Beyond the Isobar Model

M. Mikhasenko

HISKP, University of Bonn

January 27, 2016

Thanks to

- Bernhard Ketzer, HISKP, Uni Bonn;
- Adam Szczepaniak, JPAC;
- Andrey Sarantsev, Bonn-Gatchina group.

Motivation

- Spectrum
- 2 Scattering theory
 - Two-body system
 - Three-body system
 - Result of the COMPASS PWA

3 Corrections to the Isobar Model

- Khuri-Treiman equations
- Triangle diagram
- 4 a1(1420) puzzle

Pentaquark candidates

Spectrum of light mesons

Why have not we got bored?

In[2]:= ParticleData["Meson"] // Length

Out[2]= 399

{ [m], m-], (k-], (k-], (k-), (k0), (K_L), (K_S), (K0-bar), n, (p+(770)), (p+(770)), (p-(770)), (k-(770)), (K-(800)), (K_0^{0+*}(800)), (K_0^{0+*}(800))), (K_0^{0+*}(800)), (K_0^{0+*}(800))), (K_0^{0+*}(800)), (K_0^{0+*}(800))), (K_0^{0+*}(800)), (K_0^{0+*}(800))), (K_0^{0+*}(800)))), (K_0^{0+*}(800)))), (K_0^{0+*}(800)))) [η"1958)], [±0(980)], [±0(980)], [±0(980)], [±0(980)], [±0(980)], [±0(1020)], [X(1070)], [X(1110)], [±1'1(170)], [±1'1(1235)], [\pm1'1(1235)], K_1^4(1270), K_1^4(1270), K_1^4(200), (2(1270)), (2(1270)), (1(1285)), (n(1300)), (n(1300)), (n(1300)), (n_2^4(1300)), (n_2^4(1300)), (n_2^4(1300)), (n_1^4(1400)), (n_1^4(140)), (n_1^4(140)), (n_1^4(140)), (n_1^4(140))), (n_1^4(140)), (n_1^4(140)), (n_1^4(140)), (n_1^4(140))), (n_1^4(140)), (n_1^4(140))), (n_1^4(140)), (n_1^4(140)), (n_1^4(140))), (n_1^4(140)), (n_1^4(140))), (n_1^4(140)), (n_1^4(140))), (n_1^4(140)), (n_1^4(140))), (n_1^4(140))), (n_1^4(140)), (n_1^4(140))), (n_1^4(140)))) h_1(1300), K_1^*(1400), K_1^*(1400), K_1^*(1400), K_1^*(1400), K_1^*(1400), K_1^*(1400), K_1^*(1410), K_1^*(1 [u[1420]], [K_2**+(1430]], [K_2**+(1430]], [K_2**+(1430]], [K_2**+(1430)], [K_2**+(1430)], [F_2(1430)], [F_2(a.0*+(1450), (1(1475)), (1 0(1600)), (1 0(1500)), (1 1(1510)), (1 2"(1525)), (1 2(1565)), (K 2"(1580)), (K 2"+(1580)), (K 2"-(1580)), (K 2"(1580)), (K 1(1595)), (X (1600)), (0 2(1645)), (K (1630)), (K (1630))), (K (1630)), (K (1630)), (K (1630))), (K (1630)), (K (1630)) K-(1630), K0-bar(1630), I 2(1640), a 1*(1640), a 1*(1640), a 1*(1640), K 1*(1640), K 1*(1650), K 1*(16 ω(1650)], π_2*(1670)], (π_2*(1670)], (π_2*(1670)), (φ(1680)), (φ_3*(1680)), (φ_3*(1680)), (K*(1680)), (K*(1680)), (K*(1680)), (K*(1680)), (F(1701)), (φ(1700)), (φ(1 