

Charm Physics at BESIII

Lei Li

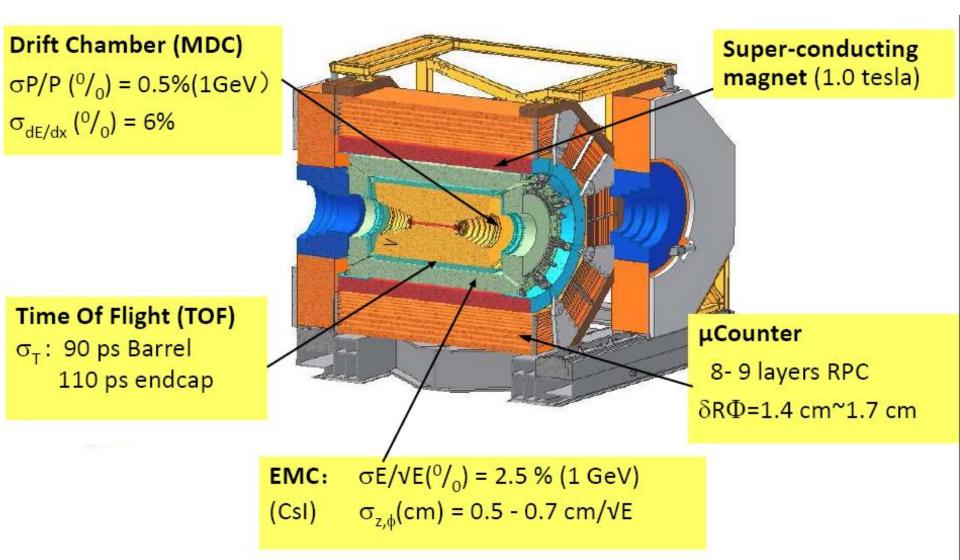
For BESIII Collaboration

Beijing Institute of Petro-chemical Technology (BIPT)

54th International Winter Meeting On Nuclear Physics Jan. 25-29, 2016, Bormio, Italy

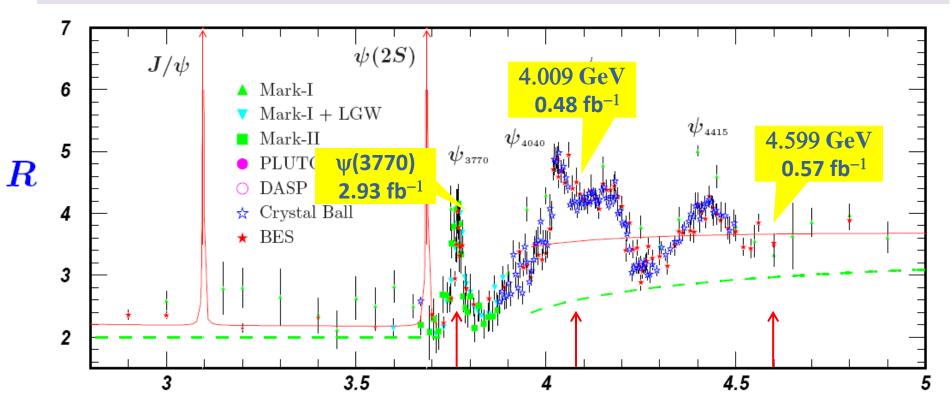
- Introduction
- **D** decays
 - > D leptonic and semi-leptonic decays
 - > D hadronic decays
- Λ_c^+ decays
 - $> \Lambda_c^+$ semi-leptonic decays
 - > Λ_c^+ hadronic decays

Summary

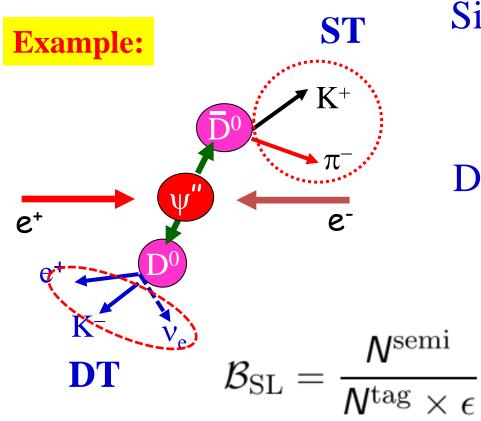

South

BESIII detector

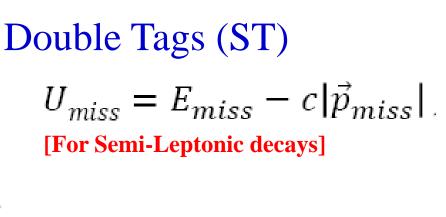
2004: start BEPCII construction 2008: test run of BEPCII 2009-now: BESIII data taking Beam energy: 1.0-2.3 GeV Design Luminosity: 1×10^{33} cm⁻²s⁻¹ Achieved Luminosity in 2014: $L_{peak}=0.85 \times 10^{33}$ cm⁻²s⁻¹


