54th International Winter Meeting on Nuclear Physics

25-29 January 2016 Bormio (Italy)

54th International Winter Meeting on Nuclear Physics 25-29 January 2016 Bormio (Italy) WHY THIS CONFERENCE?

54th International Winter Meeting on Nuclear Physics 25-29 January 2016 Bormio (Italy) THE MANY FACETS OF THE NUCLEAR REALM

54th International Winter Meeting on Nuclear Physics 25-29 January 2016 Bormio (Italy) THE MANY FACETS OF THE NUCLEAR REALM

Specialization

Differentiation

54th International Winter Meeting on Nuclear Physics 25-29 January 2016 Bormio (Italy) BORMIO IS THE OPPORTUNITY!

GAIN in scientific insight

54th International Winter Meeting on Nuclear Physics

25-29 January 2016 Bormio (Italy)

SCHEPULE

9:00 - 10:45 Hadron Physics: selected topics (CS) 10:45 - 11:15 Break 11:15 - 13:00 Nuclear Structure and Astrophysics: selected topics (PC) 13:00 - 14:00 Lunch 14:00 - 15:45 Heavy Ion Reactions: selected topics (LF) 15:45 - 16:15 Break 16:15 - 18:00 Flavor Physics: selected topics (WK)

This conference is sponsored by:

MONDAY, 25th January 2016

	→ MC	DRNING SESSION	09:00-12:30
	9:00	Concettina Sfienti and Laura Fabbietti	
		Welcome	
	09:10	Matthias NEUBERT	
		Beyond the Higgs Boson	
	09:55	Steen HANNESTAD	
		Neutrino physics and precision cosmology	
	10:30	Coffee-break	
	11:00	Ryugo HAYANO	
		The Fukushima-Daiichi Nuclear Power Plant Accident	
ė.	11:45	Wolfgang GRADL	
	and the second	Highlights on BESIII results	

→ POSTER SESSION 17:00-19:00			
17:00	Measurement of the proton form factor at very low \ensuremath{Q}^2	Adrian WEBER	
17:03	Extension of the ratio method to low energy	Frederic COLOMER	
17:06	Study of Improved K ⁰ _S Detection for the Belle II Detector	Leonard KOCH	
17:09	Progresses on Light hadron spectroscopy	Giulio MEZ- ZADRI	
17:11	Analysis of He-4 Inclusive Electron-Scatter- ing-Experiments	Simon KEGEL	
17:14	Modelling Early Stages of Relativistic Heavy Ion Collisions: Coupling Relativistic Transport Theory to Decaying Color-Elec- tric Flux Tubes	Lucia OLIVA	
17:17	Forward production of neutrons in frag- mentation of high energy heavy nuclei	Vladimir YUREVICH	
17:20	Computing for the LHC: operations during Run2 and getting ready for Run 3	Dagmar ADAMOVA	
17:23	Performance of the ALICE secondary vertex b-tagging algorithm	Lukas KRA- MARIK	
17:26	K ⁻ multi-nucleon absorption processes in hadronic interaction studies by AMADEUS	Raffaele DEL GRANDE	

TUESDAY, 26th January 2016

→	MORNING SESSION	09:00-12:30
09:00	Marco VAN LEEUWEN	
	Recent results of the ALICE experiment	
09:45	Siegfried BETHKE	
	Decults from ATLAS and CMS. Strong Interactions and N	low Dhusics

Results from ATLAS and CMS: Strong Interactions and New Physics 10:30 Coffee break

- 11:00 Stefano GANDOLFI Recent results on hyperons and the EOS
 11:30 Alexander SCHMAH News from RHIC
- 12:00 Romain HOLZMANN Recent Results from the HADES Experiment

→ AFTERNOON SESSION 17:00-19:00

17:00 Patrick ACHENBACH Experimental Tests of Charge Symmetry Breaking in Hypernuclei

17:20 John F. SHARPEY-SCHAFER No Low-Lying Nuclear Vibrations: Configuration Dependent Pairing and Axial Asymmetry

17:40 Vinzent STEINBERG SMASH - A new hadron transport approach for heavy ion collissions

 18:00
 Roman LYSAK

 Recent results on soft QCD topics from ATLAS

 18:20
 Jason HOLT

Ab initio valence-space theory for exotic nuclei

18:40 Georg WOLSCHIN Beyond the thermal model

17:29	XYZ studies at BESIII	Gianfranco MORELLO	
17:32	The RUN-2 ATLAS Trigger System	Savanna Marie SHAW	
17:35	PANDA Forward Spectrometer Calorimeter	Pavel SE- MENOV	

