An introduction to nuclear astrophysics

Pierre Capel

POLYTECHNIQUE
DE BRUXELLES

24 January 2016

Introduction: a bit of history

Where do we come from?

Where was produced the matter that surrounds us?

Introduction: a bit of history

Where do we come from?
Where was produced the matter that surrounds us?

The answer came from astrophysics...

Introduction: a bit of history

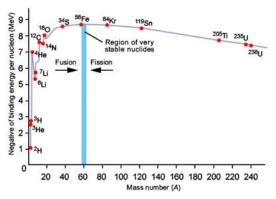
Where do we come from?

Where was produced the matter that surrounds us?

The answer came from astrophysics...

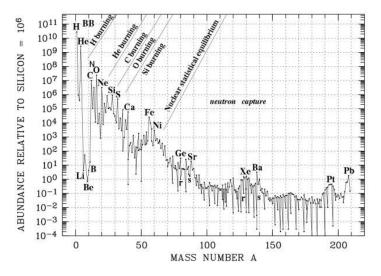
In 1920 A. Eddington: stars are nuclear powered
In 1929 R. Atkinson and F. Houtermans: fusion of light elements
produces energy

e.g. fusion of 4 protons into ⁴He


$$4 \text{ p} \rightarrow {}^{4}\text{He} + 2 \text{e}^{+} + 2 \nu_{\text{e}} + 26.73 \text{ MeV}$$

In 1938-39, H. Bethe and C. Critchfield : pp chain and CNO cycles (H. Bethe got NP in 1967)

In 1957, seminal paper of Burbidge, Burbidge, Fowler and Hoyle on nucleosynthesis in stars [Rev. Mod. Phys. **29**, 257]


Introduction: nucleosynthesis in a nutshell

By fusion of light elements we can reach the Fe-Ni region because reactions are exoenergetic and Coulomb repulsion is small

Beyond, processes based on n or p capture lead to heavy nuclei : s, r, p, rp processes...

Abundances of elements

Abundance measured relative to Si fixed to 10^6 .

- pp chain and CNO cycle
- Reaction rate and Gamow window
- Life and death of a star
- Equation of State for nuclear matter
- 5 s, r, p, rp processes
- Summary

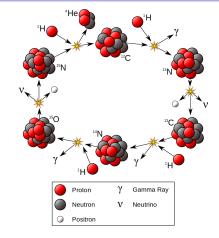
pp chain
$$p + p \rightarrow {}^{2}_{1}H + e^{+} + \nu_{e}$$
 or $p + e^{-} + p \rightarrow {}^{2}_{1}H + \nu_{e}$ (85%) (15%) (15%) (15%) (15%) (15%) (0.02%) (2.02%) (3.02%) (2.02%) (2.02%) (3.02\%) (3.02\%) (3.02\%) (3.02\%) (3.02\%) (3.02\%) (3.02\%) (3.02\%) (3.02\%) (3.02\%) (3.02\%) (3.02\%) (

6/37

CNO cycle(s)

If the star contains C, N or O they can be used as catalyst to synthesise ⁴He from 4 p e.g. CNO C cycle:

$${}^{12}C + p \rightarrow {}^{13}N + \gamma$$


$${}^{13}N \rightarrow {}^{13}C + e^{+} + \nu_{e}$$

$${}^{13}C + p \rightarrow {}^{14}N + \gamma$$

$${}^{14}N + p \rightarrow {}^{15}O + \gamma$$

$${}^{15}O \rightarrow {}^{15}N + e^{+} + \nu_{e}$$

$${}^{15}N + p \rightarrow {}^{12}C + \alpha$$

CNO C cycle

Summary: $4p \rightarrow {}_{2}^{4}\text{He} + 2e^{+} + 2\nu_{e} + 25\text{MeV}$

Other cycles

CNO N cycle using ¹⁴N as catalyst :

- NeNaMg cycles
- ...

