The study of nuclear structure far from stability

Pierre Capel

ECOLE BriX -
1 POLYTECHNIQUE
DE BRUXELLES

24 January 2016



Introduction
Stable nuclei are qualitatively described by “simple” models

@ (semi-empirical) liquid-drop model
@ (basic) shell model
New techniques enable ab-initio methods (A-body models)
What happens far from stability ?
Experimentally, Radioactive-lon Beams (RIB) available since 80s

= study of structure far from stability
= discovery of exotic structures

@ super-heavy elements
@ halo nuclei
@ shell inversions
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@ Basic features in nuclear structure
@ Liquid-drop model
@ Shell model

@ Ab-initio nuclear models

© Superheavy nuclei

@ Radioactive-lon Beams

© Oddities far from stability : halo nuclei

@ Experimental techniques
@ Knockout reactions
@ In-beam y spectroscopy
@ Transfer reactions

@ Summary



Basic features in nuclear structure Liquid-drop model

Charge distributions in (stable) nuclei
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e constant density p, out to the surface (saturation)
@ same skin thickness ¢

(Stable) nuclei look like liquid drops of radius R « A!/?



Basic features in nuclear structure Liquid-drop model

Liquid-drop model

Bethe-Weizsacker semi-empirical mass formula

B(Z,N) = a,A
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Basic features in nuclear structure Liquid-drop model

Liquid-drop model
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Basic features in nuclear structure Liquid-drop model

Liquid-drop model

Bethe-Weizsacker semi-empirical mass formula

B(Z,N) = a,A — a,A*"> — ac
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Basic features in nuclear structure Liquid-drop model

Liquid-drop model

Bethe-Weizsacker semi-empirical mass formula

Z(Z-1) (A -27)?
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B(Z,N) = a,A — a,A*> — ac
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Basic features in nuclear structure Liquid-drop model

Liquid-drop model
Bethe-Weizsacker semi-empirical mass formula
Z(Z-1) (A —2Z)*

B(Z, N) = avA - aSA2/3 - QCT — dsym A

Exoenergetic reactions :
e fission of heavy nuclei
(nuclear power plants,
atomic bomb)

e fusion of light nuclei
(stars, thermonuclear

weapons) o
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Basic features in nuclear structure Liquid-drop model

Variation from the semi-empirical mass formula

S. E. Mass Formula

- M(call (MeV)

M(exp)
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S. E. Mass Formula

More bound systems at Z or N = 2,8, 28,50, 82,126

magic numbers
= shell structure in nuclei as in atoms ?



Basic features in nuclear structure Shell model

Two-nucleon separation energy '
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Basic features in nuclear structure Shell model

Shell model

Developed in 1949 by M. Goeppert Mayer, H. Jensen and E. Wigner

As electrons in atoms,
nucleons in nuclei

feel a mean field

and arrange into shells

Spin-orbit coupling is crucial
to get right ordering of shells

Further splitting ~ Multiplicity —
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Basic features in nuclear structure Shell model

Example
Shell model explains the higher stability at some Z and N

It predicts the spin and parity of ground state of most nuclei
and some of their excited levels, e.g. 'O and '"F

32+
3/2-

§—

o 52~

3 12~

E (MeV)

2

= w2+

o= 52+

17,
809 Fs

Confirmed within coupled-cluster calculation
[G. Hagen et al. PRL 104, 182501 (2010)]
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Basic features in nuclear structure Shell model

Nowadays
Can we go beyond these models ?

Can we build ab-initio models ?
i.e. based on first principles

@ nucleons as building blocks
e realistic N-N interaction

What happens away from stability ?
@ Is there an island of stability for heavy nuclei ?

@ Is nuclear density similar for radioactive nuclei ?
@ Are magic numbers conserved ?
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Ab-initio nuclear models

@ Ab-initio nuclear models
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Ab-initio nuclear models

A-body Hamiltonian
Nuclear-structure calculations : A nucleons (Z protons+N neutrons)

Relative motion described by the A-body Hamiltonian
A A
H = Z T; + Z V,‘j
i=1 j>i=1
= solve the A-body Schrédinger equation

{E,} is the nucleus spectrum
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Realistic N-N interactions

V;; not (yet) deduced from QCD
= phenomenological potentials
fitted on N-N observables :

d binding energy,

N-N phaseshifts
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Realistic N-N interactions

a 300 TrTrTIEgrrrrprrrryp vy err T ey
V;; not (yet) deduced from QCD 'S, channel |
= phenomenological potentials ~  t ]
fitted on N-N observables : B | | ]
d binding energy, E I P
N-N phaseshifts z ! ! ]
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Ab-initio nuclear models

Light nuclei calculations
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Ab-initio nuclear models

Three-body force
Need three-body forces to get it right. .

