Two-pion femtoscopy in p-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02~{\rm TeV}$ with ATLAS

M. (Felix) Clark

On behalf of the ATLAS collaboration from work shown in **ATLAS-CONF-2015-054** 54th International Winter Meeting on Nuclear Physics Bormio, Italy

January 27, 2016

Motivation

- Angular correlations in p+Pb (bottom) and pp (left) collisions indicate signs of collective behavior – the so-called "ridge".
- It is thus desirable to have an independent handle on the size, shape, and evolution of the particle sources in small systems.

Motivation

Momentum-space correlation functions,

$$C(p_1,p_2)\equiv rac{rac{dN_{12}}{dp_1dp_2}}{rac{dN_1}{dp_1}rac{dN_2}{dp_2}},$$

are sensitive to the source density function $S_k(r)$:

$$C_{\mathbf{k}}(q) - 1 = \int d^3 r \, S_{\mathbf{k}}(r) \left(|\langle q|r
angle|^2 - 1
ight)$$

 $k = (p_1 + p_2)/2$ is the average pair momentum and $q = (p_1 - p_2)$ is the relative momentum, and the integral is performed over the *freeze-out hypersurface* of the source.

Background <u>dN₁</u> <u>dN₂</u> is formed by event-mixing within intervals of centrality and longitudinal position of the collision vertex.

Introduction

► These results will focus on exponential fits to the Bose-Einstein part of two-pion correlation functions *C*_{BE}:

$$\mathcal{C}_{BE}(q) = 1 + e^{-|\mathcal{R}q|}$$
 .

The analysis is done as a function of $q_{\rm inv}$ or in 3 dimensions, where R is a diagonal matrix. In 1D, e.g., this implies a Cauchy source function: $S_{\rm inv}(r) \propto \left(1 + R_{\rm inv}^{-2} r^2\right)^{-1}$

▶ With some fraction of pairs λ being composed of pions from a core (not from, e.g., weak decays or long-lived resonances), the full experimental correlation function used is the Bowler-Sinyukov form:

$$\mathcal{C}_{ ext{exp}}(q) = \left[(1-\lambda) + \lambda \mathcal{K}(q_{ ext{inv}}) \mathcal{C}_{BE}(q)
ight] \Omega(q_{ ext{inv}}) \ ,$$

where $K(q_{\rm inv})$ accounts for Coulomb interactions between the pions and $\Omega(q_{\rm inv})$ represents the non-femtoscopic background features of the correlation function.

• Mis-identified pions, coherent emission contribute to decrease in λ .

ATLAS inner detector

- Pixel detector 82 million silicon pixels
- Semiconductor Tracker 6.2 million silicon microstrips
- Transition Radiation Tracker 350k drift tubes
- ▶ 2 T axial magnetic field

Reconstructed tracks from $|\eta| < 2.5$ at $p_{\rm T} > 0.1~{
m GeV}$

Data selection

- ▶ 2013 p + Pb run from the LHC at $\sqrt{s_{\rm NN}} = 5.02$ TeV
- ▶ 28.1 nb^{-1} minimum-bias data
- ▶ centrality determined from $\sum E_{\rm T}$ in the Pb-going forward calorimeter at $3.1 < |\eta| < 4.9$

Pion identification

The pair purity for the nominal selection, estimated from simulation, is shown above as a function of pair $k_{\rm T}$ and η_k .

 Pions are identified using an estimation of dE/dx from time-over-threshold of charge deposited in pixel hits.

- Three particle identification (PID) selections are defined; high efficiency, high purity, and one in the middle (nominal).
- The variation is used to estimate systematic uncertainty.