Linac

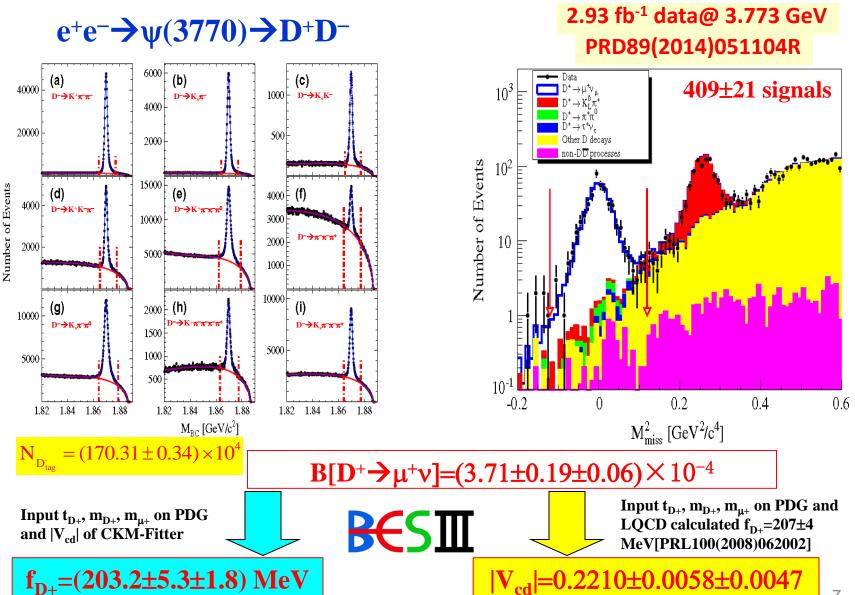
BESIII Detector



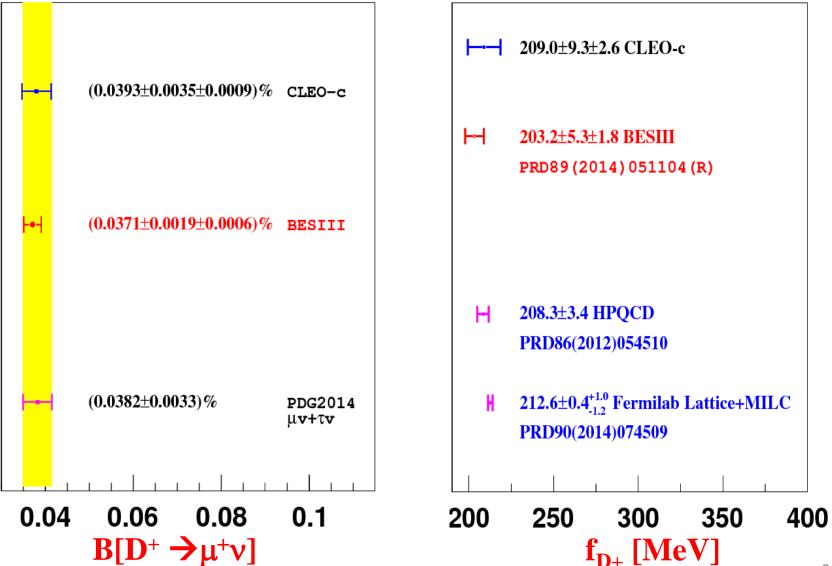
Data samples in this talk


- \square 2.93 fb⁻¹ data@3.773 GeV for D⁰D
 ⁰, D⁺D⁻ production;
- \square 0.48 fb⁻¹ data@4.009 GeV for D_s⁺D_s⁻ production;
- \square 0.57 fb⁻¹ data@4.599 GeV for $\Lambda_{C}^{+} \overline{\Lambda}_{C}^{-}$ production;

