Exotic quarkonium states in CMS

Leonardo Cristella (on behalf of the 🔀 Collaboration)

UNIVERSITA' DEGLI STUDI DI BARI "ALDO MORO" & I.N.F.N. SEZIONE DI BARI

25 – 29 January, 2016 / 54th International Winter Meeting on Nuclear Physics

Compact Di-Muon Solenoid – μ reconstruction & triggers

> Tracking system

- Sood p_T resolution (down to $\Delta p_T / p_T \approx 1\%$ in barrel)
- Tracking efficiency >99% for central muons
- Sood vertex reconstruction & impact parameter resolution down to $\approx 15 \mu m$

Muon system

>> Muon candidates by matching muon segments and a silicon track in a large rapidity coverage ($|\eta| < 2.4$)

- Sood dimuon mass resolution (depending on |y|): $\Delta M/M \approx 0.6 \div 1.5\%$ ($\Rightarrow J/\psi : \approx (20 \div 70) MeV$)
- **Excellent (high-purity) muon-ID:** $\varepsilon(\mu \mid \pi, K, p) \le (0.1 \div 0.2)\%$ [fake rates estimated in MC and data]

Compact Di-Muon Solenoid – μ reconstruction & triggers

Tracking system

- Sood p_T resolution (down to $\Delta p_T / p_T \approx 1\%$ in barrel)
- Tracking efficiency >99% for central muons
- Sood vertex reconstruction & impact parameter resolution down to $\approx 15 \mu m$

Muon system

>> Muon candidates by matching muon segments and a silicon track in a large rapidity coverage ($|\eta| < 2.4$)

- Sood dimuon mass resolution (depending on |y|): $\Delta M/M \approx 0.6 \div 1.5\%$ ($\Rightarrow J/\psi : \approx (20 \div 70) MeV$)
- **Excellent (high-purity) muon-ID:** $\varepsilon(\mu \mid \pi, K, p) \le (0.1 \div 0.2)\%$ [fake rates estimated in MC and data]

Trigger system

- fast HW (Muon Detector based) triggers (L1) SW triggers with full tracking & vtx recon. (HLT)
- rare decays/quarkonia almost 100% BKG/Signal paths
- ~10% of CMS bandwidth (~10kHz @L1) to flavor physics Data Parking in 2012: clear benefits having ~120Hz on top of the 25-30Hz on prompt stream (@HLT)

•
$$\sqrt{s} = 7 \text{ TeV}$$
, $\mathcal{L} = 5 \text{ fb}^{-1}$ (2011 run
• $\sqrt{s} = 8 \text{ TeV}$, $\mathcal{L} = 20 \text{ fb}^{-1}$ (2012 run

Bormio 2016

2 / 15

trigger paths

Outline

The following "exotic" quarkonium-like states will be reviewed:

Bormio 2016

Leonardo Cristella

X(3872) JHЕР 1304 (2013) 154

The X(3872) - I

After more than 10 years <u>no definitive answer</u> on the nature of the X(3872)

The X(3872) - II

After more than 10 years <u>no definitive answer</u> on the nature of the X(3872). Main hypothesis are:

Loosely bound molecular state: suggested by proximity to $D\overline{D}^{0^*}$ threshold (J^{PC} = 0⁻⁺, 1⁺⁺)

Solution Conventional charmonium: assignments would be $\chi_{c1}(2^{3}P_{1})$ or $\eta_{c2}(1^{1}D_{2})$ and quantum numbers would be respectively $J^{PC} = 1^{++}$ or 2^{-+}

and quantum numbers would be respectively $J^{rc} = 1^{rr}$ or 2^{rr} $c\overline{c} \rightarrow \rho J/\psi \sim ruled out by the fact that should be a pure isoscalar state; X(3872) shows$ an equal amount of isospin components (I=0 & I=1): $<math display="block">\frac{BF(X \rightarrow J/\psi \pi^{+} \pi^{-} \pi^{0})}{BF(X \rightarrow J/\psi \pi^{+} \pi^{-})} = 0.8 \pm 0.3$

