



 \triangleright exponential fit to low p_T excess: inverse slope parameter larger at higher collision energy and consistent in both centrality classes

Direct photon spectra comparison to models

Several models, all assume QGP formation and include pQCD photons at high $p_T \rightarrow$ have different space-time evolution treatment:

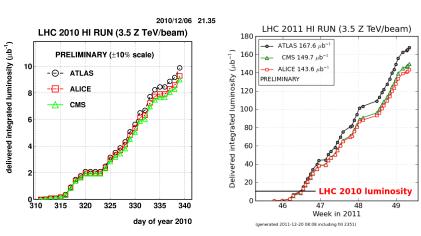
- Paquet et al.: 2+1 viscous hydro with IP-GLASMA initial conditions, $au_0 = 0.4 \; \mathrm{fm}/c, \; \langle T_{\mathrm{init}}^{0-20\%} \rangle = 385 \; \mathrm{MeV}$
- Linnyk et al.: off-shell transport, microscopic description of evolution
- v. Hees et al.: ideal hydro with initial flow, $\tau_0 = 0.2 \text{ fm/}c$, $T_{\text{init}}^{0-20\%} = 682 \text{ MeV}$
- Chatterjee et al.: 2+1 hydro, fluctuating initial conditions, $\tau_0 = 0.14$ fm/c, $T_{\rm init}^{0-20\%} \approx 740$ MeV

Summary

Neutral mesons and direct photons are measured in ALICE with independent methods (calorimeters, EMCal and PHOS, and photon conversions, PCM)

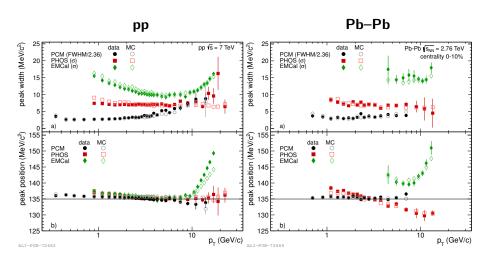
> results in pp

- ullet neutral pion and η meson cross sections measured at several collision energies with combined PCM and PHOS analysis
- comparison with PYTHIA and NLO pQCD calculations:
 - describe well intermediate p_T region (below 5 GeV/c)
 - predict harder spectra at high p_T

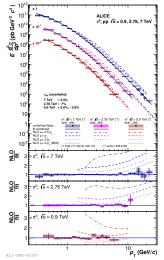

Summary

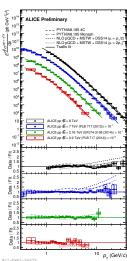
- neutral mesons measurements:
 - π^0 measured with PCM + PHOS (2010 data) and PCM + EMCal (2011 data) and η measured with PCM + EMCal (2011 data)
 - π^0 $R_{\rm AA}$ has larger suppression in more central collisions and its magnitude scales with the collision energy
 - with current uncertainties, no clear dependence of η/π^0 on collision system, mass or s quark content observed
- direct photon measurement:
 - inclusive and direct photon spectra measured in 3 centrality bins
 - below $p_T = 3 \text{ GeV}/c$, direct photon excess observed for 0-20% and $20\text{-}40\% \Rightarrow$ thermal radiation of the medium
 - photon spectrum above 5 GeV/c in agreement with NLO pQCD

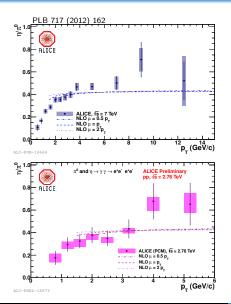
Back up


Luminosity 2010 vs 2011

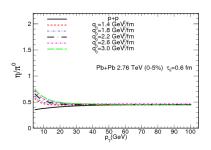
 \Rightarrow with large statistics collected in 2011 measurement of differential invariant cross section is possible


Neutral pion peak position and width

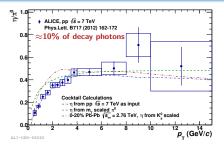

ALICE performance paper: Int. J. Mod. Phys. A 29 (2014) 1430044


Neutral pion spectra in pp collisions (PCM + PHOS)