WEDNESDAY, 27th January 2016

09:00-12:4e0

17:00-19:05

09:00 Georg BOLLEN

Facility for Rare Isotope Beams – Science and Status

- 09:45 Paolo AZZURRI Results from CMS and ATLAS: Electro-weak Symmetry Breaking and Beyond
- 10:30 Coffee break

➔ MORNING SESSION

- 11:00 Gaute HAGEN Current topics in nuclear structure theory
- 11:45 Michael SCHMELLING Heavy Ion Results from LHCb
- 12:15 Horst STÖCKER Signatures of the early Yang Mills phase in a novel high multiplicity event class in pBar-p and pA colliders FAIR, NICA, RHIC and LHC

➔ AFTERNOON SESSION

- 17:00 Harald MERKEL Internal Target Experiments at the MESA accelerator
- 17:25 Dinko ATANASOV Precision mass measurements of neutron-rich cadmium for r-process studies
- 17:45 Mikhail MIKHASENKO Beyond the isobar model
- 18:05 Michael Ryan CLARK Measurement of the ridge and bose-enstein correlations in pp and pPb collisions with the ATLAS detector at the LHC
- 18:25 Anselm ESSER Measurement of the beam normal single-spin asymmetry of Carbon-12
- 18:45 Li LEI
 - Charm Physics at BES III

17:38	Study of the 2H(p,γ)3He reaction in the BBN energy range at LUNA	Viviana MOSSA
17:41	Electron Identification and Hadron Contamination Studies in Proton-Proton Collisions with ALICE	Anisa DASHI
17:44	study of the eta meson production with polarised proton beam	Iryna SCHÄTTI-OZE- RIANSKA

Hadron Physics: Selected Topics

THURSDAY, 28th January 2016

	→ МС	ORNING SESSION)9:00-12:40
	09:00	Bronson MESSER Recent progress on core-collapse supernovae: simula	ations and
		connections to observations,	
	09:45	Thomas MANNEL	
		Charm Physics: Where Color meets Flavor	
	10:30	Coffee-break	
	11:00	Marcel MERCK	
		Flavour results from LHCb	
	11:45	Wolfgang BAUER	
		Replacing hydrodynamic simulations with transport	theory
	12:10	Vincenzo PATERA	
		Novel developments in imaging and dosimetry for H therapy	adron
	→ AF	TERNOON SESSION 1	7:00-19:05
	17:00	Pierre CAPEL	
		From Coulomb breakup of halo nuclei to neutron rac capture	liative
	17:25	Oliver ARNOLD	
		Proton-proton and Lambda-proton correlations mea p+Nb collisions at 3.5 GeV with HADES	sured in
	17:45	Diego LONARDONI	
		From hypernuclei to neutron stars: looking for the pipuzzle	eces of the
	18:05	Dima LEVIT	
		DEPFET for BELLEII	
	18:25	Denise GODOY	
		Measurements of heavy flavours with the ALICE expe the LHC	eriment at
	18:45	Leonardo CRISTELLA	
		Exotic quarkonium states in CMS	

MORNING SESSION 09:00-12:45 Peter KRIZAN 09:00 The Belle2 Experiment 09:45 Ryan SINEAD Lattice QCD in 2016: recent results and what to expect 10:30 Coffee break 11:00 Alexandre OBERTELLI Recent and future studies of exotic nuclei. Sebastian NEUBERT 11:45 Hadron Spectroscopy at LHCb 12:15 Or HEN Correlations in nuclei. AFTERNOON SESSION • 17:00-19:10 17:00 Wouter RYSSENS Symmetry unrestricted Skyrme mean-field study of heavy nuclei 17:20 Lucia LEARDINI Measurement of neutral mesons in pp and Pb-Pb collisions at midrapidity with the ALICE experiment at the LHC 17:40 Leyla ATAR Quasi-free one-nucleon Knockout Reactions on neutron-rich **Oxygen** Isotopes 18:00 Marco TOPPI Measurements of 12C ion fragmentation on thin Au target from the FIRST collaboration at GSI 18:20 Wolfgang TRAUTMANN Symmetry energy and density

FRIDAY, 29th January 2016

HAPRONS IN QCP

EX1: CHARMONIUM

EX2: STRANGE HAPRONS

Hadron Physics: Selected Topics

...THE BASIC ...