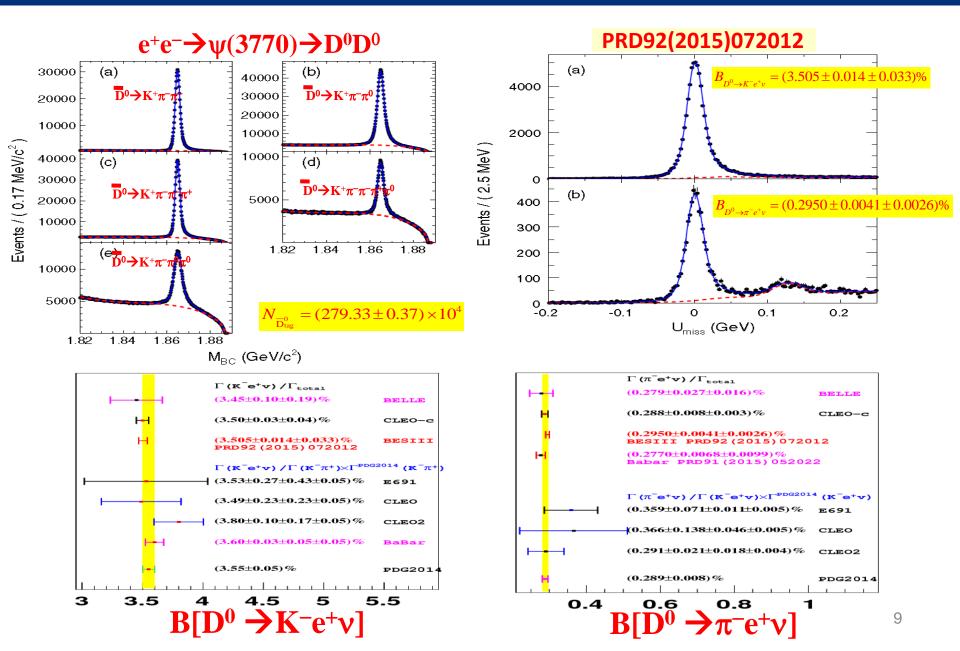
Analysis Technique



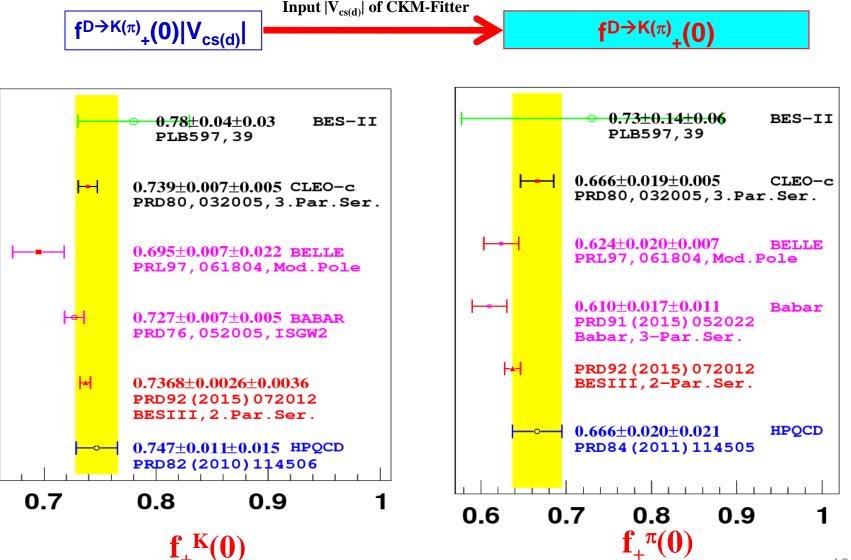
Single Tags (ST) $M_{\rm bc} = \sqrt{E_{\rm beam}^2 - |\vec{p}_{\bar{D}^0}|^2}$


Clean sample of ST charmed hadrons can be fully reconstructed by hadronic decays with large BFs. Based on this, one can access to absolute BFs and dynamics in the decays.

Measurement of B[D⁺ $\rightarrow \mu^+ v$], f_{D+} and V_{cd}



7


Comparisons of $B[D^+ \rightarrow \mu^+ v_{\mu}]$ and f_{D^+}

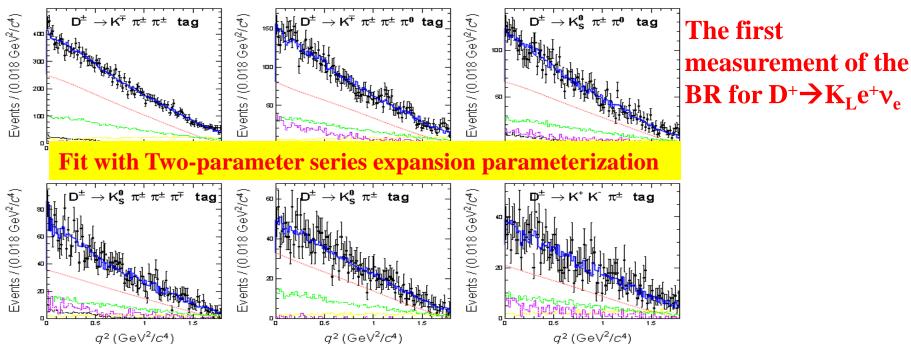
Measurement of $B[D^0 \rightarrow K(\pi)^-e^+v]$

Measurement of $f_{+}^{K(\pi)}(0)$

Analysis of $D^+ \rightarrow K_L e^+ v$

➢ Regardless of long flight distance, K_L interact with EMC and deposit part of energy, thus giving position information

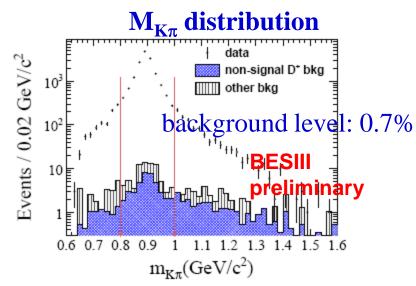
➢ After reconstructing all other particles,
 K_L can be inferred with position
 information and constraint U_{miss}→0


[PRD92(2015) 112008]

 $B(D^+ \rightarrow K_L e^+ v) = (4.482 \pm 0.027 \pm 0.103)\%$

$$A_{CP} \equiv \frac{\mathcal{B}(D^+ \to K_L^0 e^+ \nu_e) - \mathcal{B}(D^- \to K_L^0 e^- \bar{\nu}_e)}{\mathcal{B}(D^+ \to K_L^0 e^+ \nu_e) + \mathcal{B}(D^- \to K_L^0 e^- \bar{\nu}_e)}$$

