Two－pion femtoscopy in $\mathrm{p}-\mathrm{Pb}$ collisions at $\sqrt{s_{\mathrm{NN}}}=5.02 \mathrm{TeV}$ with ATLAS

M．（Felix）Clark

On behalf of the ATLAS collaboration from work shown in ATLAS－CONF－2015－054
54th International Winter Meeting on Nuclear Physics Bormio，Italy

January 27， 2016

Motivation

- Angular correlations in $\mathrm{p}+\mathrm{Pb}$ (bottom) and pp (left) collisions indicate signs of collective behavior - the so-called "ridge".
- It is thus desirable to have an independent handle on the size, shape, and evolution of the particle sources in small systems.

Motivation

- Momentum-space correlation functions,

$$
C\left(p_{1}, p_{2}\right) \equiv \frac{\frac{d N_{12}}{d p_{1} d p_{2}}}{\frac{d N_{1}}{d p_{1}} \frac{d N_{2}}{d p_{2}}}
$$

are sensitive to the source density function $S_{k}(r)$:

$$
C_{\mathrm{k}}(q)-1=\int d^{3} r S_{\mathrm{k}}(r)\left(|\langle q \mid r\rangle|^{2}-1\right)
$$

$k=\left(p_{1}+p_{2}\right) / 2$ is the average pair momentum and $q=\left(p_{1}-p_{2}\right)$ is the relative momentum, and the integral is performed over the freeze-out hypersurface of the source.

- Background $\frac{d N_{1}}{d p_{1}} \frac{d N_{2}}{d p_{2}}$ is formed by event-mixing within intervals of centrality and longitudinal position of the collision vertex.

Introduction

- These results will focus on exponential fits to the Bose-Einstein part of two-pion correlation functions $C_{B E}$:

$$
C_{B E}(q)=1+e^{-|R q|}
$$

The analysis is done as a function of $q_{\text {inv }}$ or in 3 dimensions, where R is a diagonal matrix. In 1D, e.g., this implies a Cauchy source function: $S_{\mathrm{inv}}(r) \propto\left(1+R_{\mathrm{inv}}^{-2} r^{2}\right)^{-1}$

- With some fraction of pairs λ being composed of pions from a core (not from, e.g., weak decays or long-lived resonances), the full experimental correlation function used is the Bowler-Sinyukov form:

$$
C_{\exp }(q)=\left[(1-\lambda)+\lambda K\left(q_{\mathrm{inv}}\right) C_{B E}(q)\right] \Omega\left(q_{\mathrm{inv}}\right)
$$

where $K\left(q_{\text {inv }}\right)$ accounts for Coulomb interactions between the pions and $\Omega\left(q_{\text {inv }}\right)$ represents the non-femtoscopic background features of the correlation function.

- Mis-identified pions, coherent emission contribute to decrease in λ.

ATLAS inner detector

- Pixel detector - 82 million silicon pixels
- Semiconductor Tracker - 6.2 million silicon microstrips
- Transition Radiation Tracker - 350k drift tubes
- 2 T axial magnetic field

Reconstructed tracks from $|\eta|<2.5$ at $p_{\mathrm{T}}>0.1 \mathrm{GeV}$

Data selection

- $2013 p+\mathrm{Pb}$ run from the LHC at $\sqrt{s_{\mathrm{NN}}}=5.02 \mathrm{TeV}$
- $28.1 \mathrm{nb}^{-1}$ minimum-bias data
- centrality determined from $\sum E_{\mathrm{T}}$ in the Pb -going forward calorimeter at $3.1<|\eta|<4.9$

Pion identification

The pair purity for the nominal selection, estimated from simulation, is shown above as a function of pair k_{T} and η_{k}.

- Pions are identified using an estimation of $d E / d x$ from time-over-threshold of charge deposited in pixel hits.
- Three particle identification (PID) selections are defined; high efficiency, high purity, and one in the middle (nominal).
- The variation is used to estimate systematic uncertainty.