a_2*+(1700), a_2**(1700), A_2**(1700), A(1750), A(1750), K_2**(1770), K_2**(1770), K_2**(1770), K_2**(1770), K_3***(1780), K_3** m0(1800), (m+(1800), [_2(1810), K_2*0(1820), K_2*+(1820), K_2*-(1820), K_2*-0-bar(1820), K0(1830), K+(1830), K-(1830), K-(1830), (x(1855), n_2(1870), (x(1855), (x(1855), n_2(1870), (x(1855), (x(1855), n_2(1870), (x(1855), (x(1855 p+(1900), D0, D0-bar, D-), D+, α_3(1875), X(1870), π_2(1880), [-2(1910)], X(1935), [-2(1940)], [-2(1950)], Κ_0***(1950)], Κ_0***(1950)], Κ_0***(1950)], Κ_0***(1950)], Κ_0***(1950)], Κ_0***(1950)], Κ_0***(1950)], Γ_0***(1950)], Γ_0 b (1960), h (1960), p (1965), D.s., D.s., b (1970), t (1970), K (2**01980), K (2**+(1980)), K (2**-(1980)), K (2**-(1980)), K (2**-(1980)), p (2**-(1980)), [p_3*+(1990)], [f_0(2320)], [X0(2300)], [p(2000)], [a_4*-(2040)], [a_4*+(2040)], [f_2(2000)], [a_2(1990)], [m_2(2005)], [D*bar(2017)], [D*bar T 1(2015), X(2020), b 3(2025), [4(2050), h 3(2025), a 3(2020), f 2(2020), K 4**(2045), K 4**(2045), K 4**(2045), K 4**(2045), f 3(2050), a 2(2000), f 3(2070), a 3(2 [X[2075]], [X0[2080]], [72⁻⁴(2100]], [72⁻⁴(2100]], [72⁻⁴(2100]], [82100]], [X[2100]], [X(2100]], [X(2100]], [X(2110]], [0.5⁴⁺), [0.5⁴⁺), [1.5²⁺⁴(2140)], [0.5⁴⁺), [0.5⁴⁺], [1.5⁴⁺), [0.5⁴⁺], [1.5⁴⁺], [2(2150)], @_2(2175)], [_0(2200)], @_2(2155)], @_2(2255)], [_0(2225)], [_1(2225)], [_1(2225)], [_1(2224)], [_2(2224)], [_2(2224)], [K_2^*(2250)], [K_2^*(225 K_2*0-bm(2250), n_2(2250), (u_3(2255)), (u_4(2250)), (n_4(2250)), (n_2*(2250)), (n_3*(2250)), (n_2(2250)), (n [12]2300], a.4(2200), f.3(2300), f.3(2300), f.1(2310), f.1(2310), f.1(2310), f.1(2317), f.3'(2320), K.3'(2320), K.3'(2320), K.3'(2320), f.3'(2320), f.4(2320), f.3(2300), f.3 D 0**+(2400), D 0**-(2400), D 1*0(2420), D 1*+(2420), D 1*+(2420), D 1(2430), D 1*+(2420), X(2440), X(2440), A 6*+(2450), A 6*+(2450), D 5*+(2450), [D_2**4(2460)], [L_6(2510)], [D_2**0(2460)], [D_2**0(2460)], [K_4*0(2500)], [K_4*4(2500)], [K_4*(4500)], [K_4*0-bar(2500)], [D_s1-bar(2500)], [D_s2-bar(2500)], [D_s2-bar(2500 [D*2640], [D*bar(2640], [X(2680)], [X(2710)], [X(2750)], [\u03c0], [Y[3940)], @(4460)], \$(446 B_sJ^*5850], B_sJ^*-bar(5850), B_c, B_c-bar, n_b(15), Y(15), X_b0(1P), X_b1(1P), Y(25), Y(10), X_b0(2P), X_b1(2P), X_b2(2P), Y(3S), Y(4S), Y(10800), Y(11020)]

Four groups: "standard" mesons, meson-molecules, exotics, something else(?).

