DEPFET Pixel Detector for Belle II

Dima Levit on behalf of the DEPFET Collaboration

Physik Department E18 - Technische Universität München

54th International Winter Meeting on Nuclear Physics, Bormio January 28th, 2016

> supported by: Maier-Leibnitz-Labor der TU und LMU München, Cluster of Excellence: Origin and Structure of the Universe,

> > BMBF

Bundesministerium für Bildung und Forschung

Belle II Experiment

Pixel Detector

Gated Mode

Online Data Reduction

Conclusions

Technische Universität München

- Asymmetric e⁺e[−] collider operates at Υ(4S) resonance
- Nano beam scheme
 - $\Rightarrow \text{ smaller beam size}$ (10 μ mx60 nm)
- Luminosity $8 \cdot 10^{35} cm^{-2} s^{-1}$
 - \Rightarrow 40 times higher than in KEKB

Requirements

- High resolution
- High sensitivity
- High signal-to-noise ratio
- Low material budget

Components

Technische Universität Müncher

- DEPFET pixel detector (PXD)
 - \Rightarrow 40 modules (8 Mpx)
 - \Rightarrow 2 layers at R = 1.4, 2.2 cm
- Double-sided silicon strip detector (SVD)
 - \Rightarrow 45 ladders
 - \Rightarrow 4 layers at R = 3.8-14 cm

Depleted P-Channel Field Effect Transistor

Figure : Equivalent circuit of the DEPFET pixel

- Detection and internal amplification
 - $\Rightarrow g_q = 500 \text{ pA/}e^-$
- Low intrinsic noise
- High signal-to-noise ratio
- Non-destructive readout
- High radiation tolerance
 - no charge transfer from internal gate
 - change in threshold voltage

Rolling shutter read out

- 100 ns/row
- 4-fold read-out
 - ⇒ 4 rows read out in parallel
 - ⇒ 4 x drain lines (ADC channels)
- line steering chip required
- low power consumption
 - ⇒ only activated rows consume power

Figure : Drain current during DEPFET read-out cycle

Gate driver

- \Rightarrow fast voltage pulses up to 20 V
- \Rightarrow 32 channels/ASIC

• Drain Current Digitizer

- \Rightarrow 8 bit ADC
- \Rightarrow 256 channels/ASIC
- ⇒ pedestal current variation compensation
- ⇒ data rate: 80 Gb/s

• Digital Handling Processor

- ⇒ pedestal/common mode correction
- ⇒ zero suppression
- ⇒ read-out synchronization
- \Rightarrow max. occupancy: 3 %
- \Rightarrow max. data rate: 1.6 Gb/s

Figure : Cluster charge distribution

Figure : Resolution of the DEPFET sensor

Figure : Hybrid5 module: 64x32 px (2012)

Figure : Hybrid6 module: 480x192 px (2013)

Figure : Electrical Multi Chip Module: electrical prototype (2013)

Figure : Belle II half ladder: 768x250 px (2015)

Power Supply and Cooling

Power supply

- 18 independent channels
- Transmission of voltages over 15 m cables with high precision
 - ⇒ voltage drop compensation using sense wires
 - ⇒ noise protection
- Sensor protection
 - \Rightarrow interlock in hardware

Cooling: IB-Belle

- Common project of ATLAS IBL and Belle II VXD
- Requirements: -20 °C (SVD)
- Dry CO₂ cooling
- Two independent systems for redundancy

🛞 Gated Mode (Intrinsic Electronic Shutter).....

echnische Universität München

- High injection noise increases occupancy
 - ⇒ dead time reduced through intrinsic electronic shutter
- Charge is saved in internal gate during bunch crossing
- No new charge is stored in internal gate
 - ⇒ charge from noisy bunches removed immediately

Figure : Simulation of electron trajectories in the detector

Technische Universität München

Figure : Data rates in Belle II

Data Handling Engine

- Data read out
- Detector control
- Cluster reconstruction
- $\frac{\partial E}{\partial x}$ analysis

Figure : Data read-out chain

Data Handling Concentrator

- Sub-event building
 - \Rightarrow data rate averaging
- Trigger distribution
- Slow control distribution

Online Data Reduction

Figure : FPGA-based online data reduction algorithm

Figure : ROI calculation

- High-level trigger (HLT)
 - \Rightarrow online event analysis
 - ⇒ uses common Belle II analysis framework
- Regions of interest (ROI)
 - ⇒ HLT and FPGA-based SVD-only tracker
 - ⇒ calculated using Hough transform
- Online data reduction
 - \Rightarrow reject events without HLT
 - → data reduction by factor 10
 - ⇒ remove pixels unrelated to ROI
 - \rightarrow data reduction by factor 3

Figure : Beam test setup with a VXD segment, DESY 2014

- High-level trigger (HLT)
 - \Rightarrow online event analysis
 - ⇒ uses common Belle II analysis framework
- Regions of interest (ROI)
 - ⇒ HLT and FPGA-based SVD-only tracker
 - ⇒ calculated using Hough transform
- Online data reduction
 - \Rightarrow reject events without HLT
 - \rightarrow data reduction by factor 10
 - \Rightarrow remove pixels unrelated to ROI
 - \rightarrow data reduction by factor 3

Online Data Reduction

Figure : Data reduction using artificial pattern

- High-level trigger (HLT)
 - \Rightarrow online event analysis
 - ⇒ uses common Belle II analysis framework
- Regions of interest (ROI)
 - ⇒ HLT and FPGA-based SVD-only tracker
 - ⇒ calculated using Hough transform
- Online data reduction
 - \Rightarrow reject events without HLT
 - \rightarrow data reduction by factor 10
 - \Rightarrow remove pixels unrelated to ROI
 - \rightarrow data reduction by factor 3

- High stopping power for low momentum particles
- Neural network for recovering slow pions that do not reach other detectors (p_t < 60MeV/c^c)
 - teacher in software on a data set
 - expert in FPGA
- Classification uses cluster shape and charge deposition
- Pipelined cluster processing

Technische Universität Münch

Figure : Transverse momentum distribution of pions from $D^{*\pm}$ and $B\bar{B}$ decays

- High stopping power for low momentum particles
- Neural network for recovering slow pions that do not reach other detectors (p_t < 60MeV/c^c)
 - teacher in software on a data set
 - expert in FPGA
- Classification uses cluster shape and charge deposition
- Pipelined cluster processing

Technische Universität Münch

Figure : Pions energy deposition in PXD

\bigotimes Slow Pions Recovery Using $\frac{\partial E}{\partial x}$

- High stopping power for low momentum particles
- Neural network for recovering slow pions that do not reach other detectors (p_t < 60MeV/c^c)
 - teacher in software on a data set
 - expert in FPGA
- Classification uses cluster shape and charge deposition
- Pipelined cluster processing

Figure : Neural network training sample including background

Slow Pions Recovery Using $\frac{\partial E}{\partial x}$

- High stopping power for low momentum particles
- Neural network for recovering slow pions that do not reach other detectors $(p_t < 60 MeV/c^c)$
 - teacher in software on a data set
 - expert in FPGA
- Classification uses cluster shape and charge deposition
- Pipelined cluster processing

- We developed a pixel detector that fits the requirements of Belle II
- We successfully proved the concept of data reduction in 2014
- Full sector of VXD will be tested in April 2016 at DESY
- Final production of half-ladders is being prepared
- Gated mode will be optimized to Belle II conditions with SuperKEKB input

Thank You!

	E, GeV	βγ	$\Delta z, \mu m$
Belle	8 - 3.5	0.42	200
Belle II	7 - 4	0.28	130