H= ZT+ZV’J+ Z Vi + -+

Jj>i=1 k> j>i=1

But there is no such thlng as three-body force. ..
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Ab-initio nuclear models

Three-body force
Need three-body forces to get it right. .

H= ZT+ZV,J+ Z Vi + -

Jj>i=1 k> j>i=1
But there is no such thlng as three-body force. ..

They simulate the non-elementary character of nucleons
= include virtual A resonances, N...

Phenomenological 3-body interaction fitted on A > 2 levels : IL2
Alternatively, derived from EFT
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Ab-initio nuclear models

Effective Field Theory
EFT is an effective quantum field theory based on QCD symmetries
with resolution scale A that selects appropriate degrees of freedom :

nuclear physics is not built on quarks and gluons,
but on nucleons and mesons

EFT provides the nuclear force with a systematic expansion in Q/A
@ gives an estimate of theoretical uncertainty
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Ab-initio nuclear models

Effective Field Theory
EFT is an effective quantum field theory based on QCD symmetries
with resolution scale A that selects appropriate degrees of freedom :

nuclear physics is not built on quarks and gluons,
but on nucleons and mesons

EFT provides the nuclear force with a systematic expansion in Q/A
@ gives an estimate of theoretical uncertainty
e naturally includes many-body forces

[see G. Hagen’s talk on Wednesday morning
and J. Holt on Tuesday afternoon]
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Expansion of the EFT force
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Solving the Schrédinger equation
Y usually developed on a basis {|®y,)} :

W) = D (@ P,) D)

[v]
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Ab-initio nuclear models

Solving the Schrédinger equation

HY,) = E,|¥,)

¥ usually developed on a basis {|®y,)} :
W) = D (@ P,) D)

v]
Solving the Schrédinger equation reduces to matrix diagonalisation

(O|HIY,) = Z<<I>MIHI®[v]><®[V]I‘I’n>
[v]
= E, <q)[/1]|\Pn>
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Ab-initio nuclear models

No-core shell model
Slater determinants of 1-body mean-field wave functions ¢,

(€162 ... EalD@p)) = A by, (61) 1,(£2) - . - by, (E4)
But short-range correlations couple low and high momenta
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Ab-initio nuclear models

No-core shell model

Slater determinants of 1-body mean-field wave functions ¢,,
<§1§2 o é‘:Al(D[v]) =A ¢v1(§1) ¢v2('52) e ¢VA(§A)

But short-range correlations couple low and high momenta
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Ab-initio nuclear models

Similarity Renormalisation Group
Idea : apply a unitary transformation
|CI)[V]> = U|CD[V]>
© Hg = U'HU
@ keeps the same spectrum (unitary)

@ keeps the same on-shell properties
(phaseshifts)

e removes the short-range correlations
This has a costs : induces “unphysical” three-body forces
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Ab-initio nuclear models

SRG : example on “He
SRG lowers correlations

2
0 ¢ [fm™]

(@) Vavis. (b) Vsre.-
[see G. Hagen’s talk on Wednesday morning
and J. Holt on Tuesday afternoon]

! q'“ [fm™"]
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Ab-initio nuclear models

SRG : example on “He
SRG lowers correlations = fastens convergence

a —26_

L N N N L N
oo bare (36)
s—a LS (36)
oo LS (28)
44 SRG (2.0/36)|

v SRG (2.0/28)|
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(@) Vavis. (b) Vsre.-
[see G. Hagen’s talk on Wednesday morning
and J. Holt on Tuesday afternoon]
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Ab-initio nuclear models

What happens far from stability ?

Liquid-drop and shell models are fair models of stable nuclei

What happens away from stability ?

Are there superheavy nuclei?  Recent discovery of new elements

(Z=113,115,117,and 118)

In 80s Radioactive-lon Beams were developed

Enable study of nuclear structure [see A. Obertelli’'s talk on Friday]
e are radioactive nuclei compact ?

e are shells conserved far from stability ?
Reactions involving radioactive nuclei useful in astrophysics
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Superheavy nuclei

© Superheavy nuclei
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Superheavy nuclei

Superheavy nuclei
Does the stability end with U ? Or is there an island of stability ?
Is Z ~ 114 — 126 a new magic number ?