Jet fragmentation correlation

- significant non-femtoscopic contribution observed in the two-particle correlation function
- commonly attributed to mini-jets
- increased hard-scattering p_{T} cutoff in samples generated from HIJING
- lack of hard processes causes the correlation to disappear (bottom)
- not particularly surprising, but important to verify in order to justify description of this feature in data

Jet fragmentation correlation

Common methods to account for this background include:

1. Using a double ratio $C(q)=C^{\text {data }}(q) / C^{M C}(q)$.

- Monte Carlo tends to over-estimate the magnitude of the effect, which can skew the results significantly

2. Partially describing the background shape using simulation and allowing additional free parameters in the fit.

- one might worry about additional free parameters biasing the fits

Jet fragmentation correlation

A data-driven method is developed to constrain the effect of hard processes. Fits to the opposite-sign correlation function are used to predict the fragmentation correlation in same-sign. This has its own challenges.

1. Resonances appear in the opposite-sign correlation functions

- mass cuts around ρ, K_{S}, and ϕ
- cut off opposite-sign fit below 0.2 GeV

2. Fragmentation has different effect on the opposite-sign correlation function than on the same-sign

- a mapping is derived from opposite- to same-sign using simulation
- opposite-sign fit results in the data are used to fix the background description in the same-sign
The background is modeled as a stretched exponential in q_{inv} :

$$
\Omega\left(q_{\mathrm{inv}}\right)=1+\lambda_{\mathrm{bkgd}} e^{-\left|R_{\mathrm{bkgd}} q_{\mathrm{inv}}\right|^{\alpha_{\mathrm{bkgd}}}}
$$

Summary of fitting procedure

1. $\lambda_{\text {bkgd }}^{+-}$and $R_{\text {bkgd }}^{+-}$are fit in opposite-sign correlation function, with worst resonances removed (blue dashed)
2. the results from +- are used to fix $\lambda_{\text {bkgd }}^{ \pm \pm}$and $R_{\text {bkgd }}^{ \pm \pm}$(violet dotted)
3. the remaining parameters are fit in $\pm \pm$ (dark red) to extract the source radii

Invariant fit results

Fall-off with increasing k_{T} in central collisions, qualitatively consistent with hydrodynamical description.
This feature disappears in peripheral collisions.
NB: Exponential radii typically have larger values than Gaussian.

3D fit results

In three dimensions, the typical Bertsch-Pratt ("out-side-long") coordinate system is used. It is boosted to the longitudinal co-moving frame (LCMF) of each pair.

$$
\begin{align*}
q_{\text {out }} & \equiv \hat{\mathbf{k}_{\mathrm{T}}} \cdot \mathbf{q}_{\mathrm{T}} \tag{1}\\
q_{\text {side }} & \equiv\left(\hat{\mathbf{z}} \times \hat{\mathbf{k}_{\mathrm{T}}}\right) \cdot \mathbf{q}_{\mathrm{T}} \tag{2}\\
q_{\text {long }} & \equiv \hat{\mathbf{z}} \cdot \mathbf{q}_{\mathrm{LCMF}} \tag{3}
\end{align*}
$$

The Bose-Einstein part of the correlation function is fit to an ellipsoidally symmetric exponential.

$$
C_{B E}(\mathbf{q})=1+\exp \left(-\sqrt{R_{\text {out }}^{2} q_{\text {out }}^{2}+R_{\text {side }}^{2} q_{\text {side }}^{2}+R_{\text {long }}^{2} q_{\text {long }}^{2}}\right)
$$

The same fragmentation background model is used as in the 1D fits by contracting \mathbf{q} onto $q_{\text {inv }}$ (using the average k_{T} in the interval).

3D fit example

The fit along the $q_{\text {out }}$ axis is a worst-case: characteristic of $q_{\text {side }}, q_{\text {long }} \approx 0$.

3D results $\left(R_{\text {out }}\right)$

- the smallest of the 3D radii
- exhibits a trend of decreasing size with increasing k_{T}, which is diminished in peripheral collisions
- consistent with linear scaling vs. $<d N / d \eta>^{1 / 3}$, suggestive of constant freeze-out density

3D results $\left(R_{\text {side }}\right)$

Qualitatively similar to $R_{\text {out }}$, but slightly larger.