 $A_{CP}^{D+ \rightarrow KLe+v} = (-0.59 \pm 0.60 \pm 1.50)\%$

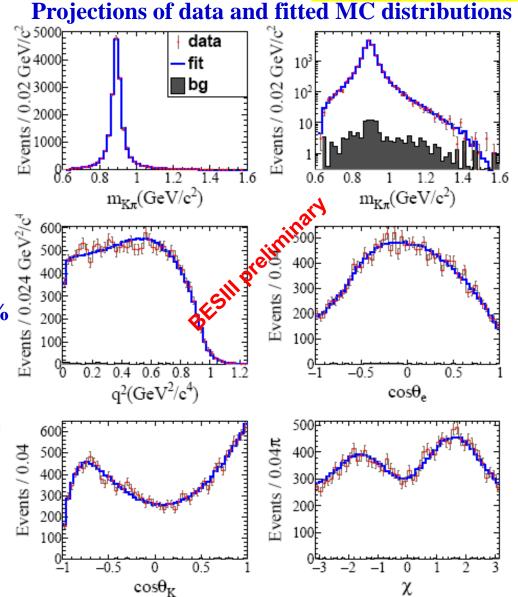

Simultaneous fit to observed numbers of DT candidates

 $f_{+}^{K}(0)|V_{cs}| = 0.728 \pm 0.006 \pm 0.011$

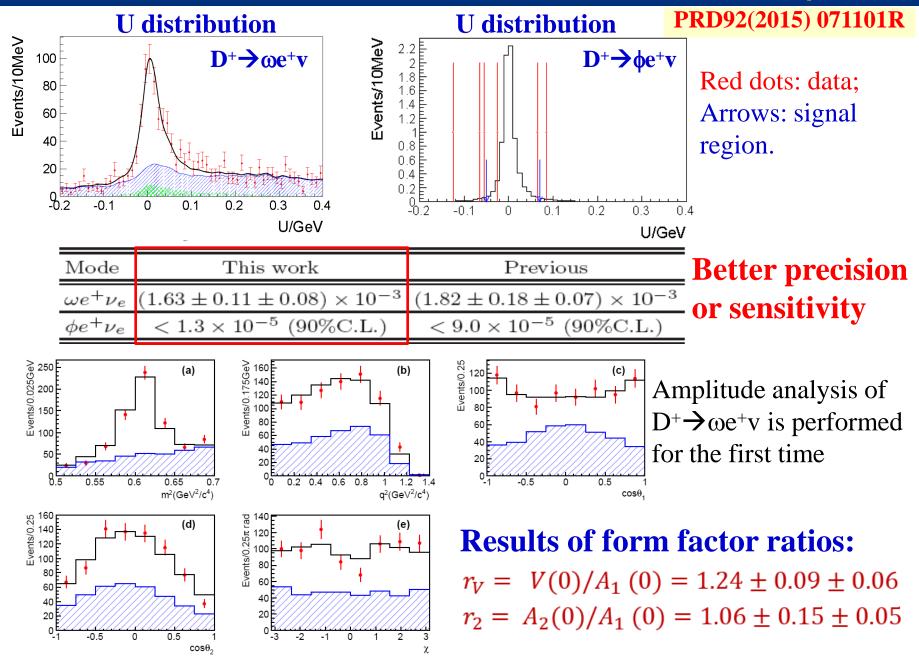
Analysis of $D^+ \rightarrow K^- \pi^+ e^+ v$

 $B(D^+ \rightarrow K^- \pi^+ e^+ v_e) = (3.71 \pm 0.03 \pm 0.08)\%$

 $B(D^+ \rightarrow K^- \pi^+ e^+ v_e)_{[0.8,1]} = (3.33 \pm 0.03 \pm 0.07)\%$

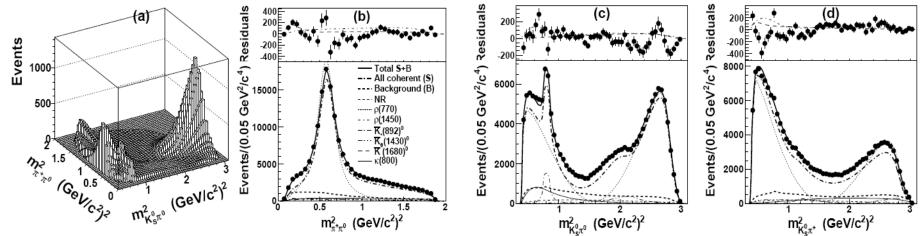

Fit Results (Preliminary)

Fitted fractions of the component


 $\begin{aligned} f(\mathrm{D}^+ &\to (\mathrm{K}^-\pi^+)_{K^{*0}(892)} \,\mathrm{e}^+\nu_{\mathrm{e}}) &= (93.93 \pm 0.22 \pm 0.18)\% \\ f(\mathrm{D}^+ &\to (\mathrm{K}^-\pi^+)_{S-wave} \,\mathrm{e}^+\nu_{\mathrm{e}}) &= (6.05 \pm 0.22 \pm 0.18)\% \end{aligned}$

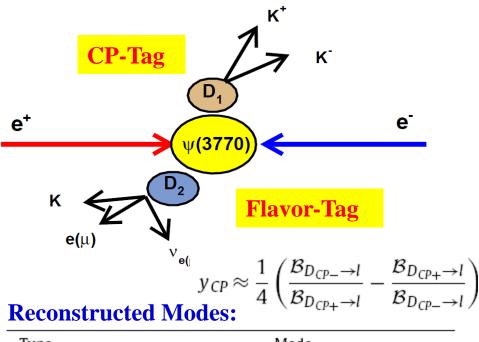
Parameters of K*⁰(892)

 $m_{K^{*0}(892)} = (894.60 \pm 0.25 \pm 0.08) \text{ MeV}/c^2$ $\Gamma_{K^{*0}(892)} = (46.42 \pm 0.56 \pm 0.15) \text{ MeV}/c^2$



Study of $D^+ \rightarrow \omega e^+ v$ and search for $D^+ \rightarrow \phi e^+ v$

