Recent results on soft QCD topics from ATLAS

Roman Lysák Institute of Physics, Prague

on behalf of the ATLAS collaboration

Bormio 2016

Overview

- Understanding of soft-QCD interactions has direct impact on precision measurements and searches for new physics
 - Soft QCD results used in Monte-Carlo generators tuning
 - Low energy QCD description essential for simulating multiple pp interactions

ATLAS @ LHC

- LHC Run 2 started last year at new energy frontier \sqrt{s} = 13 TeV
 - Rebuilt Minimum Bias Trigger Scintillators (MBTS) in 2.07 < $|\eta|$ < 3.86
 - New Pixel Layer "IBL" at R = 33 mm
- For the following studies most important is Inner detector
 - Silicon Pixel: 3 Barrel + 3 Endcap layers R = 1082mm 1.7k modules 80Mpx Silicon Strip (SCT): 4k modules **Transition Radiation Tracker** TRT Drift Tube: 360k straws ٠ R = 554mm R = 514mm R = 443mm SCT R = 371mm TRT R = 299mm SCT **Pixels** R = 122.5mm R = 88.5mm Pixels IBL = 50.5mm R = 0mm

Classifying of the events

Total p-p cross-section at $\sqrt{s} = 7$ TeV Nuclear Physics, B (2014) 486

- Total cross-section is a basic parameter of strong interactions
 - Can not be calculated from first principles in QCD
- We measure elastic cross-section (as a function of transfer momentum) and determine total x-sec via optical theorem:

$$\sigma_{\rm tot}^2 = \frac{16\pi(\hbar c)^2}{1+\rho^2} \left. \frac{\mathrm{d}\sigma_{\rm el}}{\mathrm{d}t} \right|_{t\to 0}$$

t: Mandelstam variable

- Forward ALFA detectors: 2 pairs of Roman Pots tracking detectors on each side
 - Data collected in special run (beam optics with high $\beta^* = 90$ m)

Total cross-section at $\sqrt{s} = 7$ TeV (cont.) Nuclear Physics, B (2014) 486

Measure scattering angle θ*

 $\rightarrow -t = (\theta^{\star} \times p)^2$ for p (beam) = 3.5 TeV

- Luminosity precisely measured independently $\rightarrow \delta = 2.3\% \rightarrow \text{still dominant syst. uncertainty}$
- dσ_{el}/dt fit to theoretical formula: including Coulomb interaction and interference
 - Measure also nuclear slope 'B'
- Elastic cross-section: $\frac{d\sigma_{el}}{dt} = \frac{d\sigma_{el}}{dt} \bigg|_{t=0} \exp(-B|t|)$

 σ_{tot} = 95.35 ± 0.38 (stat) ± 1.25 (exp) ± 0.37 (extr) mb B = 19.73 ± 0.14 (stat) ± 0.26 (syst) GeV⁻²

Total cross-section at $\sqrt{s} = 7$ TeV (cont.) Nuclear Physics, B (2014) 486

Measure scattering angle θ*

 $\rightarrow -t = (\theta^{\star} \times p)^2$ for p (beam) = 3.5 TeV

- Luminosity precisely measured independently $\rightarrow \delta = 2.3\% \rightarrow \text{still dominant syst. uncertainty}$
- dσ_{el}/dt fit to theoretical formula: including Coulomb interaction and interference
 - Measure also nuclear slope 'B'
- Elastic cross-section: $\frac{d\sigma_{el}}{dt} = \frac{d\sigma_{el}}{dt} \Big|_{t=0} \exp(-B|t|)$

 σ_{el} = 24.00 ± 0.19 (stat) ± 0.57 (syst) mb σ_{inel} = 71.34 ± 0.36 (stat) ± 0.83 (syst) mb

Inelastic pp cross-section at $\sqrt{s} = 13 \text{ TeV}$

- Direct measurement using MBTS forward scintillators
 - Require \geq 2 hits \rightarrow 4M of events
 - Fiducial region: $M_x^2/s = \xi > 10^{-6}$

Two different selections used to constrain the diffraction processes

$$\sigma_{\text{inel}}(\tilde{\xi} > 10^{-6}) = \frac{N - N_{\text{BG}}}{\epsilon_{\text{trig}} \times L} \times \frac{1 - f_{\tilde{\xi} < 10^{-6}}}{\epsilon_{\text{sel}}}$$

<u>~1 sigma lower cross-section than MC predictions</u>

 σ_{inel} ($\xi > 10^{-6}$) = 65.2 ± 0.8 (exp) ± 5.9 (lumi)

 $\sigma_{inel} = 73.1 \pm 0.9 \text{ (exp)} \pm 6.6 \text{ (lumi)} \pm 3.8 \text{ (extr)}$

Minimum-bias measurement at \sqrt{s} = 13 TeV

- Provides insight into strong interactions in non-perturbative QCD regime
 - Used in MC tuning, essential for simulating multiple pp interactions
- Measured charged particle multiplicities
 - Charged primary particles: $p_{\tau} > 500 \text{ MeV}, \tau > 300 \text{ ps}$ (excluding strange baryons)
 - 9M of events in special runs with low pile-up $<\mu>$ = 0.005 (expect. number of interactions)
 - Correct for trigger, vertex, tracking efficiencies
 + unfolding for detector effects
- Dominant systematics from track reconstruction efficiency

Pythia: separate diffraction (pomeron) and non-diffraction (ND)

Herwig: no diffractive model, apply MPI to events with no hard-scattering

- Epos: parton based Gribov-Regge theory (EFT) (simultaneous hard+soft)
- QGSJET-II: phenomenological Reggeon field theory, 'semi-hard Pomeron'