Jet fragmentation correlation

- significant non-femtoscopic contribution observed in the two-particle correlation function
- commonly attributed to mini-jets
- increased hard-scattering p_T cutoff in samples generated from HIJING
- lack of hard processes causes the correlation to disappear (bottom)
- not particularly surprising, but important to verify in order to justify description of this feature in data

Jet fragmentation correlation

Common methods to account for this background include:

1. Using a double ratio $C(q) = C^{data}(q)/C^{MC}(q)$.

- Monte Carlo tends to over-estimate the magnitude of the effect, which can skew the results significantly
- 2. Partially describing the background shape using simulation and allowing additional free parameters in the fit.
 - one might worry about additional free parameters biasing the fits

Jet fragmentation correlation

A data-driven method is developed to constrain the effect of hard processes. Fits to the opposite-sign correlation function are used to predict the fragmentation correlation in same-sign. This has its own challenges.

- 1. Resonances appear in the opposite-sign correlation functions
 - mass cuts around ho, K_S , and ϕ
 - \blacktriangleright cut off opposite-sign fit below 0.2 ${\rm GeV}$
- 2. Fragmentation has different effect on the opposite-sign correlation function than on the same-sign
 - ▶ a mapping is derived from opposite- to same-sign using simulation
 - opposite-sign fit results in the data are used to fix the background description in the same-sign

The background is modeled as a stretched exponential in q_{inv} :

$$\Omega(q_{
m inv}) = 1 + \lambda_{
m bkgd} e^{-|R_{
m bkgd}q_{
m inv}|^{lpha_{
m bkgd}}}$$

Summary of fitting procedure

- 1. $\lambda_{\rm bkgd}^{+-}$ and $R_{\rm bkgd}^{+-}$ are fit in opposite-sign correlation function, with worst resonances removed (blue dashed)
- 2. the results from +- are used to fix $\lambda_{bkgd}^{\pm\pm}$ and $R_{bkgd}^{\pm\pm}$ (violet dotted)
- 3. the remaining parameters are fit in $\pm\pm$ (dark red) to extract the source radii

Invariant fit results

Fall-off with increasing $k_{\rm T}$ in central collisions, qualitatively consistent with hydrodynamical description. This feature disappears in

peripheral collisions.

NB: Exponential radii typically have larger values than Gaussian.

Close-to-linear scaling of R_{inv} with the cube root of multiplicity, esp. at low k_{T} . At higher k_{T} , radii is less multiplicity-dependent.

• • = • • = •

3D fit results

In three dimensions, the typical Bertsch-Pratt ("out-side-long") coordinate system is used. It is boosted to the longitudinal co-moving frame (LCMF) of each pair.

$$q_{
m out} \equiv \hat{\mathbf{k}}_{
m T} \cdot \mathbf{q}_{
m T}$$
 (1)

$$\boldsymbol{q}_{\rm side} \equiv (\hat{\boldsymbol{z}} \times \hat{\boldsymbol{k}}_{\rm T}) \cdot \boldsymbol{q}_{\rm T}$$
⁽²⁾

$$q_{\rm long} \equiv \hat{\mathbf{z}} \cdot \mathbf{q}_{\rm LCMF} \tag{3}$$

The Bose-Einstein part of the correlation function is fit to an ellipsoidally symmetric exponential.

$$\mathcal{C}_{BE}(\mathbf{q}) = 1 + \exp\left(-\sqrt{R_{ ext{out}}^2 q_{ ext{out}}^2 + R_{ ext{side}}^2 q_{ ext{side}}^2 + R_{ ext{long}}^2 q_{ ext{long}}^2}
ight)$$

The same fragmentation background model is used as in the 1D fits by contracting **q** onto q_{inv} (using the average k_T in the interval).

3D fit example

The fit along the $q_{\rm out}$ axis is a worst-case: characteristic of $q_{\rm side}, q_{\rm long} \approx 0$.