Dalitz Plot Analysis of $D^+ \rightarrow K_s^0 \pi^+ \pi^0$

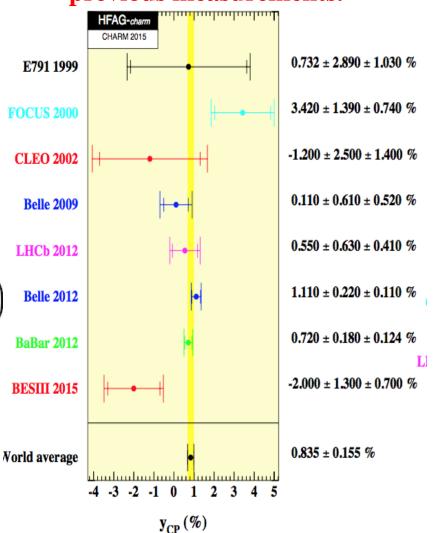


Partial BFs calculated by combining fitted fractions with PDG's B[D⁺ \rightarrow K_S⁰ $\pi^{+}\pi^{0}$].

Mode	Partial Branching Fraction	(%)
$D^+ \to K^0_S \pi^+ \pi^0$ Non Resonant	$0.32 \pm 0.05 \pm 0.25 \substack{+0.28\\-0.25}$	
$D^+ \to \rho^+ K^0_S, \rho^+ \to \pi^+ \pi^0$	$5.83 \pm 0.16 \pm 0.30 \substack{+0.45 \\ -0.15}$	Partial branching ratios
$D^+ \to \rho(1450)^+ K^0_S, \rho(1450)^+ \to \pi^+ \pi^0$	$0.15 \pm 0.02 \pm 0.09 \substack{+0.07 \\ -0.11}$	are measured with higher
$D^+ \to \overline{K}^*(892)^0 \pi^+, \overline{K}^*(892)^0 \to K_S^0 \pi^0$	$0.250 \pm 0.012 \pm 0.015^{+0.025}_{-0.024}$	precision than previous
	$0.26 \pm 0.04 \pm 0.05 \pm 0.06$	measurements.
$D^+ \to \overline{K}^*(1680)^0 \pi^+, \overline{K}^*(1680)^0 \to K_S^0 \pi^0$	$0.09 \pm 0.01 \pm 0.05^{+0.04}_{-0.08}$	
$D^+ \to \overline{\kappa}{}^0 \pi^+, \overline{\kappa}{}^0 \to K^0_S \pi^0$	$0.54 \pm 0.09 \pm 0.28^{+0.36}_{-0.19}$	
$NR + \overline{\kappa}^0 \pi^+$	$1.30 \pm 0.12 \pm 0.12 \substack{+0.12 \\ -0.30}$	
$K_S^0 \pi^0 S$ -wave	$1.21 \pm 0.10 \pm 0.16 \substack{+0.19 \\ -0.27}$	14

DD mixing parameter y_{CP}

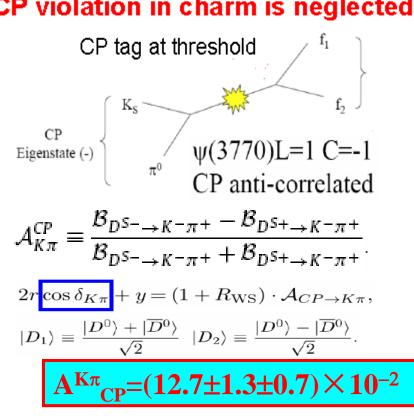
We measure the y_{CP} using CP-tagged semileptonic D decays, which allows to access CP asymmetry in mixing and decays.

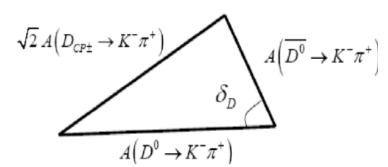


Туре	Mode
CP+	$K^+K^-, \pi^+\pi^-, K^0_S\pi^0\pi^0$
CP-	$K^0_S \pi^0, K^0_S \omega, K^0_S \eta^{"}$ $K^{\mp} e^{\pm} v, K^{\mp} \mu^{\pm} v$
Semileptonic	$K^{\mp}e^{\pm}v, \bar{K}^{\mp}\mu^{\pm}v$

PLB 744, 339 (2015)

Compatible with the previous measurements.




Strong phase difference $\delta_{K\pi}$

PLB 734, 227 (2014)

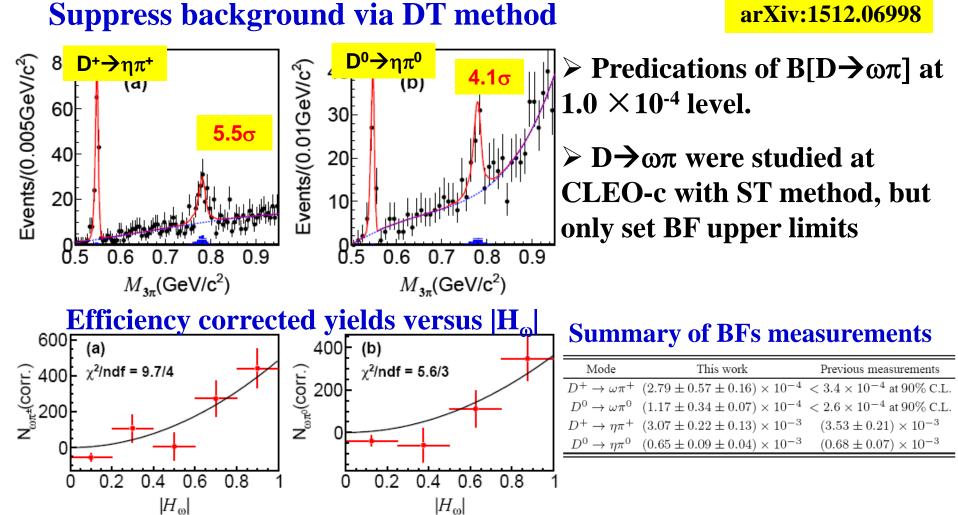
Quantum correlation → Interference → access strong phase!