Minimum-bias measurement at \sqrt{s} = 13 TeV

- Provides insight into strong interactions in non-perturbative QCD regime
 - Used in MC tuning, essential for simulating multiple pp interactions
- Measured charged particle multiplicities
 - Charged primary particles: $p_{\tau} > 500 \text{ MeV}, \tau > 300 \text{ ps}$ (excluding strange baryons)
 - 9M of events in special runs with low pile-up $<\mu>$ = 0.005 (expect. number of interactions)
 - Correct for trigger, vertex, tracking efficiencies
 + unfolding for detector effects
- Dominant systematics from track reconstruction efficiency

Pythia: separate diffraction (pomeron) and non-diffraction (ND)

Herwig: no diffractive model, apply MPI to events with no hard-scattering

Epos: parton based Gribov-Regge theory (EFT) (simultaneous hard+soft)

QGSJET-II: phenomenological Reggeon field theory, 'semi-hard Pomeron'

Minimum-bias measurement at $\sqrt{s} = 13$ TeV (cont.)

ATLAS-CONF-2015-028

- $< p_T >$ distribution sensitive to color-reconnection
- MC tunes have been already tuned with \sqrt{s} = 7 TeV LHC data
 - Herwig did not use min-bias data
- EPOS best (mainly $\eta, p_T, \langle p_T \rangle$), Pythia 8 A2 (nch<50, η) /Monash ($p_T, \langle p_T \rangle$) 11 tunes provide reasonable description

Underlying event (UE) at $\sqrt{s} = 13$ TeV

UE: any activity accompanying hard scattering \rightarrow help to constrain multi-parton interactions in MC

Underlying event at $\sqrt{s} = 13$ TeV (cont.)

ATL-PHYS-PUB-2015-019

- 20% increase in UE activity comparing to \sqrt{s} = 7 TeV results in Run 1
- Most of the models agree reasonably with the data
 - Confidence in energy extrapolation of multi-parton interactions in MC

Diffractive dijet production at $\sqrt{s} = 7$ **TeV**

- Diffraction is a large fraction of inelastic production
- Diffractive dijet events sensitive to underlying parton dynamics of diffraction and color-singlet exchange
- 2 high- p_{T} jets with $p_{T} > 20$ GeV
- Variables to separate diffractive and non-diffractive events: $\Delta |n_F|$, $\xi \sim M_{\chi}^2/s$

Exclusive $\gamma\gamma \rightarrow II$ (*I*=e, μ) at $\sqrt{s} = 7$ TeV

Physics Letters B 749 (2015) 242

- Can be seen as γ - γ collision (QED)
 - predicted with high precision (2%)
- Simultaneous fit of signal + background to aplanarity: 1 - |Δφ(II)|
 - Discrimination between exclusive production and dissociation

• Have to correct for proton absorptive effects due to final proton size

Example of exclusive $\gamma\gamma \rightarrow \mu\mu$ event

Conclusions

- First results from Run 2 at $\sqrt{s} = 13$ TeV shown
- Inelastic cross-section lower (~1 sigma) than MC predictions
- MC generators tuned at \sqrt{s} = 7 TeV describe 13 TeV min-bias data well – Epos & Pythia 8 preferred for inclusive min-bias data at \sqrt{s} = 13 TeV
- Multi-parton interactions at \sqrt{s} = 13 TeV well described by MC generators
- Studies of specific soft hadron processes performed at $\sqrt{s} = 7$ TeV

All results on public web page:

- ATLAS: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/StandardModelPublicResults

Bose-Einstein correlations (BEC) at $\sqrt{s} = 7$ **TeV** Eur. Phys. J. C75 (2015) 466

- BEC a sensitive probe of space-time geometry of the hadronization region
 - enhance the production of bosons close together in phase-space
- BEC experimentally studied in pairs of like-sign charged pions
 - Proximity in phase-space measured by: $Q = \sqrt{-(p_1 p_2)^2}$
 - Effect observed as a low Q enhancement of Q distributions (ρ) ratio: $C_2(Q) = \frac{\rho(Q)}{\rho_0(Q)} = C_0[1 + \Omega(\lambda, QR)](1 + \varepsilon Q)$ ρ_0 : reference sample(no BEC): unlike-charge pairs
 - Parametrize BEC effect in terms of correlation strength (λ) and source size (R)
 - To account for the effects of resonances, take double-ratio $R_2(Q) = \frac{C_2(Q)}{C_2^{MC}(Q)}$

Minimum-bias measurement at $\sqrt{s} = 13 \text{ TeV}_{ATLAS-CONF-2015-028}$

- Provides insight into strong interactions in non-perturbative QCD regime
 - Used in MC tuning, essential for simulating multiple pp interactions
- Measured charged particle multiplicities
 - Charged primary particles: $p_{\tau} > 500 \text{ MeV}, \tau > 300 \text{ ps}$ (excluding strange baryons)
 - 9M of events in special runs with low pile-up $<\mu>$ = 0.005
 - Correct for trigger, vertex, tracking efficiencies
 + unfolding for detector effects
- Dominant systematics from track reconstruction efficiency

Pythia: separate diffraction (pomeron) and non-diffraction (ND)

Herwig: no diffractive model, apply MPI to events with no hard-scattering

Epos: parton based Gribov-Regge theory (EFT) (simultaneous hard+soft)

QGSJET-II: phenomenological Reggeon field theory, 'semi-hard Pomeron'

Diffractive dijet production at $\sqrt{s} = 7$ TeV (cont.)

- Alternative MCs:
 - POMWIG: factorisable pomeron (DPDFs)
 - Pythia 8: soft/hard diffractive models interfaced
 - Determine rapidity-gap survival probability to mixed POMWIG/Py8 model:
 - using ratio of data to SD in POMWIG after subtracted ND
 - $S^2 = 0.16 \pm 0.04$ (stat) ± 0.08 (syst)