The X(3872) - II

After more than 10 years no definitive answer on the nature of the X(3872). Main hypothesis are:

Loosely bound molecular state: suggested by proximity to $D\overline{D}^{0^*}$ threshold (J^{PC} = 0⁻⁺, 1⁺⁺)

The size of the X(3872) as a DD* molecule is determined by its scattering length which in turn depends, by quantum mechanical considerations, upon the binding energy: X(3872) would be a large and fragile molecule with a miniscule binding energy

Conventional charmonium: assignments would be $\chi_{c1}(2^{3}P_{1})$ or $\eta_{c2}(1^{1}D_{2})$ and quantum numbers would be respectively $J^{PC} = 1^{++}$ or 2^{-+}

 $c\overline{c} \rightarrow \rho J/\psi \sim$ ruled out by the fact that should be a pure isoscalar state; X(3872) shows an equal amount of isospin components (I=0 & I=1): $\frac{BF(X \to J/\psi \pi^+ \pi^- \pi^0)}{BF(X \to J/\psi (\pi^+ \pi^-))} = 0.8 \pm 0.3$

LHCb made a sophisticated angular analysis [PRL 110 ('13) 222001 & PRL 92 ('15) 011102] of the whole decay chain $B^+ \to K^+ X(3872) \to K^+ (J/\psi \pi^+ \pi^-)$ dropping the assumption of lowest possible orbital angular momentum in the X(3872) sub-decay and unambiguously determine the quantum numbers to be $J^{PC} = 1^{++}$ under more general conditions. No hints for a large size of X(3872).

Pure molecular model is not supported by recent LHCb measurement [NPB 886 (2014) 665] of the radiative decay Bormio 2016

X(3872) at CMS

- CMS can easily reconstruct the X(3872) in the decay channel $J/\psi(\rightarrow \mu\mu)\pi^{+}\pi^{-}$
- With 4.8fb⁻¹ of data at 7TeV reconstructed about 12,000 X(3872) signal events
- CMS studied:
 - **Solution** Cross section ratio w.r.t. ψ (2S)
 - Non-prompt component vs p_T
 - Prompt X(3872) cross section
 - >> Invariant mass distribution of the $\pi^+\pi^-$ system

X(3872) at CMS

- CMS can easily reconstruct the X(3872) in the decay channel $J/\psi(\rightarrow \mu\mu)\pi^{+}\pi^{-}$
- With 4.8*fb*⁻¹ of data at 7*TeV* reconstructed about 12,000 X(3872) signal events
- CMS studied:
 - Scross section ratio w.r.t. ψ (2S)
 - Non-prompt component vs p_{τ}
 - Prompt X(3872) cross section

>> Invariant mass distribution of the $\pi^+\pi^-$ system

- The $\pi^{+}\pi^{-}$ invariant mass distribution from X(3872) decays to $J/\psi\pi^{+}\pi^{-}$ is measured in order to investigate the decay properties of the X(3872)
 - **Studies at CDF and Belle suggest that** X(3872) decays in J/ψ and ρ^0
 - The spectrum obtained from data is compared to simulations with and without an intermediate ρ^0 in the $J/\psi \pi^+\pi^-$ decay: the assumption of intermediate ρ^0 decay gives better agreement with data.

Cross sections ratio & non-prompt fraction

A ratio of the cross sections have been measured to cancel out many systematic sources:

$$R = \frac{\sigma(pp \to X(3872) + \text{anything}) \cdot B(X(3872) \to J/\psi \pi^{+}\pi^{-})}{\sigma(pp \to \psi(2S) + \text{anything}) \cdot B(\psi(2S) \to J/\psi \pi^{+}\pi^{-})} = \frac{N_{X(3872)} \cdot A_{\psi(2S)} \cdot \varepsilon_{\psi(2S)}}{N_{\psi(2S)} \cdot A_{X(3872)} \cdot \varepsilon_{X(3872)}}$$

For 10 < p_T < 50GeV & |y| < 1.2:</p>
R = 0.0656 ± 0.0029 (stat.) ± 0.0065 (syst.)