120 p Island of Stability
2
§
€ 110p
c
L . -
° Peninsula :
Q
100 b Superheavy
Elements

Actinides
90 b Continent

Sea of Instability
80 p

 Stable elements

70 0
100 110 120 130 140 150 160 170 180 190
neutron number

[Oganessian Rad. Act. 99, 429 (2011)]
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Superheavy nuclei

Synthesis of Super Heavy Elements

Search elements heavier than U has started in the 40’s

Pu produced by U+d and U+n (identified by Seaborg in 1941)
High flux of n on U or Pu — ;ooFm

Z = 101-106 obtained by bombarding actinides by light elements

Heavier elements (Z = 107-113) by cold fusion
208Pp or 2°Bi + massive projectile (A > 50) — high Z + n

Nowadays, hot fusion : “*Ca on actinide target — SHE + 4-5 n
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Superheavy nuclei

Synthesis of Super Heavy Elements
Heavier elements (Z = 107-113) by cold fusion
208Pp or 2Bi + massive projectile (A > 50) — high Z + n

Nowadays, hot fusion : **Ca on actinide target — SHE + 4-5n
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Superheavy nuclei

Synthesis of Super Heavy Elements
Heavier elements (Z = 107-113) by cold fusion
208Pp or 2°Bi + massive projectile (A > 50) — high Z + n

Nowadays, hot fusion : **Ca on actinide target — SHE + 4-5n
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Synthesis of Super Heavy Elements

Nowadays, hot fusion : “*Ca on actinide target — SHE + 4-5n

Z =113, 115, 117, and 118 recently recognised by IUPAC

proton number

L1 L1 AT T T T T T YT Y T R
120 m
249¢£,48¢q 249pK+48¢q
118 | 245Cm+48ca z-118 [ 248¢m+48ca
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[Oganessian Rad. Act. 99, 429 (2011)]
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Superheavy nuclei

|dentification by a decay chain

293 297
17 117
04
289 11.03(8) MeV
% 115 21 ms
285 | 10.31(9) MeV
0 113 0.32s
9.74(8) MeV
28;* 9.48((1 1)) MeV
9 385
Fy Fp

[Oganessian Rad. Act. 99, 429 (2011)]
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Radioactive-lon Beams

@ Radioactive-lon Beams
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Radioactive-lon Beams

How ?
Idea : break a heavy nuclei into pieces to produce exotic isotopes
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Radioactive-lon Beams

How ?
Idea : break a heavy nuclei into pieces to produce exotic isotopes
e ISOL : Fire a proton at a heavy nucleus

29/55



Radioactive-lon Beams

How ?
Idea : break a heavy nuclei into pieces to produce exotic isotopes
e ISOL : Fire a proton at a heavy nucleus
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Where ?
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ISOL : Isotope Separatlon On Line

len source
{

\_ Post-accelerator
' =

Sy _X Radioactive
ion beam

Isotope separator

high-energy/intensity primary beam of light nuclei (e.g. protons)
on thick target of heavy elements (Ta or UC,)
= spallation/fragmentation produces exotic fragments
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ISOL : Isotope Separation On Line

Isotope separator

| = ‘+
p \\\A Radioactive
ion beam

high-energy/intensity primary beam of light nuclei (e.g. protons)
on thick target of heavy elements (Ta or UC,)

= spallation/fragmentation produces exotic fragments

Diffuse in the target and effuse to an ion source
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ISOL : Isotope Separation On Line

lon source

‘__& Radioactive
ion beam

Isotope separator

high-energy/intensity primary beam of light nuclei (e.g. protons)
on thick target of heavy elements (Ta or UC,)

= spallation/fragmentation produces exotic fragments

Diffuse in the target and effuse to an ion source

Then selected using dipole magnet (A/Q)
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Radioactive-lon Beams

ISOL : Isotope Separation On Line

Prln:‘j
bs
i WSOL

o/|| lon source _
/ 2

.\_ Postacceleratar e

Radlicactive
=
7 ion beam

Isotope separator

high-energy/intensity primary beam of light nuclei (e.g. protons)
on thick target of heavy elements (Ta or UC,)

= spallation/fragmentation produces exotic fragments

Diffuse in the target and effuse to an ion source

Then selected using dipole magnet (A/Q)