WHAT YOU SHOULD ALREADY KNOW ...

The building blocks

i.e. first slide in almost all talks, before you switch off!

Constituent Quark Model

1964 The model was proposed independently by Gell-Mann and Zweig Three fundamental building blocks 1960's $(p,n,\lambda) \Rightarrow$ 1970's (u,d,s)

mesons are bound states of a of quark and anti-quark:

$$\pi^{+} = u\overline{d} \qquad \pi^{0} = \frac{1}{\sqrt{2}}(u\overline{u} - d\overline{d}) \quad \pi^{-} = d\overline{u}$$
$$K^{+} = u\overline{s} \qquad K^{0} = d\overline{s} \quad \overline{K}^{0} = s\overline{d} \quad K^{-} = s\overline{u}$$

<u>baryons</u> are bound state of 3 quarks:

$$p = uud \quad n = udd \quad \Lambda = uds$$
$$\overline{p} = \overline{u}\overline{u}\overline{d} \quad \overline{n} = \overline{u}\overline{d}\overline{d} \quad \overline{\Lambda} = \overline{u}\overline{d}\overline{s}$$

COLOR necessary for antisymmetric wave function

COLOR SINGLETS

Lagrangian of QCD

- There are 3 color charges
- Gluons carry color
- → Self-interactions of gluons
- The strong coupling varies
- small at high energies asymptotic freedom
- very large at low energies confinement

"JF THE JORD ALMIGHTY HAD CONSULTED ME BEFORE EMBARKING UPON CREATION,

WOULD HAVE RECOMMENDED SOMETHING SIMPLER "

King Alphonse X. of Castille and Léon (1221-1284), on having the Ptolemaic system of epicycles explained to him

roduces

Large

Coupling Constant

 $e^+e^- \rightarrow Hadrons$

$e^+e^- \rightarrow Hadrons$

and construct:

Confirmed Color hypothesis
Production thresholds for Quark-flavours production

 $e^+e^- \rightarrow Hadrons$

 $e^+e^- \rightarrow Hadrons$

 $e^+e^- \rightarrow Hadrons$

How to study hadrons?

Build them together in a controlled manner

e⁺e⁻ collider can produce vector mesons (other particles in decays) [BES-III/BELLE]
 hadron beams have high production cross sections but little control [PANDA]
 Observe them as existing particles

γ / lepton beams are excellent probes (mostly of the nucleon) [MAMI-JLAB]
 Study their interaction among each others

Investigation structure of matter through:

SPECTROSCOPY

SCATTERING

Strong Interaction

QCP ALSO ALLOWS

Totalitarian principle: Everything not forbidden is compulsory

...NON QQ MESONS OR NON QQQ BARYONS

non-qq & non-qqq color-singlet combinations

PRL 115, 072001 (2015)Selected for a Viewpoint in Physicsweek endingPHYSICAL REVIEW LETTERS14 AUGUST 2015

Observation of $J/\psi p$ Resonances Consistent with Pentaquark States in $\Lambda_b^0 \to J/\psi K^- p$ Decays

> R. Aaij *et al.** (LHCb Collaboration) (Received 13 July 2015; published 12 August 2015)

Multi-quark state	s S	
Hybrids	8	
Glueballs	0	\bigcirc
	SUDDIC	

Totalitarian principle: Everything not forbidden is compulsory

Theoretical approaches

QCD is complex

At high Q (small distance): Expansion in powers of α_{s}

- → Perturbation theory
- At low Q (long distance): Non-perturbative regime, approximations difficult

Methods for low energy QCD

- Phenomenological models
- → Potential models, quark model
- Effective degrees of freedom
- Chiral perturbation theory Approximate Symmetries of QCD
- Discrete space-time
- → Lattice QCD

Phenomenological Wodels

Asymptotic behaviour of QCD

- Non-relativistic potential
- Confinement region (large r):

$$V_{QCD} \xrightarrow[r \to \infty]{} kr$$
 Spring-like

Region of asymptotic freedom (small r):

$$V_{QCD} \longrightarrow \frac{4}{3} \frac{\alpha_s}{r}$$
 Coulomb-like

Bound states in QCD

- Example: QQ states
 - Resonances in the QCD potential
 - Spectrum like positronium

Spectroscopy

0 1 fm C

No

ifferent quantum numbers 5(L≈0) and P(L≈1) states	S_1 L S_2 L L L L L L L L
otation	$S = S_1 + S_2$
$\Psi(1S) \equiv J/\Psi$	J≈L+S
$\Psi(2S) \equiv \Psi'$	P=(-1) ^{L+1}
$\Psi(1P) \equiv \chi_c$	C≈(-1) ^{L+S}

 Usually Effective Theories replace the Quarks and Gluons by the the degrees of freedom which are "relevant" at this scale.