M. Mikhasenko (HISKP)

Beyond the Isobar Model

Scattering experiment

- We start with elastic scattering.
- We scan over energy of the system and find a preferable energy (peak of cross section)
- for a short time our particles prefer to form intermediate state

$$t(s) = \langle f | T | i \rangle = rac{g^2}{m^2 - s - im\Gamma}, \quad \sigma(s) \sim |t(s)|^2 \rho(s).$$

 ρ is two-body phase space. $\tilde{\rho}$ is scalar two-body loop expression.

$$K + K \left[ig^2 \tilde{\rho}/2 \right] K + K \left[ig^2 \tilde{\rho}/2 \right] K \left[ig^2 \tilde{\rho}/2 \right] K + \dots = \frac{1}{K^{-1} - ig^2 \tilde{\rho}/2}$$

$$K + K \left[ig^2 \tilde{\rho}/2 \right] K + K \left[ig^2 \tilde{\rho}/2 \right] K + \dots = \frac{1}{K^{-1} - ig^2 \tilde{\rho}/2}$$

Notice if $K = g^2/(m^2 - s)$, then we get Breit-Wigner formula.

Two-body system

Two-body unitarity

Conservation of probability gives the unitarity condition

$$SS^{\dagger} = 1, \quad S = 1 + iT \quad \Rightarrow \quad T - T^{\dagger} = i T T^{\dagger}$$

$$t = \langle f | T | i \rangle, \quad \Delta t = i t^* \rho t.$$

The general solution of the unitarity equation is

$$t(s) = rac{1}{\mathcal{K}^{-1}(s) - ig^2 ilde{
ho}(s)/2}, ext{ where } ilde{
ho} = rac{s}{i\pi} \int rac{
ho(s')}{s'(s'-s)} \mathrm{d}s'.$$

We find the reason the peak at second sheet, it is a pole of t(s). Any resonance is associated with a pole.

Multi-particle final states – Isobar model

-350

300 250

Isobar model and rescattering

Isobars reflect the fact that the particles in every subchannel interact.

But isobar model does not satisfy subchannel unitarity.

Partial waves expansion

 $PW = J^{PC}$ of the system + Isobar + L between the isobar and spectator.

COMPASS/VES Partial Wave Analysis

Example: $1^{++}\rho\pi S$

- Isobar: ρ(770),
- ρ is in S-wave with bachelor pion,
- $J^P = 1^+$ states:
 - *a*₁(1260)
 - ? *a*₁(1640)
 - *a*₁(1930)

Corrections to the isobar model

Note, every isobar can rescatter to all others.

- First order is determined by the triangle loop diagram.
- Higher order diagram is hard to calculate.

The method to sum whole series of rescattering is known as Khuri-Treiman equations. It was applied to $\omega, \phi, \eta \to 3\pi$, $D \to K^- \pi^+ \pi^+$.

• The amplitude of the "induced" isobars are given by the loop integral and primary coupling. No new parameters appear.

Triangle singularity on Dalitz plot

The properties of triangle loop diagram were studied extensively in past.

- Diverges $\sim \log(s s_b)$ at one point. s_b dependents on all 5 invariants.
- Coleman-Norton theorem, i.e. "catch up" condition is satisfied at *s*_b.

$$\begin{aligned} A(s_0, s_1, s_2) &= g^3 \int \frac{d^4 k_1}{(2\pi)^4 i} \frac{1}{\Delta_1 \Delta_2 \Delta_3} = \frac{g^3}{16\pi^2} \int_0^1 \frac{\mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z}{D} \delta(1 - x - y - z), \\ \Delta_i &= m_i^2 - k_i^2, \quad D = x \, m_1^2 + y \, m_2^2 + z \, m_3^2 - x \, y \, s_0 - z \, x \, s_1 - y \, z \, s_2. \end{aligned}$$

- On the border of Dalitz plot the momenta are aligned, Particles are on mass shell.
- \Rightarrow singularity in s_{23} for fixed s_0 .