The ratio shows no significant dependence on the p_{τ} of the $J/\psi \pi^{+}\pi^{-}$ system

Bormio 2016

Cross sections ratio & non-prompt fraction

A ratio of the cross sections have been measured to cancel out many systematic sources:

$$R = \frac{\sigma(pp \to X(3872) + \text{anything}) \cdot B(X(3872) \to J/\psi \pi^{+}\pi^{-})}{\sigma(pp \to \psi(2S) + \text{anything}) \cdot B(\psi(2S) \to J/\psi \pi^{+}\pi^{-})} = \frac{N_{X(3872)} \cdot A_{\psi(2S)} \cdot \varepsilon_{\psi(2S)}}{N_{\psi(2S)} \cdot A_{X(3872)} \cdot \varepsilon_{X(3872)}}$$

For $10 < p_{\tau} < 50 GeV \& |y| < 1.2$: $R = 0.0656 \pm 0.0029$ (stat.) ± 0.0065 (syst.)

The ratio shows no significant dependence on the p_{τ} of the $J/\psi \pi^{+}\pi^{-}$ system

m(J/w x*x') [GeV]

Prompt *X***(3872) production cross section &** $\pi^+\pi^-$ **system**

Putting together the previous measurements, the production of X(3872) state is measured for the first time as a function of transverse momentum as:

Prompt *X***(3872) production cross section &** $\pi^+\pi^-$ **system**

Putting together the previous measurements, the production of X(3872) state is measured for the first time as a function of transverse momentum as:

- Main systematic uncertainties are related to the measurements of *R* and prompt $\psi(2S)$ cross section
- X(3872) and ψ (2S) are assumed to be unpolarized
- Results are compared with a theoretical prediction based on NRQCD factorization approach by Artoisenet & Brateen [PhysRevD.81.114018] with calculations normalized using Tevatron results, modified by the authors to match the phase-space of the CMS measurement

The shape is reasonably well described by the theory while the predicted cross section is overestimated by over 3σ

Prompt *X***(3872) production cross section &** $\pi^+\pi^-$ **system**

Putting together the previous measurements, the production of X(3872) state is measured for the first time as a function of transverse momentum as:

Main systematic uncertainties are related to the measurements of *R* and prompt $\psi(2S)$ cross section

X(3872) and ψ (2S) are assumed to be unpolarized

Predictions by Artoisenet & Brateen assume, within an S-wave molecular model, the relative momentum of the mesons being bound by an upper limit of 400*MeV* which is quite high for a loosely bound molecule, but they assume it is possible as a result of rescattering effects.

On the other hand, an upper limit lower of one order of magnitude would imply lower prompt production rates of few orders of magnitude [Bignamini et al., PRL 2009, 103(16)]

X(3872) production at Run-II

Run-II data taking started last year at $\sqrt{s} = 13TeV$ with the first bunch of data recorded in July

The plot shows the invariant mass of $J/\psi \pi^+\pi^-$ where is visible the X(3872) signal beyond the $\psi(2S)$ one:

Search for *X_b* **[beauty partner of the** *X***(3872)]**

HQ symmetry suggests an X_b analogous of X_c . Molecular model suggests to search it close to $B\overline{B}^*$ threshold (Swanson, 2004).

