EXPERIMENTS WITH INTERNAL TARGETS AT THE MAINZ ENERGY-RECOVERING SUPERCONDUCTING ACCELERATOR

Harald Merkel Johannes Gutenberg-Universität Mainz

54th International Winter Meeting on Nuclear Physics Bormio (Italy), January 27th, 2016

• The MESA Accelerator

- MAGIX
 - High resolution magnetic spectrometers
 - Internal targets: Gas Jet Target or Polarized Target
- Physics program
 - ► Magnetic radius of the proton
 - Astropyhsical S-Factor
 - ► Few body physics
 - Search for exotic particles
- Summary

MESA - Mainz Energy Recovery Superconducing Acclerator

- Super-conducting, recirculating LINAC
- Energy of up to 155 MeV
- Operation for external targets, 1 mA, polarized beam
- Operation in ENERGY RECOVERY MODE (up to 105 MeV)
 - ▶ Recirculating with $\lambda/2$ phase shift in last return path
 - ► Deceleration in cavities recovers energy from the beam
 - \Rightarrow High beam current (up to 10 mA)
 - ► Large fraction of the beam can be used for an INTERNAL TARGET

...funded, under construction!

Using the full power of the MESA beam quality

Beam intensity

 \Rightarrow High count rate capability (MHz)

Nuclear Physics: Separate energy levels at 100 MeV at 100keV distance

 \Rightarrow momentum resolution $\frac{\delta p}{p} < 10^{-4}$

 Precision measurement of electron scattering cross sections proportional to Mott cross section

$$\frac{d\sigma}{d\Omega} \approx \frac{1}{Q^4} \approx \frac{1}{\sin^4 \theta/2}$$

 \Rightarrow angular resolution $\delta \theta < 0.05^{\circ}$

- Low energetic particles (e, p, below π threshold)
 - Negligible energy loss in window-less gas target
 - Vacuum until first detector layer
 - Excellent position detection in first layer, modest angular detection later

 \Rightarrow Focussing spectrometers

Magix - Optics

Magix

Magix - Targets

- 1. Polarized Target
 - Polarized Hydrogen target
 - Flow is limited by polarizator (Laser driven/Atomic beam)
 - Luminosities of up to $L = 2 \times 10^{31} \,\mathrm{s}^{-1} \mathrm{cm}^{-2}$
 - Polarization $|\vec{P}_e| \approx 80\%$

- 2. Gas Jet Target
 - Hypersonic gas jet by Laval nozzle
 - Gas jet caught
 - Expensive part: Pumping system $mbar \rightarrow 10^{-11} mbar$
 - Beam quality: narrow flow delimiters
 - Luminosities of up to $L = 10^{36} \text{ s}^{-1} \text{ cm}^{-2}$ at 10 mA

Physics Program at Magix

Physics Program to employ the strenghtes of MESA and Magix

- High beam intensity \leftrightarrow low target density
- Excellent beam quality \Rightarrow Precision physics
- High degree of beam/target polarization
- Tuneable to very low energies

Selected Examples:

- Magnetic Radius
- Tests of ab-initio Calulations in Few-Body Physics
- Astrophysical S-Factors
- Search for exotic particles:
 - Search for Dark Photons
 - Invisible Decay of Dark Photons
 - Dark matter beam

Magnetic Radius from limit $Q^2
ightarrow 0$

• Suppressed by $au = rac{Q^2}{4m_p^2}$ in cross section

$$\frac{d\sigma}{d\Omega_e} = \left(\frac{d\sigma}{d\Omega_e}\right)_{\text{Mott}} \frac{1}{\epsilon(1+\tau)} \left[\epsilon G_E^2(Q^2) + \tau G_M^2(Q^2)\right]$$

- Beam-Recoil polarization is limited by proton recoil momentum $|\vec{p}_p| > 300 \frac{\text{MeV}}{c}$
- Beam-Target polarization:

$$A(\theta^*, \phi^*) = A_I \sin \theta^* \cos \phi^* + A_S \cos \theta^*$$

$$A_I = -2 \sqrt{\tau(1+\tau)} \tan \frac{\theta}{2} \frac{G_E G_M}{G_E^2 + (\tau + 2\tau(1+\tau)\tan^2\frac{\theta}{2}) G_M^2}$$

$$A_S = -2 \tau \sqrt{1+\tau + (1+\tau)^2 \tan^2\frac{\theta}{2}} \tan \frac{\theta}{2} \frac{G_M^2}{G_E^2 + (\tau + 2\tau(1+\tau)\tan^2\frac{\theta}{2}) G_M^2}$$

$$\phi^* = 0$$

$$\theta^* = 0, \frac{\pi}{2} \right\} \Rightarrow A_\perp = \frac{A_I}{A_s} \sim \frac{G_E}{G_M}$$

- (Conservative) assumptions for target \approx Blast target
- Statistical error only (systematic error should be small!)

Magnetic Radius of the Proton - Errors

- Ab initio calculations e.g. with Effective Field Theory
- Consistent chiral expansion of elementary NN-interaction

- Consistent expansion of Few-Body-Systems
- Very promising, but

How can we test this?

• Challenge for theory: Reaction dynamics

Possible solution:

- ► Use EFT input for potentials
- ► Faddeev Calculations for dynamics (J. Golak, H. Witała, ...)
- Prediction of dynamic observables
- Promising: Polarization observables
- Challenge for experiments: Low Momentum Region

Needed:

- High resolution (separate excited states!)
- Low momentum (use gas targets!)
- High luminosity (in spite of gas target!)
- High degrees of beam and target polarization (in spite of high luminosity!)

\Rightarrow Magix @ MESA

Astrophysical S-Factor for $\alpha({}^{12}C, {}^{16}O)\gamma$

How to overcome limits:

1. Timereversal (enhancement by factor 10 due to spin weight):

$$\gamma + {}^{16}O \rightarrow {}^{12}C + \alpha$$

2. Covering the Threshold: Electroproduction in limit $Q^2 \rightarrow 0$

$$e^{+16}O \rightarrow e'^{+12}C + \alpha \quad \Leftrightarrow \quad \gamma^* + {}^{16}O \rightarrow {}^{12}C + \alpha$$

Electron has large momentum, but virtual photon energy goes to zero!

3. Detection of slow recoil $\alpha \Rightarrow$ gas target, recoil detector

Search for exotic particles: Dark Photons

- Dark photon: Force carrier of the Dark Sector
- Radiative production

Direct detection experiments:

- No clear signal yet
- Limit of sensitivity (solar v background) will be reached soon
- Lower masses (*i.e.* low recoil energy) not accessible

• Production in beam dump, *e.g.* via pair production

- We now have a Dark Matter Beam!
- Dark Matter particles have enough recoil energy!
- Detection with simple detector, e.g. scintillator cube
- ... or with sophisticated DM Detector ...

- Neutrons can be shielded
- Below pion threshold: negligible ν background
- Clean conditions, detailed layout of hall needed for further design

- Reasonable sensitivity for low mass region
- Multidimensional plot: Assumptions for dark photon mass, m_{χ}

Calculations: G. Krnjaic

Summary

MESA:

- High beam current in Energy Recovery mode
- Excellent beam quality

MAGIX:

- High Resolution Spectrometers
- High density or high polarization internal target
- Multi-purpose setup for precision physics

Physics Program

- Precision form factors: Magnetic Radius of the Proton
- Nuclear Astrophysics: S-Factor measurements
- Few-Body physics
- Search for exotic particles
- ... Contributions from other groups are welcome!