Symmetry unrestricted Skyrme mean-field study of heavy nuclei

Wouter Ryssens*, M. Bender[†] & P.-H. Heenen*

Université Libre de Bruxelles*, IPN Lyon[†]

Summary

- 1 Density Functional Theory
- 2 SLy5sX Functionals
- 3 Symmetries Rotational Symmetry Parity
- 4 Fission of ²²⁶Ra with the Sly5sX
- 5 Conclusion

The nuclear landscape

Figure from G.F. Bertsch et al., SciDAC Review 6, 48 (2007).

Ξ

500

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・

 $\Psi_{many-body} = \mathsf{Slater} \; \mathsf{Determinant}$

 $\Psi_{many-body} = \mathsf{Slater} \; \mathsf{Determinant}$

$$\psi_i(\vec{r}), i = 1, \dots, A$$

 $\Psi_{many-body} = \text{Slater Determinant}$ $\rho(\vec{r}), \tau(\vec{r}), \dots$ $\psi_i(\vec{r}), i = 1, \dots, A$

$$E(\rho) = E_{kinetic} + E_{Coulomb} + E_{Skyrme} + E_{pairing}$$

$$E(\rho) = E_{kinetic} + E_{Coulomb} + E_{Skyrme} + E_{pairing}$$

•
$$E_{kinetic} = \frac{\hbar^2}{2m_n} \int d\vec{r} \,\tau(\vec{r})$$

$$E(\rho) = E_{kinetic} + E_{Coulomb} + E_{Skyrme} + E_{pairing}$$

•
$$E_{kinetic} = \frac{\hbar^2}{2m_n} \int d\vec{r} \,\tau(\vec{r})$$

• $E_{Coulomb}$ is the Coulomb field from a density $\rho_p(\vec{r})$

$$E(\rho) = E_{kinetic} + E_{Coulomb} + E_{Skyrme} + E_{pairing}$$

•
$$E_{kinetic} = \frac{\hbar^2}{2m_n} \int d\vec{r} \,\tau(\vec{r})$$

• $E_{Coulomb}$ is the Coulomb field from a density $\rho_p(\vec{r})$

•
$$E_{Skyrme} = \int d\vec{r} b_1 \rho^2(\vec{r}) + \dots$$

$$E(\rho) = E_{kinetic} + E_{Coulomb} + E_{Skyrme} + E_{pairing}$$

•
$$E_{kinetic} = \frac{\hbar^2}{2m_n} \int d\vec{r} \,\tau(\vec{r})$$

• $E_{Coulomb}$ is the Coulomb field from a density $\rho_p(\vec{r})$

•
$$E_{Skyrme} = \int d\vec{r} b_1 \rho^2(\vec{r}) + \dots$$

• $E_{pairing}$ via full-fledged HF-Bogoliubov

$$E(\rho) = E_{kinetic} + E_{Coulomb} + E_{Skyrme} + E_{pairing}$$

•
$$E_{kinetic} = \frac{\hbar^2}{2m_n} \int d\vec{r} \,\tau(\vec{r})$$

• $E_{Coulomb}$ is the Coulomb field from a density $\rho_p(\vec{r})$

•
$$E_{Skyrme} = \int d\vec{r} b_1 \rho^2(\vec{r}) + \dots$$

- $E_{pairing}$ via full-fledged HF-Bogoliubov
- (\approx) 10 parameters

$$E(\rho) = E_{kinetic} + E_{Coulomb} + E_{Skyrme} + E_{pairing}$$

•
$$E_{kinetic} = \frac{\hbar^2}{2m_n} \int d\vec{r} \,\tau(\vec{r})$$

• $E_{Coulomb}$ is the Coulomb field from a density $\rho_p(\vec{r})$

•
$$E_{Skyrme} = \int d\vec{r} b_1 \rho^2(\vec{r}) + \dots$$

- $E_{pairing}$ via full-fledged HF-Bogoliubov
- (\approx) 10 parameters
- fitted on doubly-magic binding energies and charge radii

The Sly5sX family

- General EDF
- Widely used and succesful
- Rather bad at fission
- Unsafe to use! (2011)
- E. Chabanat et al., Nucl. Phys. A. 635 (1998)

The Sly5sX family

- General EDF
- Widely used and succesful
- Rather bad at fission
- Unsafe to use! (2011)
- E. Chabanat et al., Nucl. Phys. A. 635 (1998)

- Refit of SLy5
- Similar properties
- Safe!
- Even worse at fission ... A. Pastore *et al.*, Phys. Scr. T154, 014014 (2013)

The Sly5sX family

Symmetries

#{Symmetric Slater Determinants} \leq #{Asymmetric Slater Determinants}

Symmetries

Rotational Symmetry

Rotational Symmetry

Rotational Symmetry

< □ > < 同 >

Figure from M. Bender et al., PRC 69, 064303 (2004)

Parity

Parity

Deformation of ²²⁶Ra

Fission Barriers

Fission Barriers

Fission Barriers

Conclusion

Density Functional Theory

- Tool to study the entirety of the nuclear chart.
- Symmetry breaking is essential to capture the physics.

Conclusion

Density Functional Theory

- Tool to study the entirety of the nuclear chart.
- Symmetry breaking is essential to capture the physics.

What is new?

- Possibility of breaking all discrete symmetries
- Generalized pairing (HFB) calculations.
- Controllable a_s for improved description of fission (with stable functionals).

Prospects

In progress/Immediate future:

- Rotational bands in parity broken nuclei,
- Parity broken odd nuclei.

Prospects

In progress/Immediate future:

- Rotational bands in parity broken nuclei,
- Parity broken odd nuclei.

Long-term future:

- Restoration of broken symmetries
- Investigation of nuclear Schiff moment.

Thanks!

Thanks to my collaborators:

- P.-H. Heenen (ULB)
- M. Bender (IPNL)
- K. Bennaceur (IPNL & Jyväskylä)

Figure from M. Kortelainen et al., Phys. Rev. C 85, 024304

Form of SLy5sX

$$E(\rho,\tau,\vec{j},J_{\mu\nu},\vec{s},\vec{T})_{T=0} = b_1\rho^2 + b_3(\rho\tau - \vec{j}^2) + b_5\rho\Delta\rho + b_7\rho^{2+\alpha} + b_9(\rho\nabla\vec{J} + \vec{j}\cdot\nabla\times\vec{s}) + b_{10}\vec{s}^2 + b_{12}\rho^{\alpha}\vec{s^2} + b_{14}\left(\sum_{\mu\nu}J_{\mu\nu}J_{\mu\nu} - \vec{s}\cdot\vec{T}\right) + b_{18}\vec{s}\cdot\Delta\vec{s} + b_{20}(\nabla\cdot\vec{s})^2$$

Mesh calculations