3D results (R_{out})

- the smallest of the 3D radii
- exhibits a trend of decreasing size with increasing k_T, which is diminished in peripheral collisions
- ► consistent with linear scaling vs. $< dN/d\eta >^{1/3}$, suggestive of constant freeze-out density

3D results ($R_{\rm side}$)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�? 16/23

3D results ($R_{\rm long}$)

- The largest source radius, with most prominent fall-off with increasing k_T
- \blacktriangleright Linear scaling with $< dN/d\eta >^{1/3}$ starting to break down at higher $k_{\rm T}$

3D results $(R_{\rm out}/R_{\rm side})$

- ratio of R_{out}/ R_{side} ("explosiveness") is not strongly dependent on centrality
- decrease with larger k_T suggests that higher p_T particles are emitted at earlier times
- caveat: these are exponential radii

3D results (volume scaling)

- at low k_T, volume element scales linearly with multiplicity. size of homogeneity region approaches zero where multiplicity is still positive.
- at larger k_T, slight convexity: volume beginning to saturate at low multiplicity

3D results (volume scaling with N_{part})

Volume scaling with N_{part} is qualitatively different depending on whether one uses an initial-geometry model that includes color fluctuations in the size of the nucleons (see backup).

Conclusion

- ► Charged pion correlations are used to take measurements of the freeze-out source dimensions in proton-lead collisions at |η_k| < 1.5 and 0.1 < k_T < 0.8 GeV, in 10 centrality intervals from 0-80%</p>
- A data-driven method is employed to describe the correlations from jet fragmentation, which contributes a dominant systematic in small-systems femtoscopy. No free parameters in background description.
- Radii in central events show a decrease with increasing k_T, which is qualitatively consistent with collective expansion. This trend becomes less pronounced in peripheral events.
- ► Linear scaling of volume with multiplicity indicates constant freeze-out density (esp. at low k_T)
- \blacktriangleright Evolution of volume as function of $N_{\rm part}$ is dependent on color fluctuations in model

Thank you!

Most figures from ATLAS-CONF-2015-054

Other ATLAS results regarding collective behavior in small systems:

- ▶ azimuthal correlations in proton-lead: Phys. Rev. C 90, 044906
- ▶ ridge in proton-proton: CERN-PH-EP-2015-251

See also:

▶ Bose-Einstein correlations in proton-proton: Eur. Phys. J C75:466

BACKUP SLIDES

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ■ のQで 22/23

Mapping of fragmentation background from opposite- to same-sign

Pythia 8 is used to derive the mapping from opposite-sign parameters to same-sign parameters.

 $lpha_{
m bkgd}^{\pm\pm} = lpha_{
m bkgd}^{+-} = lpha_{
m bkgd}(k_{
m T})$ $lpha_{
m bkgd} = 2$ (Gaussian) works well at $k_{
m T} \lesssim 0.4$ GeV, but decreases in value at larger $k_{
m T}$.

 $R_{\rm bkgd}^{\pm\pm} = \rho R_{\rm bkgd}^{+-}$

proportionality breaks down at low $k_{\rm T}$, but the contribution from jets is not strong in that region anyway

 $\log \lambda_{
m bkgd}^{\pm\pm} = \log \mu(k_{
m T}) +
u(k_{
m T}) \log \lambda_{
m bkgd}^{+-}$

 μ and ν are fit in each $\textit{k}_{\rm T}$ interval to describe several multiplicities

Jet fragmentation contribution (opposite-sign)

Glauber-Gribov colour fluctuations

Spatial extent of color fields inside nucleon fluctuate event-by-event. The color fluctuation parameter ω_{σ} parameterizes the width of the corresponding fluctuations in the nucleon-nucleon cross-section,

$$\omega_{\sigma} = rac{\langle \sigma_{pj} \sigma_{pj'}
angle_I}{ar{\sigma}^2} - 1 \; ,$$

where j and j' are two different target nucleons and $\langle \rangle_{I}$ indicates an average over internal configurations.

- Further info (links):
- Phys. Rev. Lett. 67, 2946
- Phys. Rev. D 47, 2761
- vPhys. Lett. B722 347