Solution CMS looked for $X_b \to \Upsilon(1S) \pi^+\pi^-$ decay seemingly analogous to $X(3872) \to J/\psi \pi^+\pi^-$

Analysis strategy: search for a peak other than known $\Upsilon(2S)$ & $\Upsilon(3S)$ in the $\Upsilon(1S) \pi^{+}\pi^{-}$ spectrum within 10-11*GeV*

95% CL upper limits set on the ratio *R* of the inclusive production Xsections times BFs to $\Upsilon(1S) \pi^{+}\pi^{-}$ (the one for X_{b} is unknown):

$$(R) = \frac{\sigma(pp \to X_b \to \Upsilon(1S)\pi^+\pi^-)}{\sigma(pp \to \Upsilon(2S) \to \Upsilon(1S)\pi^+\pi^-)}$$

Observed UL range: 0.9% to 5.4% (similar result by ATLAS)

Search for *X_b* **[beauty partner of the** *X***(3872)]**

HQ symmetry suggests an X_b analogous of X_c . Molecular model suggests to search it close to $B\overline{B}^*$ threshold (Swanson, 2004).

Solution CMS looked for $X_b \to \Upsilon(1S) \pi^+\pi^-$ decay seemingly analogous to $X(3872) \to J/\psi \pi^+\pi^-$

Analysis strategy: search for a peak other than known $\Upsilon(2S)$ & $\Upsilon(3S)$ in the $\Upsilon(1S) \pi^{+}\pi^{-}$ spectrum within 10-11*GeV*

95% CL upper limits set on the ratio R of the inclusive production Xsections times BFs to $\Upsilon(1S) \pi^{+}\pi^{-}$ (the one for X_{b} is unknown):

$$(R) = \frac{\sigma(pp \to X_b \to \Upsilon(1S)\pi^+\pi^-)}{\sigma(pp \to \Upsilon(2S) \to \Upsilon(1S)\pi^+\pi^-)}$$

Observed UL range: 0.9% to 5.4% (similar result by ATLAS)

According to Karliner & Rosner [PRD91 (2015) 014014], this decay should be forbidden by G-parity conservation; while for the X(3872) the isospin-conserving decay to $\omega J/\psi$ was kinematically suppressed, the same is not true for a bottomonium-like $J^{PC} = 1^{++}$ counterpart. The strategy for X_b observation should include search of $X_b \rightarrow \Upsilon(1S) \ \omega(\rightarrow \pi^+\pi^-\pi^0)$, $X_b \rightarrow \chi_{b1}(1P) (\rightarrow \Upsilon(1S)\gamma) \ \pi^+\pi^-$, $X_b \rightarrow \Upsilon(3S)\gamma$ (not easy: for Run-II)

Y(4140) PLB 734 (2014) 261

The Y(4140): another long story...

- > CDF (2009) reported evidence (@3.8 σ) for narrow peak in $J/\psi\phi$ mass spectrum, close to the kinematical threshold, in decays $B^+ \rightarrow J/\psi\phi K^+$
- CDF (2011) presents update analysis with larger dataset, (6.0fb⁻¹ vs 2.7fb⁻¹) observing the so called Y(4140) state:
- Belle (2009) searched and did not find this state in the same decay
- > LHCb (2012) has searched for these two states reconstructing 383 ±22 $B^+ \rightarrow J/\psi \phi K^+$ candidates
 - LHCb observed no signals; this measured UL implies a 2.4σ tension with CDF

The Y(4140): another long story...

- > CDF (2009) reported evidence (@3.8 σ) for narrow peak in $J/\psi\phi$ mass spectrum, close to the kinematical threshold, in decays $B^+ \rightarrow J/\psi\phi K^+$
- CDF (2011) presents update analysis with larger dataset, (6.0fb⁻¹ vs 2.7fb⁻¹) observing the so called Y(4140) state:
- Belle (2009) searched and did not find this state in the same decay
- > LHCb (2012) has searched for these two states reconstructing 383 ±22 $B^+ \rightarrow J/\psi \phi K^+$ candidates
 - LHCb observed no signals; this measured UL implies a 2.4σ tension with CDF
- Masses are well above 3770*MeV* open charm threshold; the conventional charmonium should decay into $D\overline{D}$, with tiny B.F. to $J/\psi\phi$ (OZI-suppressed)
- For the Y(4140) decaying several interpretations have been proposed:
 - $D_s^*\overline{D}_s^*$ molecule, that is the molecular strange partner of the Y(3940)
 - $\rightarrow cs\overline{cs}$ tetraquark
 - threshold kinematic effect
 - hybrid charmonium
 - \triangleright weak transition with $D_s\overline{D}_s$ rescattering