a1(1420) puzzle

$a_1(1420)$ phenomenon - $1^{++}0^+f_0(980)\pi P$ -wave

M. Mikhasenko (HISKP)

Beyond the Isobar Model

The interpretations of $a_1(1420)$

- 4-quark state candidate [Hua-Xing Chen et al., arXiv:1503.02597], [Zhi-Gang Wang, arXiv:1401.1134].
- K*K molecule (similar to XYZ interpretation)
- Dynamic effect of interference with Deck [Basdevant et al., arXiv:1501.04643] .
- Triangle singularity [Mikhasenko et al., Phys. Rev. D91, 094015 (2015)] :

final state rescattering of almost real particles. Logarithmic singularity in the amplitude of the processes:

For the realistic decay, the amplitude is similar to the scalar case.

- Spin-Parity of particles.
- Width of K^*

If one fixes mass of f_0 , i.e. $p_{f_0}^2 = m_{f_0}^2$, then only $p_0^2 = s$ is variable.

M. Mikhasenko (HISKP)

For the realistic decay, the amplitude is similar to the scalar case.

- Spin-Parity of particles.
- Width of K^*

If one fixes mass of f_0 , i.e. $p_{f_0}^2 = m_{f_0}^2$, then only $p_0^2 = s$ is variable.

M. Mikhasenko (HISKP)

For the realistic decay, the amplitude is similar to the scalar case.

- Spin-Parity of particles.
- Width of K^*

If one fixes mass of f_0 , i.e. $p_{f_0}^2 = m_{f_0}^2$, then only $p_0^2 = s$ is variable.

M. Mikhasenko (HISKP)

For the realistic decay, the amplitude is similar to the scalar case.

- Spin-Parity of particles.
- Width of K^*

If one fixes mass of f_0 , i.e. $p_{f_0}^2 = m_{f_0}^2$, then only $p_0^2 = s$ is variable.

M. Mikhasenko (HISKP)

For the realistic decay, the amplitude is similar to the scalar case.

- Spin-Parity of particles.
- Width of K^*

If one fixes mass of f_0 , i.e. $p_{f_0}^2 = m_{f_0}^2$, then only $p_0^2 = s$ is variable.

M. Mikhasenko (HISKP)

For the realistic decay, the amplitude is similar to the scalar case.

- Spin-Parity of particles.
- Width of K^*

If one fixes mass of f_0 , i.e. $p_{f_0}^2 = m_{f_0}^2$, then only $p_0^2 = s$ is variable.

M. Mikhasenko (HISKP)

Beyond the Isobar Model

For the realistic decay, the amplitude is similar to the scalar case.

- Spin-Parity of particles.
- Width of K^*

If one fixes mass of f_0 , i.e. $p_{f_0}^2 = m_{f_0}^2$, then only $p_0^2 = s$ is variable.

M. Mikhasenko (HISKP)

For the realistic decay, the amplitude is similar to the scalar case.

- Spin-Parity of particles.
- Width of K^*

If one fixes mass of f_0 , i.e. $p_{f_0}^2 = m_{f_0}^2$, then only $p_0^2 = s$ is variable.

M. Mikhasenko (HISKP)

For the realistic decay, the amplitude is similar to the scalar case.

- Spin-Parity of particles.
- Width of K^*

If one fixes mass of f_0 , i.e. $p_{f_0}^2 = m_{f_0}^2$, then only $p_0^2 = s$ is variable.

M. Mikhasenko (HISKP)

For the realistic decay, the amplitude is similar to the scalar case.

- Spin-Parity of particles.
- Width of K^*

If one fixes mass of f_0 , i.e. $p_{f_0}^2 = m_{f_0}^2$, then only $p_0^2 = s$ is variable.

M. Mikhasenko (HISKP)

For the realistic decay, the amplitude is similar to the scalar case.

- Spin-Parity of particles.
- Width of K^*

If one fixes mass of f_0 , i.e. $p_{f_0}^2 = m_{f_0}^2$, then only $p_0^2 = s$ is variable.