- pp chain and CNO cycle
- Reaction rate and Gamow window
- Life and death of a star
- Equation of State for nuclear matter
- 5 s, r, p, rp processes
- Summary

Reaction rate

We consider the radiative-capture reaction : $1+2\to 3+\gamma$ The reaction rate is the number of reactions occurring per unit time and volume

$$r = N_1 N_2 \sigma v$$

Reaction rate

We consider the radiative-capture reaction : $1+2\to 3+\gamma$ The reaction rate is the number of reactions occurring per unit time and volume

$$r = N_1 N_2 \sigma v$$

The velocity v is distributed according to Maxwell-Boltzmann

$$\phi(\mathbf{v}) \propto e^{-E/kT}$$

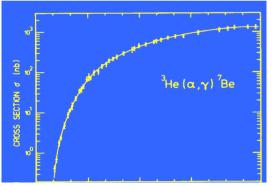
Reaction rate

We consider the radiative-capture reaction : $1+2 \rightarrow 3+\gamma$ The reaction rate is the number of reactions occurring per unit time and volume

$$r = N_1 N_2 \sigma v$$

The velocity v is distributed according to Maxwell-Boltzmann

$$\phi(\mathbf{v}) \propto e^{-E/kT}$$


$$\Rightarrow \langle \sigma \, v \rangle = 4\pi \int \phi(\mathbf{v}) \, \sigma(v) \, v^3 \, dv$$

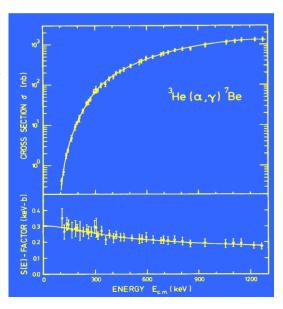
$$\propto \int e^{-E/kT} \, \sigma(E) \, E \, dE$$

$\sigma(E)$ at low energy

Due to Coulomb barrier σ plummets at low E because reaction takes place only through tunneling

 $^{3}\mathrm{He} + \alpha \rightarrow \,^{7}\mathrm{Be} + \gamma \text{ also noted }^{3}\mathrm{He}(\alpha, \gamma) \,^{7}\mathrm{Be}$

Astrophysical S factor

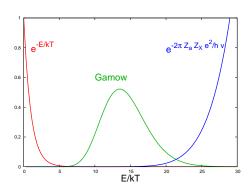

The rapid drop explained by the Gamow factor $e^{-2\pi\eta}$,

$$\eta = \frac{Z_1 Z_2 e^2}{4\pi\epsilon_0 \hbar v}$$

is Sommerfeld parameter

$$\Rightarrow \sigma(E) = \frac{S(E)}{E}e^{-2\pi\eta}$$

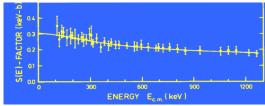
The astrophysical S factor varies smoothly with E



Gamow peak

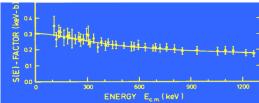
$$\langle \sigma v \rangle \propto \int e^{-E/kT} \ \sigma(E) \ E \ dE$$

= $\int e^{-E/kT} \ e^{-2\pi\eta} \ S(E) \ dE$


 \Rightarrow S must be known only in the Gamow peak

$$g(E) = e^{-E/kT} e^{-2\pi\eta}$$

For the reaction ${}^{3}\text{He}(\alpha, \gamma) {}^{7}\text{Be}$ in the sun


$$Z_1 = 2, A_1 = 3$$

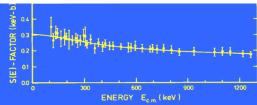
 $Z_2 = 2, A_2 = 4$
 $T = 0.015 T_9$
Gamow peak
at $E_0 \simeq 20 \text{ keV}$

⇒ difficult to measure due to background

For the reaction ${}^{3}\text{He}(\alpha, \gamma) {}^{7}\text{Be}$ in the sun

$$Z_1 = 2, A_1 = 3$$

 $Z_2 = 2, A_2 = 4$
 $T = 0.015 T_9$
Gamow peak
at $E_0 \simeq 20 \text{ keV}$



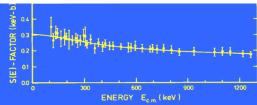
⇒ difficult to measure due to background Solutions

• Rely on theory to extrapolate down to astrophysical energies

For the reaction ${}^{3}\text{He}(\alpha, \gamma) {}^{7}\text{Be}$ in the sun

$$Z_1 = 2, A_1 = 3$$

 $Z_2 = 2, A_2 = 4$
 $T = 0.015 T_9$
Gamow peak
at $E_0 \simeq 20 \text{ keV}$


⇒ difficult to measure due to background

Solutions

- Rely on theory to extrapolate down to astrophysical energies
- Go to an underground laboratory to reduce background
 e.g. LUNA collaboration [see V. Mossa's poster on Monday]