If CP violation in charm is neglected: mass eigenstates = CP eigenstates

 $\delta_{\kappa\pi}$ is important to relate to mixing parameters x and y from x' and y'

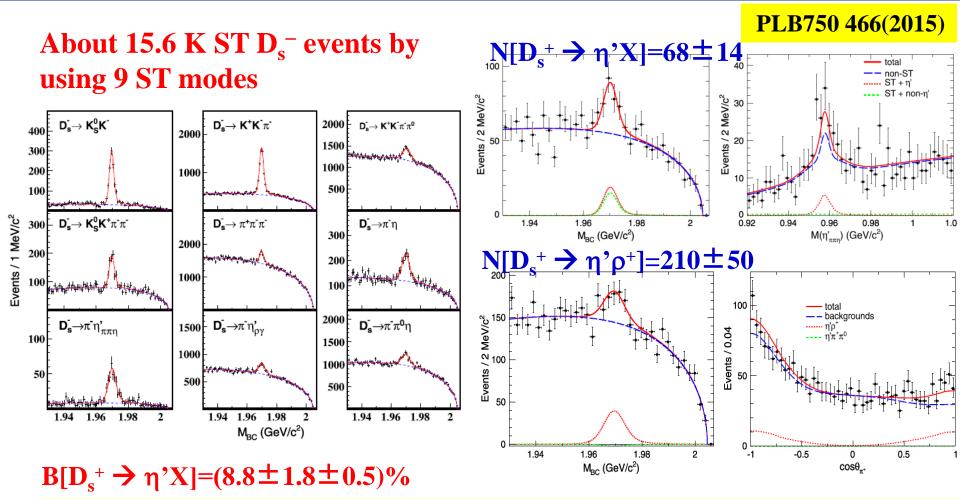
Reconstructed Modes:

Туре	Mode
Flavored	$K^{-}\pi^{+}, K^{+}\pi^{-}$
S+	$K^+K^-, \pi^+\pi^-, K^0_S\pi^0\pi^0, \pi^0\pi^0, \rho^0\pi^0$
S-	$K_S^0 \pi^0, K_S^0 \eta, K_S^0 \omega$


With external inputs of the parameters in HFAG2013 and PDG

 $R_{\rm D} = 3.47 \pm 0.06\%, \ y = 6.6 \pm 0.9\%$ $R_{\rm WS} = 3.80 \pm 0.05\%$

 $\cos \delta_{K\pi} = 1.02 \pm 0.11 \pm 0.06 \pm 0.01$


most precise to date

Observation/Evidence for SCS decay $D^{+(0)} \rightarrow \omega \pi^{+(0)}$

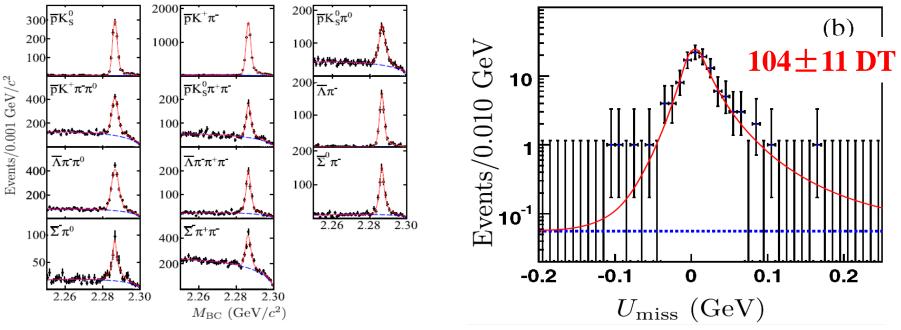
Improve understanding of U-spin and SU(3) flavor symmetry breaking effects in D decays and benefitting theoretical prediction of CP violation in D decays

$D_{s}^{+} \rightarrow \eta'X$ and $\eta'\rho^{+}$

Consistent with CLEO measurements $B[D_s^+ \rightarrow \eta'X] = (11.7 \pm 1.8)\%$ [PRD79 112008(2009)] $B[D_s^+ \rightarrow \eta'\rho^+] = (5.8 \pm 1.4 \pm 0.4)\%$ $B^{exp}[D_s^+ \rightarrow \eta'\rho^+] = (3.0 \pm 0.5)\%$ [PRD84 074019(2011)] Resolve the disagreement between theoretical predication and CLEO-c's previous measurement. $B[D_s^+ \rightarrow \eta'\rho^+] = (12.5 \pm 2.2)\%$ [PRD58 052002(1998)]