3D results ($R_{\text {long }}$)

- The largest source radius, with most prominent fall-off with increasing k_{T}
- Linear scaling with $<d N / d \eta>^{1 / 3}$ starting to break down at higher k_{T}

3D results $\left(R_{\text {out }} / R_{\text {side }}\right)$

- ratio of $R_{\text {out }} / R_{\text {side }}$ ("explosiveness") is not strongly dependent on centrality
- decrease with larger k_{T} suggests that higher p_{T} particles are emitted at earlier times
- caveat: these are exponential radii

$3 D$ results (volume scaling)

- at low k_{T}, volume element scales linearly with multiplicity. size of homogeneity region approaches zero where multiplicity is still positive.
- at larger k_{T}, slight convexity: volume beginning to saturate at low multiplicity

3D results (volume scaling with $N_{\text {part }}$)

Volume scaling with $N_{\text {part }}$ is qualitatively different depending on whether one uses an initial-geometry model that includes color fluctuations in the size of the nucleons (see backup).

Conclusion

- Charged pion correlations are used to take measurements of the freeze-out source dimensions in proton-lead collisions at $\left|\eta_{k}\right|<1.5$ and $0.1<k_{\mathrm{T}}<0.8 \mathrm{GeV}$, in 10 centrality intervals from $0-80 \%$
- A data-driven method is employed to describe the correlations from jet fragmentation, which contributes a dominant systematic in small-systems femtoscopy. No free parameters in background description.
- Radii in central events show a decrease with increasing k_{T}, which is qualitatively consistent with collective expansion. This trend becomes less pronounced in peripheral events.
- Linear scaling of volume with multiplicity indicates constant freeze-out density (esp. at low k_{T})
- Evolution of volume as function of $N_{\text {part }}$ is dependent on color fluctuations in model

Thank you!

Most figures from ATLAS-CONF-2015-054
Other ATLAS results regarding collective behavior in small systems:

- azimuthal correlations in proton-lead: Phys. Rev. C 90, 044906
- ridge in proton-proton: CERN-PH-EP-2015-251

See also:

- Bose-Einstein correlations in proton-proton: Eur. Phys. J C75:466

BACKUP SLIDES

Mapping of fragmentation background from opposite- to same-sign

Pythia 8 is used to derive the mapping from opposite-sign parameters to same-sign parameters.

$$
\begin{aligned}
& \alpha_{\mathrm{bkgd}}^{ \pm \pm}=\alpha_{\mathrm{bkgd}}^{+-}=\alpha_{\mathrm{bkgd}}\left(k_{\mathrm{T}}\right) \\
& \quad \alpha_{\mathrm{bkgd}}=2 \text { (Gaussian) works well at } k_{\mathrm{T}} \lesssim 0.4 \mathrm{GeV}, \text { but decreases in } \\
& \quad \text { value at larger } k_{\mathrm{T}} .
\end{aligned}
$$

$$
R_{\mathrm{bkgd}}^{ \pm \pm}=\rho R_{\mathrm{bkgd}}^{+-}
$$

proportionality breaks down at low k_{T}, but the contribution from jets is not strong in that region anyway
$\log \lambda_{\mathrm{bkgd}}^{ \pm \pm}=\log \mu\left(k_{\mathrm{T}}\right)+\nu\left(k_{\mathrm{T}}\right) \log \lambda_{\mathrm{bkgd}}^{+-}$
μ and ν are fit in each k_{T} interval to describe several multiplicities

Jet fragmentation contribution (opposite-sign)

Glauber-Gribov colour fluctuations

Spatial extent of color fields inside nucleon fluctuate event-by-event. The color fluctuation parameter ω_{σ} parameterizes the width of the corresponding fluctuations in the nucleon-nucleon cross-section,

$$
\omega_{\sigma}=\frac{\left\langle\sigma_{p j} \sigma_{p j^{\prime}}\right\rangle_{I}}{\bar{\sigma}^{2}}-1,
$$

where j and j^{\prime} are two different target nucleons and $\left\rangle_{I}\right.$ indicates an average over internal configurations.
Further info (links):
Phys. Rev. Lett. 67, 2946
Phys. Rev. D 47, 2761
vPhys. Lett. B722 347