For the reaction ${}^{3}\text{He}(\alpha, \gamma) {}^{7}\text{Be}$ in the sun

$$Z_1 = 2, A_1 = 3$$

 $Z_2 = 2, A_2 = 4$
 $T = 0.015 T_9$
Gamow peak
at $E_0 \simeq 20 \text{ keV}$

⇒ difficult to measure due to background

Solutions

- Rely on theory to extrapolate down to astrophysical energies
- Go to an underground laboratory to reduce background
 e.g. LUNA collaboration [see V. Mossa's poster on Monday]
- Use indirect techniques, e.g. Coulomb breakup

When enough ⁴He has built up, if temperature and pressure are high enough, He fusion starts

When enough ⁴He has built up, if temperature and pressure are high enough, He fusion starts

But ${}^{8}\text{Be}$ is unbound : ${}^{8}\text{Be} \rightarrow {}^{4}\text{He} + {}^{4}\text{He}$

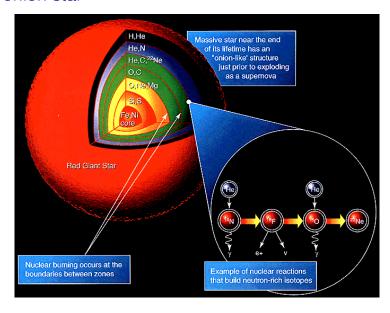
When enough ⁴He has built up, if temperature and pressure are high enough, He fusion starts

But ${}^8\text{Be}$ is unbound: ${}^8\text{Be} \rightarrow {}^4\text{He} + {}^4\text{He}$ This A=8 gap is bridged by the triple- α process

$$3\alpha \rightarrow {}^{8}\text{Be}^{*} + \alpha \rightarrow {}^{12}\text{C}^{*}$$

which occurs through the Hoyle state : $J^{\pi} = 0^{+}$ resonance in 12 C predicted by F. Hoyle and observed by W. Fowler (NP in 1983)

When enough ⁴He has built up, if temperature and pressure are high enough, He fusion starts


But ${}^8\text{Be}$ is unbound: ${}^8\text{Be} \rightarrow {}^4\text{He} + {}^4\text{He}$ This A=8 gap is bridged by the triple- α process

$$3\alpha \rightarrow {}^{8}\text{Be}^{*} + \alpha \rightarrow {}^{12}\text{C}^{*}$$

which occurs through the Hoyle state : $J^{\pi} = 0^{+}$ resonance in 12 C predicted by F. Hoyle and observed by W. Fowler (NP in 1983)

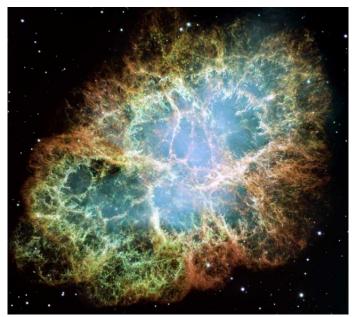
At a later stage, C may capture α to form O or fuse with itself to form Ne, Na or Mg \Rightarrow Onion structure of star...

The onion star

What happens next?

Depending on the mass of the star:

- $M \lesssim 8M_{\odot}$:
 - ends with C-O core $(M \sim M_{\odot})$ or O-Ne-Mg core $(M \sim 8M_{\odot})$
 - ► H outer layer is expelled → planetary nebula
 - core collapses gravitationally
 - ightarrow white dwarf ($M \sim M_{\odot}$ and $R \sim R_{\oplus}$)


Planetary nebula : Cat's eye nebula

What happens next?

- Massive star $(M > 8M_{\odot})$
 - C burning → Fe-Ni core
 - Gravity strikes back : gravitational collapse of the core
 - \rightarrow neutron star ($M \sim M_{\odot}$ and $R \sim 10$ km; $\rho \sim \rho_0$) or black hole...
 - outer layers expelled : supernova (type II)

Type II SN : Crab nebula

- pp chain and CNO cycle
- Reaction rate and Gamow window
- Life and death of a star
- Equation of State for nuclear matter
- 5 s, r, p, rp processes
- Summary

Equation of State

To understand the formation of neutron stars, need to understand the nuclear matter But no need for microscopic calculations ⇒ (nuclear) Equation of State (EoS)

Equation of State

To understand the formation of neutron stars, need to understand the nuclear matter
But no need for microscopic calculations $\Rightarrow \text{(nuclear) Equation of State (EoS)}$ State of a perfect gas given by P, V, T, N: PV = N k T