Absolute BF for $\Lambda_c^+ \rightarrow \Lambda e^+ v_e$

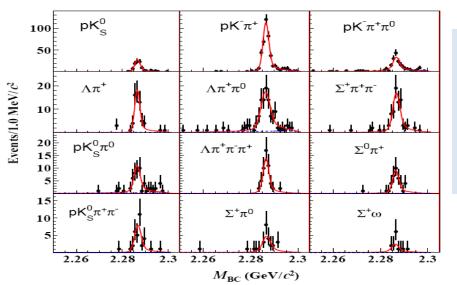
Theoretical calculations on the BF ranges from 1.4% to 9.2%


PDG2014: (2.1±0.6)%

PDG2015: (2.9±0.5)%

Input B[$\Lambda_{C}^{+} \rightarrow pK^{-}\pi^{+}$]=(6.84^{+0.32}_{-0.40})% by BELLE [PRL113,042002(2014)]

14415±159 events with 11 ST modes



B[Λ_c^+ → Λe^+v]=(3.63±0.38±0.20)% First absolute measurement Important for test and calibrate the LQCD calculations.

Absolute BFs for Λ_c^+ hadron decays

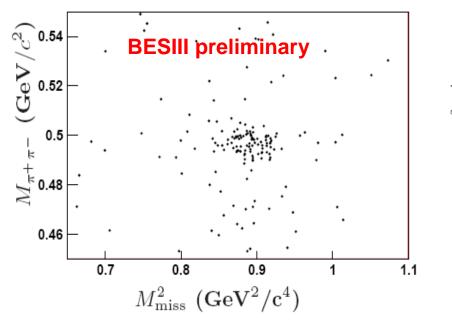
Measurement using the threshold pair-productions via e⁺e⁻ annihilationis unique: the most simple and straightforwardarxiV:1511.08380

Mode	This work $(\%)$	PDG (%)	Belle \mathcal{B}
pK_S^0	$1.52 \pm 0.08 \pm 0.03$	1.15 ± 0.30	
$pK^{-}\pi^{+}$	$5.84 \pm 0.27 \pm 0.23$		$6.84 \pm 0.24^{+0.21}_{-0.27}$
$pK_S^0\pi^0$	$1.87 \pm 0.13 \pm 0.05$	1.65 ± 0.50	
$pK_S^0\pi^+\pi^-$	$1.53 \pm 0.11 \pm 0.09$	1.30 ± 0.35	
$pK^{-}\pi^{+}\pi^{0}$	$4.53 \pm 0.23 \pm 0.30$	3.4 ± 1.0	
$\Lambda \pi^+$	$1.24 \pm 0.07 \pm 0.03$	1.07 ± 0.28	
$\Lambda \pi^+ \pi^0$	$7.01 \pm 0.37 \pm 0.19$	3.6 ± 1.3	
$\Lambda \pi^+ \pi^- \pi^+$	$3.81 \pm 0.24 \pm 0.18$	2.6 ± 0.7	
$\Sigma^0 \pi^+$	$1.27 \pm 0.08 \pm 0.03$	1.05 ± 0.28	
$\Sigma^+ \pi^0$	$1.18 \pm 0.10 \pm 0.03$	1.00 ± 0.34	
$\Sigma^+\pi^+\pi^-$	$4.25 \pm 0.24 \pm 0.20$	3.6 ± 1.0	
$\Sigma^+ \omega$	$1.56 \pm 0.20 \pm 0.07$	2.7 ± 1.0	

A global least-square fitter is utilized to improve the measured precision for 12 Λ_c^+ hadronic decay channels.

Accepted by PRL

$$N_{-j}^{DT} = \sum_{i^+ \neq j} N_{i^+ j^-}^{DT} + \sum_{i^- \neq j} N_{i^- j^+}^{DT} + N_{jj}^{DT}$$

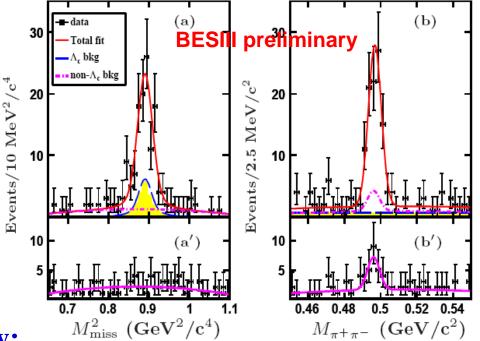

Absolute BFs are improved significantly.

✓ BESIII BF for $\Lambda_c^+ \rightarrow pK^-\pi^+$ is smaller.

✓ Improved absolute BF of $pK^-\pi^+$ together with BELLE's result are key to calibrate other decays.

Observation of $\Lambda_c^+ \rightarrow nK_S^0 \pi^+$

First observation of Λ_{C}^{+} decays to final states involving the neutron.


The missing neutron is detected by:

$$M_{\rm miss}^2 = (p_{\Lambda_c^+} - p_{K_S^0} - p_{\pi^+})^2 = E_{\rm miss}^2 - c^2 |\overrightarrow{p}_{\rm miss}|^2$$

83±11 net signal events

BESIII Preliminary results:

 $B[\Lambda_c^+ \rightarrow nK_S^0 \pi^+] = (1.82 \pm 0.23 \pm 0.11)\%$

Fit to M_{miss}^2 and $M_{\pi+\pi}$ spectra in (a,b) $\overline{\Lambda}_c^-$ signal region and (a',b') $\overline{\Lambda}_c^-$ sideband region simultaneously.