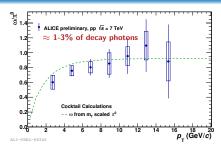
With additional constraint given by 8 TeV results, large improvement of NLO pQCD calculations

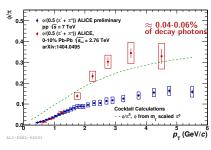

η/π^0 ratio in $\sqrt{s}=2.76$ and 7 TeV (PCM + PHOS)

- η/π^0 ratio compared with pQCD NLO theory by W. Vogelsang
- η , PDF: CTEQ6M5, FF: AES π^0 , PDF: CTEQ6M5, FF: DSS
- at both 7 and 2.76 TeV an increasing trend can be observed up to 2 ${\rm GeV}/c$
- above 2 GeV/c the ratio flattens, as the NLO calculations suggest


DCZW prediction

NLO pQCD theoretical prediction of η/π^0 ratio in Pb–Pb collisions at 2.76 TeV according to DCZW (PLB 750 (2015) 390-395)




 au_0 is the initial time of the QGP medium \hat{q}_0 initial values of the jet transport parameter o the larger \hat{q}_0 is, the stronger the jet-medium interaction will be

Assumptions for decay photon cocktail

- η & ω meson only measured in pp, φ meson measured in pp & 0-10% Pb–Pb collisions
- m_T scaling overestimates yield at low p_T consistently for all 3 mesons
- Systematic uncertainties on cocktail 5-10%

Direct Photon Flow

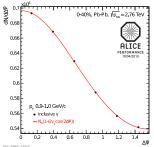
$$u_n^{ ext{direct }\gamma} = \frac{R_\gamma \cdot \nu_n^{ ext{inc }\gamma} - \nu_n^{ ext{decay }\gamma}}{R_\gamma - 1}$$

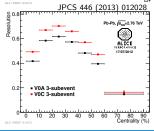
- $R_{\gamma} \cdot \nu_n^{\mathrm{inc} \ \gamma}$: weighted inclusive photon ν_n due to extra photons compared to background
- $\nu_n^{ ext{decay}}$?: calculated decay photon ν_n from cocktail calculation

Inclusive photon ν_2 analysis method

Initial azimuthal asymmetry in coordinate space in non-central A+A

 $\Rightarrow \mathsf{asymmetry} \mathsf{\ in\ momentum\ space}$


$$rac{\mathrm{d}N}{\mathrm{d}\phi} = rac{1}{2\pi} \left(1 + 2 \sum_{n \geq 1}
u_n \cos(n(\phi - \Psi_n^{RP}))
ight)$$


 ν₂ given by photon production with respect to event plane:

$$u_2 = \langle \cos(2(\phi - \Psi_2^{RP})) \rangle$$

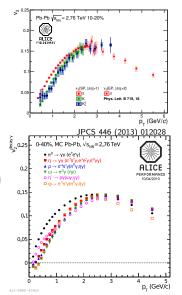
- event plane angle determined by using the VZERO detector:
 - VZEROA: $2.8 < \eta < 5.1$
 - VZEROC: $-3.7 < \eta < -1.7$
- reaction plane resolution obtained by the three sub-event method
- resolution correction for EP:

$$\nu_2 = \frac{\nu_2^{EP}}{\langle \cos(2\Psi_2^{EP} - \Psi_2^{RP}) \rangle} = \frac{\nu_2^{\text{raw}}}{\text{resolution}}$$

Cocktail simulation of decay photon ν_2

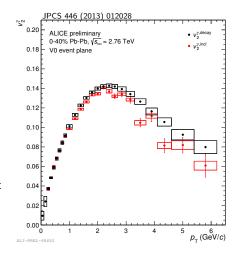
Decay photon ν_2 :

• ν_2 of mesons scales with KE_T :