For nuclear matter, the state variables are

 ${\it Z}$: proton number

N: neutron number

or in infinite matter $\alpha = (N - Z)/A$, the n-p asymmetry α the density

ho the density

Equation of State

To understand the formation of neutron stars, need to understand the nuclear matter
But no need for microscopic calculations \Rightarrow (nuclear) Equation of State (EoS)
State of a perfect gas given by P, V, T, N : PV = NkT

For nuclear matter, the state variables are

Z: proton number

N: neutron number

or in infinite matter $\alpha = (N-Z)/A$, the n-p asymmetry ρ the density

EoS obtained from the energy of the system per nucleon ϵ see S. Gandolfi's talk on Tuesday

Nuclear EoS

Back to liquid-drop formula (Bethe Weizsäcker)

$$B(Z, N) = a_{\nu}A - a_{s}A^{2/3} - a_{C}\frac{Z(Z-1)}{A^{1/3}} - a_{\text{Sym}}\frac{(A-2Z)^{2}}{A}$$

$$\epsilon \equiv -\frac{B(Z, N)}{A} \xrightarrow[V \to \infty]{} -a_{\nu} + a_{\text{Sym}}\alpha^{2} \quad \text{with } \alpha = (N-Z)/A$$

Liquid drop assumes constant density $\rho = \rho_0 \simeq 0.16 \ \mathrm{fm^{-3}}$

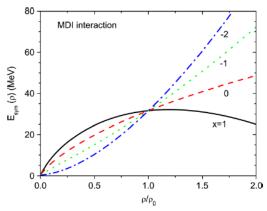
Nuclear EoS

Back to liquid-drop formula (Bethe Weizsäcker)

$$B(Z, N) = a_{\nu}A - a_{s}A^{2/3} - a_{C}\frac{Z(Z-1)}{A^{1/3}} - a_{\text{Sym}}\frac{(A-2Z)^{2}}{A}$$

$$\epsilon \equiv -\frac{B(Z, N)}{A} \xrightarrow[V \to \infty]{} -a_{\nu} + a_{\text{Sym}}\alpha^{2} \quad \text{with } \alpha = (N-Z)/A$$

Liquid drop assumes constant density $\rho=\rho_0\simeq 0.16~{\rm fm^{-3}}$ We need density dependence

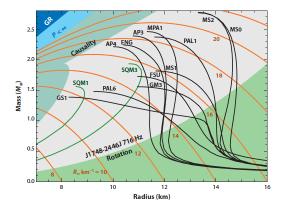

$$\epsilon(\rho, \alpha) = \epsilon(\rho, \alpha = 0) + S(\rho)\alpha^2 + \dots$$

where *S* is the symmetry energy

Symmetry energy

S characterises the increase in energy from N=Z Taylor expanded around $\rho=\rho_0$:

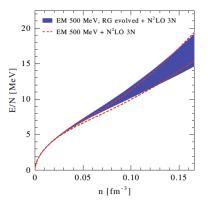
$$S(\rho) = S_v + \frac{L}{3} \left(\frac{\rho - \rho_0}{\rho_0} \right) + \frac{1}{18} K_{\text{sym}} \left(\frac{\rho - \rho_0}{\rho_0} \right)^2 + \dots$$

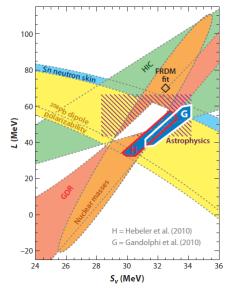

S is said

- stiff if $dS/d\rho > 0$
- soft if reaches saturation

- S can be constrained from nuclear experiments (laboratory):
 - neutron skin thickness (balance between surface tension and asymmetry term)
 - Giant Monopole Resonance (breathing mode)
 - Giant Dipole Resonance (n to p oscillations)
 - heavy-ion collisions (n to p ratio in emitted fragments)
 see W. Trautmann's talk on Friday

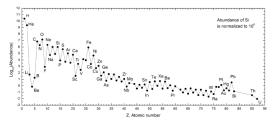
from astrophysical observations


• Mass and radii of neutron stars (existing $2 M_{\odot}$)


[J. Lattimer Ann. Rev. Nucl. Part. Sci. 62, 485 (2012)]

from nuclear-structure calculation

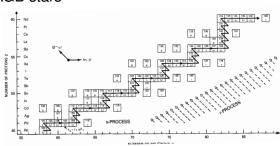
EFT prediction of EoS [cf. S. Gandolfi's talk on Tuesday morning]