The relative BF of neutron-involved mode to proton-involved mode is essential to test the isospin symmetry for Λ_c^+ decays. [arXiv:1601.04241]

BESIII provides important results on charm decays

- > leptonic and semi-leptonic decys
- > D hadronic decays
- > D⁰ mixing and strong phase
- > Λ_{C}^{+} hadronic and semi-leptonic decays

important to test LQCD calculations, CKM matrix UT, search for NP beyond SM

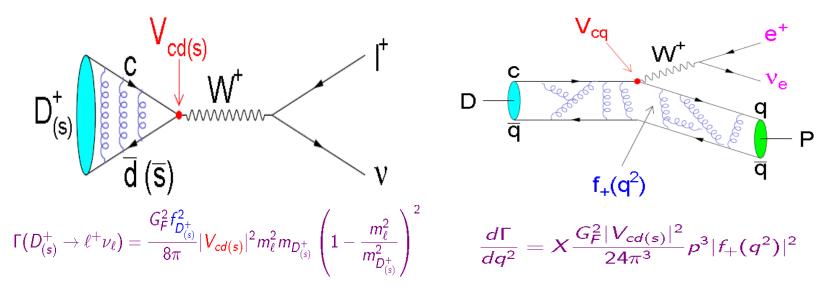
• More fruitful results will come out!

Thanks!

Introduction

Precision measurement of charm decays provide rich information to probe for strong and weak effects

• Unitarity test of CKM matrix: direct access quark mixing matrix element $|V_{cs(d)}|$ or strong phase constrained γ/ϕ_3


LQCD calibration: precise decay constant $f_{D(s)+}$, form factors $f_{D \rightarrow K(\pi)}(q^2)$ and others

New physics BSM: evidence of rare decay/CP violation, or significant deviation of CKM untarity/LQCD calculation

Important inputs for beauty physics: Significantly improved decay rates or dynamics

D leptonic and semi-leptonic decays

Bridge to extract $D_{(s)}^+$ decay constant(s) $f_{D(s)+}$, form factors $f_+^{D \rightarrow K(\pi)}(q^2)$ and quark mixing matrix elements $|V_{cs(d)}|$

• Improved $f_{D(s)+}$, $f_{+}^{D \to K(\pi)}(q^2)$ of D semi-leptonic decays calibrate LQCD calculations at higher accuracy. Once they pass experimental test, the precise LQCD calculations of f_D/f_B , f_{Ds}/f_{Bs} and form factor ratios are helpful for measurements in B decays

■ Recent LQCD calculations on $f_{D(s)+}[0.5(0.5)\%]$, $f_{+}^{D \to K(\pi)}(0)$ [1.7(4.4)%] provide good chance to precisely measure $|V_{cs(d)}|$

$$\frac{d\Gamma}{dq^2 d\cos\theta_1 d\cos\theta_2 d\chi dm_{\pi\pi\pi}} = \frac{3}{8(4\pi)^4} G_F^2 |V_{cd}|^2 \frac{p_\omega q^2}{M_D^2} \mathcal{B}(\omega \to \pi\pi\pi) |\mathcal{BW}(m_{\pi\pi\pi})|^2
[(1 + \cos\theta_2)^2 \sin^2\theta_1 |H_+(q^2, m_{\pi\pi\pi})|^2 + 4\sin^2\theta_2 \cos^2\theta_1 |H_0(q^2, m_{\pi\pi\pi})|^2
+ 4\sin\theta_2 (1 + \cos\theta_2) \sin\theta_1 \cos\theta_1 \cos\chi H_+(q^2, m_{\pi\pi\pi}) H_0(q^2, m_{\pi\pi\pi})
- 4\sin\theta_2 (1 - \cos\theta_2) \sin\theta_1 \cos\theta_1 \cos\chi H_-(q^2, m_{\pi\pi\pi}) H_0(q^2, m_{\pi\pi\pi})
- 2\sin^2\theta_2 \sin^2\theta_1 \cos2\chi H_+(q^2, m_{\pi\pi\pi}) H_-(q^2, m_{\pi\pi\pi})].$$

$$H_{\pm}(q^2) = MA_1(q^2) \mp 2 \frac{M_D p_{\omega}}{M} V(q^2)$$

$$H_0(q^2) = \frac{1}{2m_{\pi\pi\pi}\sqrt{q^2}} [(M_D^2 - m_{\pi\pi\pi}^2 - q^2) M A_1(q^2) \quad (3)$$

$$-4 \frac{M_D^2 p_{\omega}^2}{M} A_2(q^2)]$$

where $M = M_D + m_{\pi\pi\pi}$. For the q^2 dependence, a single

pole parameterization [24] is applied:

$$V(q^2) = \frac{V(0)}{1 - q^2/m_V^2} , \ A_{1,2}(q^2) = \frac{A_{1,2}(0)}{1 - q^2/m_A^2} , \qquad (4)$$

where the pole masses m_V and m_A are expected to be close to $M_{D^*(1^-)} = 2.01 \text{ GeV}/c^2$ and $M_{D^*(1^+)} = 2.42 \text{ GeV}/c^2$ [14] for the vector and axial form factors, respectively. The ratios of these form factors, evaluated at $q^2 = 0$, $r_V = \frac{V(0)}{A_1(0)}$ and $r_2 = \frac{A_2(0)}{A_1(0)}$, are measured in this paper.