From the Coulomb breakup of halo nuclei to neutron radiative capture

Pierre Capel, Yvan Nollet

28th January 2016

Radiative capture

Radiative capture : reaction in which two nuclei fuse by emitting a γ :

 $b + c \rightarrow a + \gamma$ also noted $c(b, \gamma)a$

Most of the nuclear reactions in stars are radiative captures :

- $d(p,\gamma)^{3}$ He or 3 He $(\alpha,\gamma)^{7}$ Be in the pp chain V. Mossa
- (n,γ) reactions in the *s* and *r* processes,... D. Atanasov

To constrain stellar models, cross sections must be measured at astrophysical (i.e. low) energy

Such measurements are very difficult

 \Rightarrow go deep underground to reduce background (cf. LUNA project) Or use indirect methods... H. Merkel

Link with Coulomb breakup

Coulomb breakup : projectile breaks up colliding with a heavy target

$$a + T \rightarrow b + c + T$$

Coulomb dominated \Rightarrow due to exchange of virtual photons

Baur and Rebel Ann. Rev. Nucl. Part. Sc. 46, 321 (1996)

⇒ seen as the time-reversed reaction of the radiative capture
⇒ use Coulomb breakup to infer radiative-capture cross section
[Baur, Bertulani and Rebel NPA458, 188 (1986)]

Coulomb breakup of ¹⁵C

¹⁵C is a good test case to study the Coulomb breakup method :

Both the Coulomb breakup

and the radiative capture

 ${}^{15}C + Pb \rightarrow {}^{14}C + n + Pb \text{ at } 68AMeV$ [Nakamura *et al.* PRC 79, 035805 (2009)] ${}^{14}C(n,\gamma){}^{15}C$

[Reifarth et al. PRC 77, 015804 (2008)]

have been measured accurately

 \Rightarrow one can confront the direct radiative-capture measurement with the cross section extracted from Coulomb breakup

Analysis by Summers & Nunes [PRC 78, 011601 (2009)] Summers and Nunes use different V_{14C-n} to calculate $^{15}C + Pb \rightarrow {}^{14}C + n + Pb$ at 68AMeV 0.5 0.4 dσ/dE_{rel} (b/MeV) 0.3 0.2 0.1 0 'n 2 3 E_{rol} (MeV) Exp. : Nakamura et al.

Th. : Summers, Nunes

Significant dynamical effects \Rightarrow requires an accurate reaction model

Analysis by Summers & Nunes[PRC 78, 011601 (2009)]Summers and Nunes use different V_{14C-n} to calculate

Significant dynamical effects \Rightarrow requires an accurate reaction model From a χ^2 fit to the data, they extract an ANC they use to get $\sigma_{n,\gamma}$

¹⁵C model

3/2+	3.25	d(3/2)
	¹⁴ C+r	า
5/2+	-0.478	0d(5/2)
1/2+	-1.218	1s(1/2)
¹⁵ C spectrum		

1/0 /0

¹⁵C \equiv ¹⁴C(0⁺)+n Woods-Saxon V_{14C-n} fitted to reproduce ¹⁵C bound spectrum \Rightarrow s and d waves constrained No direct constraint on p waves

which are populated in Coulomb breakup by E1 transitions from the 1s ground state

We analyse the role of the continuum...

¹⁴C-n continuum Different $V_{^{14}C-n}$ chosen to produce (very) different δ_p

¹⁵C ground state

Diffuse potential wave function extends further away \Rightarrow larger ANC visible in breakup calculation

 Large influence of ANC : diffuse potential higher than a = 0.6 fm confirms Summers and Nunes PRC 78, 011601 (2008)

- Large influence of ANC : diffuse potential higher than a = 0.6 fm confirms Summers and Nunes PRC 78, 011601 (2008)
- Significant effect of continuum :
 - $E_{0p} = -8$ MeV 15% below $a_p = 0.6$ fm
 - $d\sigma_{\rm bu}/dE$ distorted due to E dependence of δ_p , especially $a_p = 1.5$ fm

- Once fitted most calculations agree with data $a_p = 1.5$ fm has a wrong shape (unphysical choice)
- Since δ_p plays a significant role the fitting factor is not due only to ANC

Scaling $\sigma_{n,\gamma}$ using the χ^2 fit on breakup

As suggested by Summers and Nunes, $\sigma_{n,\gamma}$ are scaled using the factor *C* found from the fit of $d\sigma_{bu}/dE$

Spread is reduced

but direct measurements overestimated (even with realistic V_p)