 Usually Effective Theories replace the Quarks and Gluons by the the degrees of freedom which are "relevant" at this scale.

A CLASSICAL EXAMPLE

degree of freedom = mass m

symmetries = translations parallel to the earth's surface and rotations about an axis normal to it.

$$V(h) = mgR\sum_{i=0}^{\infty} (-1)^{i-1} \left(\frac{h}{R}\right)^{i},$$

- Usually Effective Theories replace the Quarks and Gluons by the the degrees of freedom which are "relevant" at this scale.
- Effective Theories are systematic expansion of QCD

- Usually Effective Theories replace the Quarks and Gluons by the the degrees of freedom which are "relevant" at this scale.
- Effective Theories are systematic expansion of QCD
- High Energies ($Q \rightarrow \infty$): Quarks and Gluons are relevant \rightarrow perturbative QCD, Expansion in 1/Q

- Usually Effective Theories replace the Quarks and Gluons by the the degrees of freedom which are "relevant" at this scale.
- Effective Theories are systematic expansion of QCD
- High Energies ($Q \rightarrow \infty$): Quarks and Gluons are relevant \rightarrow perturbative QCD, Expansion in 1/Q
- Very slow hadrons $(Q \rightarrow 0)$: Pions and Kaons are relevant \rightarrow approximate symmetries, Expansion in Q^{1}

April 2012

▼ t decays (N³LO)
 ☑ Lattice QCD (NNLO)

△ DIS jets (NLO)

• Z pole fit (N³LO)

Heavy Quarkonia (NLO)
 e⁺e⁻ jets & shapes (res. NNLO)

 $\alpha_{s}(\mathbf{Q})$

0.4

0.3

- Usually Effective Theories replace the Quarks and Gluons by the the degrees of freedom which are "relevant" at this scale.
- Effective Theories are systematic expansion of QCD
- High Energies ($Q \rightarrow \infty$): Quarks and Gluons are relevant \rightarrow perturbative QCD, Expansion in 1/Q
- Very slow hadrons $(Q \rightarrow 0)$: Pions and Kaons are relevant \rightarrow approximate symmetries, Expansion in $Q^{0.1}$
- Heavy Quarks ($m_Q \rightarrow \infty$): Light Quarks and Gluons are relevant \rightarrow Use approximate symmetries, Expansion in $1/m_Q$

"Lattice field theory is the non-perturbative approach to QFT through **regularised Euclidean functional integrals**. The regularisation is based on discretisation of the action which preserves **gauge invariance** at all stages"

H. Wittig, JGU, Mainz

Lattice QCD

$$\mathcal{L}_{\text{QCD}} = -\frac{1}{4} F^a_{\mu\nu} F^{a\,\mu\nu} + \sum_f \overline{\psi}_f \left(i\gamma^\mu D_\mu - m_f \right) \psi_f,$$
$$D_\mu = \partial_\mu - ig(\frac{1}{2}\lambda^a) A^a_\mu$$

"Lattice field theory is the non-perturbative approach to QFT through **regularised Euclidean functional integrals**.

The regularisation is based on discretisation of the action which preserves **gauge invariance** at all stages"

H. Wittig, JGU, Mainz

Path integrals and observables

Lattice formulation . . .

- . . . preserves gauge invariance
- ... defines observables without reference to perturbation theory
- . . . allows for stochastic evaluation of observables

Expectation value:

$$\langle \Omega \rangle = \frac{1}{Z} \int D[U] D[\overline{\psi}] D[\psi] \Omega e^{-S_{\rm G}[U] - S_{\rm F}[U,\overline{\psi},\psi]}$$

H. Wittig, JGU, Mainz

Path integrals and observables

Lattice formulation . . .