Interpretations

CMS search for Y(4140)

Search performed with 5.2*fb*⁻¹ of collision at 7*TeV*

CMS search for Y(4140)

Search performed with 5.2*fb*⁻¹ of collision at 7*TeV*

Signal extraction:

- $p_T > 1 GeV$ for any kaon
- selection on common vertex probability and angular separation between J/ψ and kaons
- $p_{\tau}(J/\psi) > 7GeV$
- transverse B⁺ flight lenght significance > 3
- The $\Delta m = m(\mu^+\mu^-K^+K^-) m(\mu^+\mu^-)$ spectrum is considered till 1.568*GeV* to avoid reflections from $B_s \to \psi(2S)\phi \to J/\psi\pi^+\pi^-\phi$ (but whole spectrum also investigated)

The J/ $\psi\phi$ mass spectrum

- The $\Delta m = m(\mu^+\mu^-K^+K^-) m(\mu^+\mu^-)$ spectrum is obtained:
 - dividing the dataset in 20MeV Δm bins
- fitting every bin with:
 - Signal PDF: S-wave relativistic Breit-Wigner (BW) convoluted with mass resolution
 - Background PDF: 3-body Phase Space Shape (PS)
 - **1-D Fit**: Binned χ^2 fit to the extracted Δm spectrum using the BW and PS shape.
 - Global 2-D Fit: simultaneous fit of m(B⁺) and Δm with implicit background subtraction
 - extracting the number of B^+ signal in each Δm bin by fitting the spectrum

The J/ $\psi\phi$ mass spectrum

- The $\Delta m = m(\mu^+\mu^-K^+K^-) m(\mu^+\mu^-)$ spectrum is obtained:
 - dividing the dataset in 20MeV Δm bins
- fitting every bin with:
 - Signal PDF: S-wave relativistic Breit-Wigner (BW) convoluted with mass resolution
 - Background PDF: 3-body Phase Space Shape (PS)
 - **1-D Fit**: Binned χ^2 fit to the extracted Δm spectrum using the BW and PS shape.
 - **Global 2-D Fit**: simultaneous fit of *m*(*B*⁺) and *∆m* with implicit background subtraction

Yield	Mass [MeV]	Γ [MeV]	
310 ± 70	4148.0 ± 2.4(stat) ± 6.3(syst)	28 ⁺¹⁵ 11(stat) ± 19(syst)	
418 ± 170	4313.8 ± 5.3(stat) ± 7.3(syst)	38 ⁺³⁰ -15(stat) ± 16(syst)	

First structure is consistent with Y(4140) of CDF observed with a stat. significance > 5σ ! There is evidence for a second structure in the same mass spectrum

Naïve yields' ratio estimate: -

$$\frac{BR(Y(4140))}{BR(J/\psi\phi K^{\pm})} \approx 0.10 \pm 0.03\%$$
 consistent with CDF and LHCb UL

Bormio 2016

Next steps for Y(4140)

Understanding the nature of both structures needs further investigation

The φK⁺ mass distribution shows an excess w.r.t. PHSP profile in the region where large resonances [K₂(1770) & K₂(1820)] may appear; reflections studies are carried out:

Next steps for Y(4140)

Understanding the nature of both structures needs further investigation

It is suitable for CMS adding Run-II data to extract an enough pure B^+ sample with enough statistics.

Summary & outlook

Although designed for high-p_T physics ...
... CMS is an exceptional apparatus for dealing with flavor physics topics!

CMS has greatly contributed to the study of exotic states:

- X(3872) prompt cross section
- Search for X_b
- *Y(4140)* confirmation
- Their actual nature is still a challenge. Moreover many final states still to be explored!