M. Mikhasenko (HISKP)

For the realistic decay, the amplitude is similar to the scalar case.

- Spin-Parity of particles.
- Width of K^*

If one fixes mass of f_0 , i.e. $p_{f_0}^2 = m_{f_0}^2$, then only $p_0^2 = s$ is variable.

M. Mikhasenko (HISKP)

For the realistic decay, the amplitude is similar to the scalar case.

- Spin-Parity of particles.
- Width of K^*

If one fixes mass of f_0 , i.e. $p_{f_0}^2 = m_{f_0}^2$, then only $p_0^2 = s$ is variable.

M. Mikhasenko (HISKP)

For the realistic decay, the amplitude is similar to the scalar case.

- Spin-Parity of particles.
- Width of K^*

If one fixes mass of f_0 , i.e. $p_{f_0}^2 = m_{f_0}^2$, then only $p_0^2 = s$ is variable.

M. Mikhasenko (HISKP)

For the realistic decay, the amplitude is similar to the scalar case.

- Spin-Parity of particles.
- Width of K^*

If one fixes mass of f_0 , i.e. $p_{f_0}^2 = m_{f_0}^2$, then only $p_0^2 = s$ is variable.

M. Mikhasenko (HISKP)

For the realistic decay, the amplitude is similar to the scalar case.

- Spin-Parity of particles.
- Width of K^*

If one fixes mass of f_0 , i.e. $p_{f_0}^2 = m_{f_0}^2$, then only $p_0^2 = s$ is variable.

M. Mikhasenko (HISKP)

For the realistic decay, the amplitude is similar to the scalar case.

- Spin-Parity of particles.
- Width of K^*

If one fixes mass of f_0 , i.e. $p_{f_0}^2 = m_{f_0}^2$, then only $p_0^2 = s$ is variable.

M. Mikhasenko (HISKP)

For the realistic decay, the amplitude is similar to the scalar case.

- Spin-Parity of particles.
- Width of K^*

If one fixes mass of f_0 , i.e. $p_{f_0}^2 = m_{f_0}^2$, then only $p_0^2 = s$ is variable.

M. Mikhasenko (HISKP)

Fit with one triangle amplitude

LHCb analysis and observation of $J/\Psi p$ peak

An extensive analysis has been done. Several isobar $\Lambda(\Sigma)$ with different LS couplings (up to 6) were used in K p channel and the model is not able to reproduce the peak in $J/\Psi p$ projection.

[LHCb collaboration. Phys. Lett. (2015)]

Relevant thresholds

• [F.K. Guo, U.-G. Meissner et al, arXiv: 1507.04950]

- [X.-H. Liu, Q. Wang *et al*, arXiv: 1507.05359]
- [M. Mikhasenko, arXiv: 1507.06552]

Mass distribution

Calculate amplitudes for the processes:

- $\Lambda_b o D_{sJ}(2860) \Lambda_c(2593) o K^- \, ar D^0 \Lambda_c o K^- \, J/\Psi \,
 ho$,
- $\Lambda_b \to D_{sJ}(3040) \, \Sigma_c^+(2455) \to K^- \, \bar{D}^{\star 0}(2007) \, \Sigma_c^+ \to K^- \, J/\Psi \, p$,
- $\Lambda_b \rightarrow \Lambda(1890) \chi_{c1} \rightarrow K^- p \chi_{c1} \rightarrow K^- J/\Psi p.$

M. Mikhasenko (HISKP)

Beyond the Isobar Model

Conclusions

- The isobar model is often a good approximation, while in special cases it may lead to the incorrect interpretation.
- The final state interaction in the system of three particles can produce an enhancement in the Dalitz plot. The effect of the singularity in the triangle diagram appears as a **peak** with a noticeable **phase motion**. (Possibly, it can explain several XYZ states, pentaquarks candidates).
- The rescattering processes in coupled channel system cause a migration between the systems changing the three-body dynamics. (likely *a*₁(1420) is an example)
- The rescattering series can be taking into account while the two-body interaction is assumed to be known.