[K. Hebeler et al. Astrophys. J. 773, 11 (2013)]

[J. Lattimer Ann. Rev. Nucl. Part. Sci. 62, 485 (2012)]

- pp chain and CNO cycle
- Reaction rate and Gamow window
- Life and death of a star
- 4 Equation of State for nuclear matter
- 5 s, r, p, rp processes
- Summary

How do we get heavier elements? Increasing Coulomb barrier suppress fusion Once Fe synthesised no more fusion

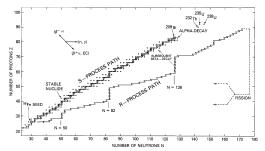


To explain formation of heavier elements Burbidge, Burbidge, Fowler and Hoyle (B^2FH) suggest in 1957 successive captures of n by seed nuclei : s and r processes

s process

The s process is a slow process of n capture by stable nuclei slow means slower than β decay, i.e. requires small n flux e.g. He burning stage of AGB stars

$$^{13}\text{C} + \alpha \rightarrow ^{16}\text{O} + \text{n}$$
 $^{22}\text{Ne} + \alpha \rightarrow ^{25}\text{Mg} + \text{n}$



Synthesises elements close to stability ⇒ does not explain

- isotopes away from stability
- heavy elements (U, Th...)

r process

The r process is a *rapid* process of n capture by stable nuclei rapid means faster than β decay, i.e. requires high n flux e.g. core-collapse supernovæ see B. Messer's talk on Thursday

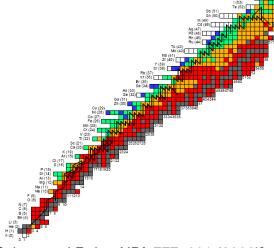
Synthesises elements far away from stability ⇒ requires

- masses of radioactive isotopes see D. Atanasov's talk on Wednesday
- location of nuclear shells

p and rp processes

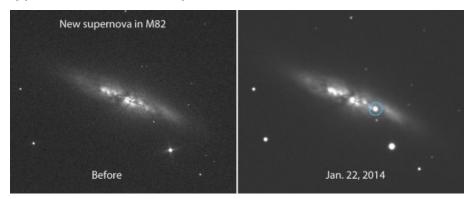
s and r processes synthesise only n-rich nuclei How to explain the presence of p-rich nuclei? p and rp processes are similar processes with successive p captures

p process:


Slow capture of protons Synthesises p-rich nuclei close to stability Possible site: O-Ne layer in supernova

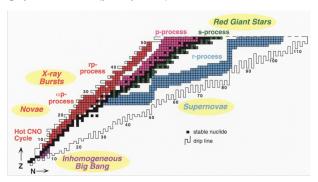
rp process

rapid p-capture reactions


synthesises elements away from stability of r process

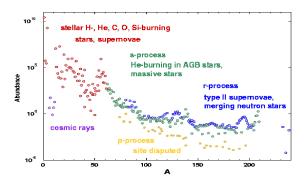
Possible site: X-ray burst accretion by neutron star of H- and He-rich material from companion star ⇒ type I supernova

[Schatz and Rehm NPA 777, 601 (2006)]


Type I SN: 21 January 2014

Summary

Nuclei are synthesised in stellar environments during various processes

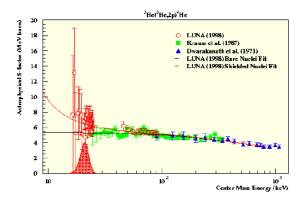

- pp chain, CNO cycles, He burning,...
- s and r processes (n capture)
- p and rp processes (p capture)

[Smith and Rehm Annu. Rev. Nucl. Part. Sci. 51, 91 (2001)]

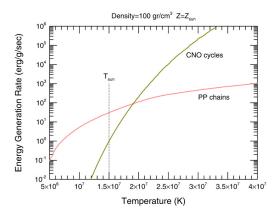
Stardust

Abundances of elements and production mechanisms

We are all stardust...


LUNA accelerator facility at the Gran Sasso Facility

Located below the Gran Sasso mountain in the Apennines



LUNA result for ${}^{3}\text{He}({}^{3}\text{He},2p){}^{4}\text{He}$ LUNA can reach the Gamow peak in some cases

pp chain vs. CNO cycles

The type of cycle depends on temperature and pressure