Summary & outlook

Although designed for high-p_T physics ...
... CMS is an exceptional apparatus for dealing with flavor physics topics!

CMS has greatly contributed to the study of exotic states:

- X(3872) prompt cross section
- Search for X_b
- *Y(4140)* confirmation
- Their actual nature is still a challenge. Moreover many final states still to be explored!

Run-II just started

- CMS will record much larger integrated luminosity than LHCb, in an harsher environment
- Dedicated triggers developed for the most important analyses

Backup slides / Additional material

Bormio 2016

Leonardo Cristella

X(3872) JHЕР 1304 (2013) 154

Systematic uncertainties

- Signal extraction:
 - 2 μ with p_{τ} > 4GeV coming from J/ψ in the central region of the detector ($|y(\mu^+\mu^-)| < 1.25$)
 - 2 tracks with opposite charge and p_{τ} > 600MeV
 - combination of these four tracks with constraint on common vertex
 - selection on common vertex probability, angular distance between J/ψ and π , Q value [m($\mu\mu\pi\pi$) m(J/ψ_{PDG}) m($\pi\pi$)].

Non-prompt fraction:

Source	Relative uncertainty (%)		
Vertex estimation	1		
Background parametrization	2-3		
Efficiency	3-8		
Decay length resolution	4		
Pileup	2		
Total	6-10		

$$R = \frac{\sigma(pp \to X(3872) + \text{anything}) \cdot B(X(3872) \to J/\psi \pi^{+}\pi^{-})}{\sigma(pp \to \psi(2S) + \text{anything}) \cdot B(\psi(2S) \to J/\psi \pi^{+}\pi^{-})} = \frac{N_{X(3872)} \cdot A_{\psi(2S)} \cdot e_{\psi(2S)}}{N_{\psi(2S)} \cdot A_{X(3872)} \cdot e_{X(3872)}}$$

Source	Relative uncertainty (%)		
Fit functions	1-2		
ε (μ⁺μ⁻)	< 1		
ε (π⁺π⁻)	1-5		
Efficiency statistical precision	1-3		
<i>X(3872) p_τ</i> spectrum	1-11		
ψ (2S) $p_{ au}$ spectrum	1-4		
m($\pi^{+}\pi^{-}$) spectrum	1–2		
Acceptance statistical precision	1–3		
Total	5–13		

Y(4140) PLB 734 (2014) 261

Crosscheck with cleaner B⁺ sample

- More stringent quality and kinematic cuts are used to produce a cleaner sample
 - ▶ 40% of the defaults *B* signal
 - I0 times less background

Found structure can be clearly seen also with this selection

Investigation of the whole Δm region

- ▷ Check the events with Δm larger than 1.568GeV (eliminated from the analysis) to ensure that they could not cause reflections in the low-Δm region
- The Δm spectrum after subtracting B⁰_s contribution but including non-B events within 1.5 σ of the B mass
- ▶ The extension of △m spectrum after subtracting non-B background, to the full phase space

The events in the cutoff region are consistent with phase space.

The absence of strong activity in the high- Δm region reinforces our conclusion that the near-threshold narrow structure is not due to a reflection of other resonances.

Source	m ₁ (<i>MeV</i>)	Γ_{1} (MeV)	Γ_2 (MeV)	m ₁ (<i>MeV</i>)
B ⁺ background PDF	0.8	7.4	2.6	9.9
B^{+} signal PDF	0.2	3.6	2.7	0.2
Relative efficiency	4.8	6.0	0.9	10.0
∆ <i>m</i> binning	3.7	1.5	2.7	0.2
∆ <i>m</i> structure PDF	0.8	9.3	0.6	4.9
∆ <i>m</i> mass resolution	0.8	6.4	0.6	4.6
∆m background shape	0.2	7.0	0.3	0.2
Selection requirements	0.8	7.8	5.5	1.8
Total	6.3	19	7.3	16