Either used directly (mass measurement, radioactive decay...)
or post-accelerated for reactions (e.g. astrophysical energy)
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Radioactive-lon Beams

ISOL : Isotope Separation On Line

PFII’Y: L
bea 1 |
I Thick & hettarget S O
. lon source
< y
—

\. Post- acce\emmr =

“A Radioactive
ion beam

Isotope separator

high-energy/intensity primary beam of light nuclei (e.g. protons)
on thick target of heavy elements (Ta or UC,)

= spallation/fragmentation produces exotic fragments

Diffuse in the target and effuse to an ion source

Then selected using dipole magnet (A/Q)

Either used directly (mass measurement, radioactive decay...)
or post-accelerated for reactions (e.g. astrophysical energy)

Examples : ISOLDE (CERN), TRIUMF, SPIRAL (GANIL)
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Radioactive-lon Beams

ISOLDE @ CERN
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Radioactive-lon Beams

In-flight projectile fragmentation

s In-flight |

—p s Fragment
separator

Thin target

\Radioactive

@ ion beam
high-energy primary beam of heavy ions (e.g. '*O, ¥Ca, U...)

on thin target of light elements (Be or C)
= fragmentation/fission produces many exotic fragments at ® vpeam
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Radioactive-lon Beams

In-flight projectile fragmentation

s In-flight |

—p s Fragment
separator

Thin target
\Radioactive
ion beam

70/,@,2
high-energy primary beam of heavy ions (e.g. '*O, ¥Ca, U...)
on thin target of light elements (Be or C)
= fragmentation/fission produces many exotic fragments at ® vpeam
Sorted in fragment separator
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Radioactive-lon Beams

In-flight projectile fragmentation

oorind g _ In-flight |

| P=
—'V‘ < Fragment
separator

Thin target

\Radioactive

@ ', 4 lonbeam

high-energy primary beam of heavy ions (e.g. '*O, ¥Ca, U...)

on thin target of light elements (Be or C)

= fragmentation/fission produces many exotic fragments at ® vpeam

Sorted in fragment separator
Used for high-energy reactions (KO, breakup. . .)
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Radioactive-lon Beams

In-flight projectile fragmentation

vt y In-flight |

—‘,Ié‘" Fragment
separator

Thin target

7%;{\,

high-energy primary beam of heavy ions (e.g. '*0, ¥*Ca, U...)

on thin target of light elements (Be or C)

= fragmentation/fission produces many exotic fragments at ® vpeam
Sorted in fragment separator

Used for high-energy reactions (KO, breakup. . .)

Examples : NSCL (MSU), GSI, RIKEN, GANIL

\Radloactwe
4 lonbeam
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Radioact lon Beams

Existing NSCL
=7 s ] i} —n @

Lobby o] ; [ NSCL

K,

Seminar
Room
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Experimental 1 |
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National Superconducting
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Michigan State University outh High Bay

Machine Shop
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Radioactive-lon Bear

Future : FRIB

I\

Gas Stopping |
!

Reaccelerated Beam Area

[FaiiBss ares

Space for future expansion
of the science program
|1

Reaccele‘.’ator i
[EEEEED)

Fragment
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Radioactive-lon Beams

P ti
roperties ISOL

@ Low beam energy
may require post-acceleration
@ Low beam intensity
e Not all elements produced
» Slow
» Chemically limited
e Good beam quality :
can use chemistry to select
fragments
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Radioactive-lon Beams

Properties
ISOL
@ Low beam energy
may require post-acceleration
@ Low beam intensity
e Not all elements produced
» Slow
> Chemically limited
e Good beam quality :
can use chemistry to select
fragments

In-flight
e High beam energy
Viragments ~ Vbeam
e High beam intensity

e Efficient production
» Fast
» Chemically independent
e Many fragments in beam
= needion ID
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Radioactive-lon Beams

Choose according what you want to measure
80

- 100 kW, E/A = 400 MeV

70

N4o£

30
= Stable isotopes
= Fragmentation

20 ¢ - ISOL ]
F = In-flight fission
10 T,,=1sec
o d L L L L 5
0 20 40 60 80 100 120 140
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Oddities far from stability : halo nuclei

© Oddities far from stability : halo nuclei
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Oddities far from stability : halo nuclei

Halo structure _
Seen as core + one or two neutrons at large distance
[P. G. Hansen and B. Jonson, Europhys. Lett. 4, 409 (1987)]