Ongoing studies:

- The general case of the Khuri-Treiman equations (arbitrary quantum numbers), KTA-PWA.
- The rescattering equations for coupled channel problem in application to $\pi\pi\pi/\pi KK$ systems.

Backup slides

$a_1(1420)$

The pinch singularity

Beyond the Isobar Model

Further corrections to the amplitude

 $K^{\star}(892) \rightarrow K\pi$, *P*-wave decay gives tail to the amplitude. A left-hand singularity is introduced to correct the amplitude $g_{K^{\star}K\pi} \rightarrow g_{K^{\star}K\pi} \times F(k_1)$. k_1 is K^{\star} four-momentum.

$$F(k_1) = rac{M^2 - m_{K^\star}^2}{M^2 - k_1^2}, \quad M^2 = (m_\pi + m_K)^2 - rac{4}{R^2} \; .$$

M is position of the left singularity, it corresponds to the size of *K*^{*}: $F \approx (1 + R^2 |\vec{p_0}|^2)/(1 + R^2 |\vec{p}|^2)$. $|\vec{p}|$ is $K^* \to K\pi$ break up momentum.

a₁(1420)

Fit with a Breit-Wigner signal

KT: Basic idea

• Amplitude for every sub-channel is the sum of "isobars".

$$A(s,t,u) = A^{(s)} + A^{(t)} + A^{(u)}, \quad A^{(s)}(s,t,u) = \sum a_l^{(s)} P_l(z_s)$$

 Two contributions to the projection on the partial sub-channel amplitude.

$$f_l^{(s)} = \underbrace{a_l^{(s)}}_{\text{isobar}} + \underbrace{b_l^{(s)}}_{\text{projections}} \quad A(s, t, u) = \sum f_l^{(s)} P_l(z_s)$$

• The projections to the sub-channel from cross sub-channels.

$$b_l^{(s)} = \int \mathrm{d}z_s \left[A^{(t)} + A^{(u)} \right] P_l(z_s)$$

• Unitarity consistency equation.

$$a_l^{(s)} = \underbrace{t_l^{(s)}}_{\text{2b. interaction}} \left(c^{(s)} + \frac{1}{\pi} \int \mathrm{d}s' \, \frac{b_l^{(s)}(s')\rho^{(s)}(s')}{s' - s} \right)$$

M. Mikhasenko (HISKP)

KT: solution of equation

We have integral equations for $b_l^{(i)}$, $i \in \{s, t, u\}$. All sub-channels are coupled.

$$\begin{pmatrix} b_l^{(s)} \\ \vdots \\ b_l^{(t)} \\ \vdots \\ b_l^{(u)} \end{pmatrix} = L \times \begin{pmatrix} c_l^{(s)} \\ \vdots \\ c_l^{(t)} \\ \vdots \\ c_l^{(u)} \end{pmatrix} + \underbrace{\hat{\mathcal{K}}}_{\text{int.op.}} \begin{pmatrix} b_l^{(s)} \\ \vdots \\ b_l^{(t)} \\ \vdots \\ b_l^{(u)} \end{pmatrix}$$

If we solve it then our corrected isobar amplitude is

٠

KT equations

KT: Input and output

Input

- fixed number of channel(s,t,u) and partial waves l = 0, 1, 2;
- elastic two body interaction $t_{i}^{(j)}$ parameterizated by
 - a phase shift (Omnés approach),
 - a pole position (Breit-Wigner approach);
- couplings as parameters $c_i^{(j)}$

Output: corrected isobar amplitudes $a_{i}^{(j)}$.

$$A(s,t,u) = A^{(s)} + A^{(t)} + A^{(u)}, \quad A^{(s)}(s,t,u) = \sum a_l^{(s)} P_l(z_s)$$

 \Rightarrow for every set of parameters need to solve integral equations. (Every step of the fit) Not good. Too slow.

Pentaquark Dalitz plot