- . . . preserves gauge invariance
- . . . defines observables without reference to perturbation theory
- ... allows for stochastic evaluation of observables

Expectation value:

Monte Carlo Simulation

1. Generate set of N_c configurations of gauge fields $\{U_{\mu}(x)\}, i = 1, ..., N_c$, with probability distribution

$$W = \prod_{f} \det \left(D_{\text{lat}} + m_{f} \right) \, \mathrm{e}^{-S_{\mathrm{G}}[U]}$$

 \rightarrow "Importance sampling"

 \rightarrow Define an algorithm based on a Markov process:

Generate sequence $\{U\}_1 \longrightarrow \{U\}_2 \longrightarrow \ldots \longrightarrow \{U\}_{N_c}$

Transition probability given by W

2. Evaluate observable for configuration i

$$\overline{\Omega} = \frac{1}{N_c} \sum_{i=1}^{N_c} \Omega_i, \quad \langle \Omega \rangle = \lim_{N_c \to \infty} \overline{\Omega},$$

statistical error: $\propto 1/\sqrt{N_c}$

H. Wittig, JGU, Mainz

Lattice artefacts:

$$\left\langle \frac{m_N}{f_\pi} \right\rangle^{\text{lat}} = \left\langle \frac{m_N}{f_\pi} \right\rangle^{\text{cont}} + O(a^p), \quad p \ge 1$$

 \rightarrow extrapolate to continuum limit from $a \approx 0.05 - 0.12 \,\mathrm{fm}$

H. Wittig, JGU, Mainz

Lattice artefacts:

$$\left\langle \frac{m_N}{f_\pi} \right\rangle^{\text{lat}} = \left\langle \frac{m_N}{f_\pi} \right\rangle^{\text{cont}} + O(a^p), \quad p \ge 1$$

 \rightarrow extrapolate to continuum limit from $a \approx 0.05 - 0.12 \,\mathrm{fm}$

 $a \rightarrow 0$

Lattice artefacts:

$$\left\langle \frac{m_N}{f_\pi} \right\rangle^{\mathsf{lat}} = \left\langle \frac{m_N}{f_\pi} \right\rangle^{\mathsf{cont}} + O(a^p), \quad p \ge 1$$

 \rightarrow extrapolate to continuum limit from $a \approx 0.05 - 0.12 \,\mathrm{fm}$

Finite volume effects

- Empirically: $m_{\pi}L \ge 4$ sufficient for many purposes
- Could be more severe for multi-baryon systems
- Provide information on scattering phase shifts

Lattice artefacts:

$$\left\langle \frac{m_N}{f_\pi} \right\rangle^{\mathsf{lat}} = \left\langle \frac{m_N}{f_\pi} \right\rangle^{\mathsf{cont}} + O(a^p), \quad p \ge 1$$

 \rightarrow extrapolate to continuum limit from $a \approx 0.05 - 0.12 \,\mathrm{fm}$

Finite volume effects

- Empirically: $m_{\pi}L \ge 4$ sufficient for many purposes
- Could be more severe for multi-baryon systems
- Provide information on scattering phase shifts
- Unphysical quark masses
 - Chiral extrapolation to physical values of m_u, m_d becomes obsolete

Positronium

Charmonium

Aims

- Analogous to known two-particle bound systems (ie: hydrogen, positronium)
- Charmonium potential models (phenomenological):
 - non-relativistic (charm quarks are "heavy" compared to binding energy)
 - strong force potential via one gluon exchange (similar to Coulomb force)
 - quark confinement (increases linearly with separation)
- Typical representation:

$$V(r) = -\frac{4}{3}\frac{\alpha_s}{r} + br + \dots$$

Phys. Rev. D 17, 3090 (1978) Phys. Rev. D 32, 189 (1985) Phys. Rev. D 72, 054026 (2005)

Experiment: Systematic determination of particle properties

- Mass
- Lifetime or width of resonance
- Quantum number J^{PC}

Theory: Calculation of spectra

- Knowing interaction allows prediction
- Tuning accounting for experimental data

Final aim: Understand composition and dynamics of matter

In QCD we are still far away from precision of QED

...in the beginning

- November Revolution: simultaneous (SLAC/BNL) discovery of the J/ ψ in 1974
- Bound state of c-cbar quarks: "charmonium"
- First evidence of the charm quark
 - Strong confirmation of the quark model
- Discovery of $\psi(2S) \rightarrow J/\psi(e^+e^-) \pi^+\pi^-$ soon followed