Peculiar structure of nuclei due to small S, or S»,
= neutrons tunnel far from the core to form a halo

Halo only appears for low centrifugal barrier (low ¢)

1

§ —

|| (fm~1/2)

Vet (MeV)

o
o
—
5
IS
S
o

see F. Colomer’s poster on Monday
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Oddities far from stability : halo nuclei

Halo nuclei

e Light, neutron-rich "Li
nuclei

e small S, or S,,
o low-¢ orbital

One-neutron halo
lIBe = 1'Be + n
ISC = 14C +n

Two-neutron halo
He =4He +n +n
Hi=%i+n+n

W Noyau stable
@ Noyau riche en neutrons

[@ Noyau riche en protons

[] Noyau halo d’un neutron

[ Noyau halo de deux neutrons
[] Noyau halo d’un proton

Proton halces are possible but less probable : *B, "F
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Oddities far from stability : halo nuclei

Halo nuclei

e Light, neutron-rich
nuclei

e small S, or S,,
o low-¢ orbital

One-neutron halo
lIBe = 1'Be + n
1SC = 14C +n

Two-neutron halo

W Noyau stable

@ Noyau riche en neutrons
6 4 [@ Noyau riche en protons
He="He+n+n [ Noyau halo dun neutron
1 9 [ Noyau halo de deux neutrons
Hp— H [ Noyau halo d’un proton
I=7LI+N+nNn

Proton halces are possible but less probable : B, !"F
Two-neutron halo nuclei are Borromean. ..

c+n+n is bound but not two-body subsystems

e.g. °He bound but not *He or 2n
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Oddities far from stability : halo nuclei

Borromean nuclei

Named after the Borromean rings. ..
[M. V. Zhukov et al. Phys. Rep. 231, 151 (1993)]
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Oddities far from stability : halo nuclei

Borromean nuclei

Named after the Borromean rings. ..
[M. V. Zhukov et al. Phys. Rep. 231, 151 (1993)]
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Experimental techniques

@ Experimental techniques
@ Knockout reactions
@ In-beam y spectroscopy
@ Transfer reactions
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Experimental techniques Knockout reactions

Knockout reactions

Knockout reaction : direct removal of one nucleon
For exotic nuclei, measured in inverse kinematics
on light target (C or Be) at intermediate energy (70AMeV)

"Be + ‘Be —» '""Be + X
Inclusive measurement (KO nucleon not measured)

Used to probe the shell-model wave function of nuclei
The valence nucleon occupies a shell outside a core :

YU = TIXUD) @ Y + -
Analysis of reaction within eikonal model (sudden approximation)
e Parallel-momentum distribution of the core gives nucleon shell

e Total o_y provides Spectroscopic Factor (SF)
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’Be(''Be,!” Be + )X @ 60AMeV
T T T T T T T T T

("'Be. Be (29))

00 —

e Shell model predicts

"Be = ""Be(0") ® vop12
e Experiment shows shell inversion
i "Be = YBe(0") ® vig1)0

e, | @ Narrow momentum distribution
w0 s 0 % 100 & extended spacial distribution
By QeI = confirms the neutron halo

[Aumann et al. PRL 84, 35 (2000)]
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Experimental techniques Knockout reactions

Study of nuclear spectroscopy
Reaction models rely on single-particle model :

[Tr + ch(l") - E]¢nlm(r) =0 with ||¢nlm|| =1
In reality, there is admixture of configurations :
YU = XU ®@ Yy + ..

where v, is the overlap wave function
Spectroscopic Factor : S; = ||yl

Single-particle approximation = ¥, = VS G
=usualidea: S, =o.." /o
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Experimental techniques Knockout reactions

Reduction of the SF

nucleons

Predicted shell-model SF too high for deeply-bound

1.0_'15""|"--|""|""|--"|"'-|"'-|""|'_
__qﬂs fBidsAr ]
0.8-*si® * .