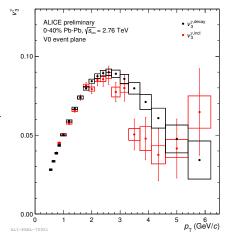

$$KE_T = m_T - m = \sqrt{p_T^2 + m^2} - m$$

$$\Rightarrow \nu_2^{\pi^0} \approx \nu_2^{\pi^\pm} \ (\mathbf{m}^{\pi^0} \approx \mathbf{m}^{\pi^\pm})$$

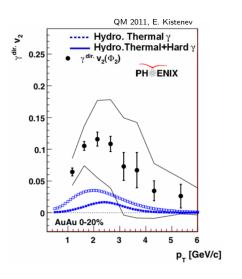
 $\Rightarrow \nu_2$ of various mesons (X) calculated via KE_T (quark number) scaling from $\nu_2^{\pi^\pm}$


$$u_2^X(\rho_T^X) = \nu_2^{\pi^{\pm}} \left(\sqrt{(KE_T^X + m^{\pi^{\pm}})^2 - (m^{\pi^{\pm}})^2} \right)$$

• Decay photon ν_2 from different mesons obtained from cocktail calculation


Comparison of inclusive and decay ν_2

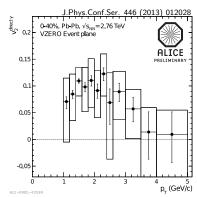
- Above 3 GeV/c inclusive photons significantly smaller than decay photons
 - \rightarrow Direct photon ν_2 contribution with $\nu_2^{\rm direct} < \nu_2^{\rm decay}$
- Below 3 GeV/c consistent within uncertainties
 - \rightarrow Either contribution of direct photons with similar ν_2 or no direct photons



Inclusive photon ν_3

- First measurement of inclusive photon ν₃ at LHC
- Above 3 GeV/c inclusive photons consistently smaller than decay photons, with large statistical uncertainties
 - \rightarrow Direct photon ν_3 contribution with $\nu_3^{\rm direct} < \nu_3^{\rm decay}$ as expected for prompt photons
- Below 3 GeV/c mostly consistent within uncertainties
 - ightarrow Either contribution of direct photons with similar ν_3 or no direct photons

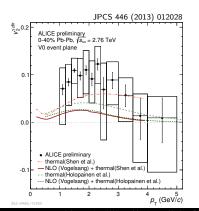
Comparison with RHIC - PHENIX Direct Photon u_2

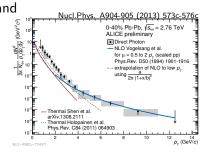

- Direct photon ν_2 has been measured at RHIC with the Phenix experiment at $\sqrt{s_{NN}} = 200 \text{ GeV}$
- Direct photon ν_2 comparable to that of other hadrons
- Theory not able to reproduce large ν_2 at low p_T
- Origin of the "photon puzzle"

Direct Photon ν_2 0-40%

Direct photon ν_2 :

$$u_2^{ ext{direct }\gamma} = rac{R_\gamma \cdot
u_2^{ ext{inc }\gamma} -
u_2^{ ext{decay }\gamma}}{R_\gamma - 1}$$


- $R_{\gamma} \cdot \nu_2^{\mathrm{inc} \ \gamma}$: weighted inclusive photon ν_2 due to extra photons compared to background
- $\nu_2^{\mathrm{decay} \ \gamma}$: calculated decay photon ν_2 from cocktail calculation
- Large direct photon ν_2 for $p_{\rm T} < 3\,{
 m GeV/c}$ measured
- Magnitude of ν_2 comparable to hadrons
- Result points to late production times of direct photons after flow is established



Direct photon yield and flow

• Central points for direct photon yield and ν_2 underestimated by most theoretical calculations by factors of 2-10

ullet No significant deviation beyond 2σ

- Both measurements are coupled via R_{γ} , critical assessment of uncertainties and their correlations needed
- Theory curves composed out of different sources, experimentally not possible to distinguish those