Low-*E* fit At low *E*, all $d\sigma_{\rm bu}/dE$ exhibit the same behaviour

[Typel and Baur PRL 93, 142502 (2004)]

Low-*E* fit At low *E*, all $d\sigma_{\rm bu}/dE$ exhibit the same behaviour

[Typel and Baur PRL 93, 142502 (2004)]

If fitted only at E < 0.5 MeV

all calculations are nearly superimposed (no distortion) and in excellent agreement with breakup data

Scaling using the χ^2 fit on breakup at E < 0.5 MeV

Better agreement with direct measurements (even with unrealistic $V_{{}^{14}C-n}$)

Conclusions and prospects

- The indirect Coulomb-breakup method to infer radiative-capture cross sections is analysed for ¹⁴C(n,γ)¹⁵C with emphasis on the ¹⁴C-n continuum
- Breakup calculations are shown to be sensitive to both the projectile ground state (ANC) and its continuum (δ)
- That sensitivity is better removed if the fit suggested by Summers and Nunes is performed at low *E*
- Would this idea be improved if one looks at forward-angle data, where nuclear interaction is less significant?
- Can this be applied to charged cases ? ${}^{3}\text{He}(\alpha,\gamma){}^{7}\text{Be}, {}^{16}\text{O}(p,\gamma){}^{17}\text{F...}$

Our analysis

Using DEA, we compute ${}^{15}C + Pb \rightarrow {}^{14}C + n + Pb$ at 68AMeV

Data : Nakamura et al. PRC 79, 035805 (2009)

- Good agreement with experiment and CDCC calculations
- *s* and *d* contributions confirm dynamical effects

In this study we analyse the sensitivity of this method to the description of the ¹⁴C-n continuum

Framework

Projectile (P) modelled as a two-body system : core (c)+loosely bound nucleon (f) described by

- $H_0 = T_r + V_{cf}(\boldsymbol{r})$
- V_{cf} adjusted to reproduce bound state Φ_0 and resonances
- Target T seen as structureless particle

P-T interaction simulated by optical potentials \Rightarrow breakup reduces to three-body scattering problem :

$$\left[T_R + H_0 + V_{cT} + V_{fT}\right]\Psi(\boldsymbol{r},\boldsymbol{R}) = E_T\Psi(\boldsymbol{r},\boldsymbol{R})$$

with initial condition $\Psi(\mathbf{r}, \mathbf{R}) \xrightarrow[Z \to -\infty]{} e^{iKZ + \cdots} \Phi_0(\mathbf{r})$

Dynamical eikonal approximation

Three-body scattering problem :

$$\left[T_R + H_0 + V_{cT} + V_{fT}\right]\Psi(\boldsymbol{r},\boldsymbol{R}) = E_T\Psi(\boldsymbol{r},\boldsymbol{R})$$

with condition $\Psi \mathop{\longrightarrow}\limits_{Z \to -\infty} e^{iKZ} \Phi_0$

Eikonal approximation : factorise $\Psi = e^{iKZ}\widehat{\Psi}$

$$T_R \Psi = e^{iKZ} [T_R + vP_Z + \frac{\mu_{PT}}{2} v^2] \widehat{\Psi}$$

Neglecting T_R vs P_Z and using $E_T = \frac{1}{2}\mu_{PT}v^2 + \epsilon_0$

$$i\hbar v \frac{\partial}{\partial Z} \widehat{\Psi}(\boldsymbol{r}, \boldsymbol{b}, Z) = [H_0 - \epsilon_0 + V_{cT} + V_{fT}] \widehat{\Psi}(\boldsymbol{r}, \boldsymbol{b}, Z)$$

solved for each **b** with condition $\widehat{\Psi} \xrightarrow[Z \to -\infty]{} \Phi_0(\mathbf{r})$ This is the dynamical eikonal approximation (DEA) [Baye, P. C., Goldstein, PRL 95, 082502 (2005)]

Comparison of reaction models

Comparison between CDCC, TD and DEA

 $^{15}\text{C} + \text{Pb} \rightarrow {}^{14}\text{C} + \text{n} + \text{Pb}$ at 68AMeV

Data : Nakamura et al. PRC 79, 035805 (2009)

Excellent agreement between all three models

$^{14}C(n,\gamma)^{15}C$

 $\sigma_{n,\gamma}$ computed using all the $V_{{}^{14}C-n}$ (E1 transition from ${}^{14}C$ -n continuum to bound state)

Data : Reifarth *et al.* PRC 77, 015804 (2008) Large spread of the calculations, like in breakup