The ABC's of Charmonium

- J^{PC} quantum numbers
- $\vec{S} = \vec{S}_1 + \vec{S}_2$ $\vec{J} = \vec{L} + \vec{S}$ \leftarrow S=1 \rightarrow triplet of state S=0 \rightarrow singlet

 $P = (-1)^{L+1} \quad \longleftarrow \quad \text{Parity} \quad (x,y,z) \leftrightarrow (-x,-y,-z)$ $C = (-1)^{L+S} \quad \longleftarrow \quad \text{C-Parity} \quad \text{quark} \leftrightarrow \text{antiquark}$

- Annihilation:
 - Generally suppressed for bound state
 - Decay to leptons is a clean experimental signal
- Strong interaction:
 - Dominant above ~3.72 GeV (D mesons)
 - Suppressed below this mass threshold
- Radiative:
 - EM radiative transition emitting photon
 - Emit gluons producing light quarks
- Features:
 - Suppression of strong decays leads to (relatively) long lifetimes, narrow widths
 - Radiative decays are competitive; often most accessible transitions

The easy case

one set of hadrons that are particularly simple are the charmonium mesons

- each box represents an observed particle
- particles fall in groups 'gross structure'
- splitting within a group 'fine structure'
- reminds us of quantum mechanics of atoms
- a reasonable description of the spectrum of charmonium comes from solving a Schrödinger equation assuming a potential between a charm quark and an anti-charm quark

$$m_n = 2m_c + E_n$$

$$-\frac{1}{m_c}\nabla^2\psi + V(r)\psi = E_n\psi$$

The easy case

New Charmonium States

- (I) The quark model describes most of charmonium remarkably well. $(c\overline{c})$
- (II) But the "XYZ" states point beyond the quark model. $(c\bar{c}g, c\bar{q}q\bar{c}, (c\bar{q})(q\bar{c}), c\bar{c}\pi\pi)$
- (III) BESIII can directly produce the Y(4260) and Y(4360) in e⁺e⁻ annihilation.
- (IV) BESIII has observed "charged charmoniumlike structures" the $Z_c(3900)$ and the $Z_c'(4020)$.
- (V) BESIII has also observed a transition to the X(3872).
- (VI) We are building connections.

R. Mitchell Bormio 2014

Baryon Octet

THE STRANGE NUCLEAR REALM

THE ALCHEMIST BY JOSEPH WRIGHT OF DERBY (1771)

ALCHEMY EITHER STICK AN HYPERON INTO A NUCLEUS

[MAGE COURTESY: JEFFERSON LAB

OR BOIL AND COMPRESS NUCLEAR MATTER

HE STRANGE NUCLEAR REALM

LRP Nuclear Science Advisory Committee(2008)

O Hyperons are NOT Pauli-blocked

. Tagged Nuclear Physics 0 Higher Density

Hyperons are NOT Pauli-blocked
Requires the knowledge of YN, YY, ...

O Hyperons are NOT Pauli-blocked O Requires the knowledge of YN, YY, ...

J. Haidenbauer Few Body Systems (2012)

Hyperons live only for a fraction of a ns

- **O** Hyperons are NOT Pauli-blocked
- 2 Requires the knowledge of YN, YY, ...
- 3 Spectroscopy ... a two-fold way

O Hyperons are NOT Pauli-blocked

- **2** Requires the knowledge of YN, YY, ...
- **3 Spectroscopy: DIRECT PRODUCTION**

O.Hashimoto, H.Tamura, PPNP 57 (2006) 564.

O Hyperons are NOT Pauli-blocked

2 Requires the knowledge of YN, YY, ...

3 Spectroscopy: **DECAY**

- **O** Hyperons are NOT Pauli-blocked
- 2 Requires the knowledge of YN, YY, ...
- **3** Spectroscopy: DECAY

1 Hyperons are NOT Pauli-blocked

- 2 Requires the knowledge of YN, YY, ...
- **3** Spectroscopy

O.Hashimoto, H.Tamura, PPNP 57 (2006) 564.

Lesson learned

Nuclear potential of Λ : $V_0 \Lambda = -30 MeV$ (c.f.U_N = -50 MeV)

AN force is attractive (but weaker than NN)

Small spin-orbit force (~few percent of NN case)