0‘5 - i c 160 4
- 31p] .
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& 0.6 w, 1 “ca,. -
" | r§Lize 30 } é i
e _' 51\quap 2 7
0.4 as sl

L = Rs (ee'p): AS=S,-S, n } 1

- ® Ry p-knockout: AS=S-S, 255; 7

0.2l ® Rs n-knockout: AS=S8,-S, ol ]
e R

AS (MeV)

[Gade et al. PRC 77, 044306 (2008)]
@ Something missing in usual shell-model calculations ?

e Problem in the reaction modelling ?
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Quenching of SF
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[Jensen et al. PRL 107, 032501 (2011)]; see also G. Hagen’s talk on Wednesday
Inclusion of continuum in shell-model basis reduces SF
= solves partly the problem
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Experimental techniques Knockout reactions

KO reaction dynamics

e For loosely-bound nucleons
S ,(1C) = 4.25 MeV
S ,(*0) = 4.63 MeV
eikonal model works fine

e For deeply-bound nucleons
S ,(1°C) = 22.6 MeV
S,(**0) = 23.2 MeV
energy conservation must be
taken into account

do/dP,, [mb*(20 MeV/c)]

do/dP,, [mb*(20 MeV/c)]

L (@
L'8C (-1n)

©
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L A

i

l
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05

2ok

=
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15 1n) i
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5400

P
5600

1 |
.5800
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P = e B INATETE I WP
3600 3800 4000 4200

P, (MeVc)

[Flavigny et al. PRL 108, 252501 (2012)]
see A. Obertelli’s talk on Friday

= solves another part of the problem ?
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Experimental techniques Knockout reactions

New magic numbers ?
New magic Z = 14 in #*Si ?
S + Be — *2Si + X @ 99AMeV

N=20 N=28

¥ca |*'ca #2ca *3ca *ca "°ca *Bca “7ca) *ga | *ca Fca 5'ca %2ca 5%ca Sca %Fca Sca
B8 |0 4 42 43¢ My 45 dby | 47y | Bk 49 SOy 51y B2 53k Sy S5y
(%8ar [0ar #0ar VA P2 Wp Mar S | B | TTp 4Bpp 99y S0p Sy

¥el [8c1 3B 401 g 201 Bg “ol | g | %o Tl “Ba el

3 |75 38g g 405 41g 425 43g @ 155 46 475 — =16

3, |36p 37p 38p 39 Wp 41p €25 [(43p)[ 44p

Mg |85 By g By Vg g g |(*2i)| 5 g—z=14

Fal [Ma e By Ty FEy By | Ay

32Mg BHMJ B‘Mg 35Mg ﬁﬁvg 37Mg 38\‘9

TNa [22Na 3Na Na 3Na g
Phofrie e [J. Fridmann et al. Nature 435, 922 (2005)]

Analysis within shell-model calculation suggests Z = 14 to be magic
far from stability. . .
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Experimental techniques In-beam y spectroscopy

However. ..
Measurement of vy in coincidence with proton stripping
see A. Obertelli's and L. Atar’s talks on Friday
“S + I2C - “Si+y+ X @ 60AMeV

61

42 .
S1

wn
T70(19)

Counts / 30 keV
L s

(S ]

on

[B. Bastin et al. PRL 99, 022503 (2007)]
Indicates a low-lying state in *Si = Z = 14 not magic
and collapse of N = 28 far from stability
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Experimental techniques Transfer reactions

Confirmed magic numbers
Transfer reaction can be used to study shell structure

328n+d — BSn+p
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[K. Jones et al. Nature 465, 454 (2010)]

Confirms the single-particle structure of '*3Sn
and hence that '3>Sn is magic (i.e. N = 82 at Z = 50)
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Summary
Liguid-drop and shell model describe qualitatively stable nuclei
Nowadays ab-initio nuclear-structure models from first principles

RIB enable study nuclear structure far from stability
Low intensities require new experimental techniques :
KO reactions, in-beam y spectroscopy,. . .

e discovery of halo nuclei
diffuse halo around a compact core

@ shell inversions or shell collapse
RIB can be used to study reactions of astrophysical interest
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Combined with a gas stopper

ISOL | | frimenybeem In-flight |

Fragment
separator

Thick & ha

lon source

/

Post-accelerator
}

= .5 Radioactive
ion beam

Thin target

Radioactive

Isotope separator lon beam

@ can use thin target in ISOL
e can study low-energy reaction with in-flight fragmentation
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C('Ne,**Ne + y)X @ 230AMeV
Shell model predicts *'Ne ground state to be 7/27 (**Ne ® vo7/2)
One-neutron knock-out measured at RIKEN
3INe + C — *Ne + X @ 230AMeV
[T. Nakamura et al. PRL 103, 262501 (2009)]
Theoretical analysis suggests 3/2° (**Ne ®v,;3/2)
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[W. Horiuchi et al. PRC 81, 024606 (2010)]
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Systematic study
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[Sauvan et al. PLB 491, 1 (2000)]
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