

Study of the η meson production with the polarized proton beam

Iryna Schätti-Ozerianska Institute of Physics, Jagiellonian University Krakow, Poland

Motivation

dynamics of the η meson production in pp->ppη

Our aim is to measure angular dependence of the analyzing power

$$\sigma(\theta,\varphi) = \sigma_0(\theta,\varphi)(1+\sum_{i=1}^3 P_i A_i(\theta,\varphi))$$

WASA Detector

Based on the pp->pp reaction, polarization were defined

Analyzing power for the eta meson

K. Nakayama et al. Phys. Rev., C68:045201, 2003.

The analyzing power is zero for the beam momentum 2026 MeV/c.

For the beam momentum 2188 MeV/c there is enough excess energy available to produce not only s waves but also p waves, and indeed a strong interference between Ps and Pp partial waves was observed.

Thank You for Attention:)

η meson production in pp collisions

dynamics of the η meson production in pp->ppη

COSY-11

R.Czyżykiewicz et al., Phys.Rev.Lett. 98, 122003 (2007)

CELSIUS

SATURNE

COSY

K. Nakayama et al., Phys. Rev. C 65 (2002) 045210 pseudoscala

Compare with previous Experiment (reconstructed Eta=2000 events)

G. F aldt and C. Wilkin, Phys. Scripta 64 (2001) 427 vector mesc

Partial Wave Analysis

interaction of the η meson with nucleons

- the lowest partial wave decomposition (S,P and s,p waves)
- few possibilities: Ss, Ps, Sp, Pp, Sd, ...
- two groups:
 - odd angular momentum (Pp, Ps,...)
 - even angular momentum (Ss, Sd, ..)
- analyzing power:
 - $A_y \sim Im \{A_{Ss}A_{Sd}^*\}sin\theta_{\eta}cos\theta_{\eta}$ - $A_y \sim Im \{A_{ps}A_{Pp}^*\}sin\theta_{\eta}$

Our aim is to measure angular dependence of the analyzing power

Analyzing Power

$$\sigma(\theta,\varphi) = \sigma_0(\theta,\varphi)(1 + \sum_{i=1}^3 P_i A_i(\theta,\varphi)) \quad \textcircled{P \neq 0}$$

 $\begin{array}{ll} \sigma(\theta,\phi) & \text{Differential cross section with polarisation} \\ \sigma_{_0}(\theta,\phi) & \text{Differential cross section without polarisation} \end{array}$

 Vector A_y analyzing power may be understood as a measure of the relative deviation between the differential cross section for the experiments with and without polarized beam.

Analysis steps (WASA@COSY)

1 For pp -> pp: we know A_y (EDDA) we calculate Polarization P

Determination of the Elastic scattering

CD: - one charge particle

FRH

Determination of the *pp* elastic scattering

A_y from EDDA

	A_y		
$\theta_{CM}[^{\circ}]$	$p_{beam}=2.026{ m GeV/c}^2$	$p_{beam}=2.188{ m GeV/c}^2$	
[30, 34]	$0.380 \pm 0.007_{stat} \pm 0.002_{syst}$	$0.358 \pm 0.007_{stat} \pm 0.001_{syst}$	
(34, 38]	$0.382 \pm 0.004_{stat} \pm 0.001_{syst}$	$0.358 \pm 0.005_{stat} \pm 0.002_{syst}$	
(38, 42]	$0.376 \pm 0.005_{stat} \pm 0.001_{syst}$	$0.356 \pm 0.006_{stat} \pm 0.002_{syst}$	
(42, 46]	$0.366 \pm 0.006_{stat} \pm 0.002_{syst}$	$0.344 \pm 0.008_{stat} \pm 0.002_{syst}$	

Asymmetry

 $\frac{N(\theta,\varphi)-N(\theta,\varphi+\pi)}{N(\theta,\varphi)+N(\theta,\varphi+\pi)} \equiv \epsilon(N(\theta,\varphi),N(\theta,\varphi+\pi))$

Asymmetry
$$\equiv P \cdot cos \varphi \cdot A_y$$

Asymmetry $\equiv a \cdot \cos \varphi + b$

 $a \equiv A_y \cdot P$

$$P \equiv \frac{a}{A_y}$$

Vertex position determination: coplanarity

M. Hodana, P. Moskal, I. Ozerianska, Acta Phys. Polon. Supp. 6 (2013) 1041 ¹³

Result for the distance method

Eta meson

2026 MeV/c

Missing Mass distribution for the Up:2026 MeV/c

Study of the influence of the position of the interaction point for the polarization

Example of asymmetry vs θ_{η} distribution for the $p_b = 2026$ Mev/c.

$$\epsilon_{\eta}^{\uparrow}(N(heta_{\eta},arphi_{\eta}),N(heta_{\eta},arphi_{\eta}+\pi)) \equiv rac{N_{\eta}^{\uparrow}(heta_{\eta},arphi_{\eta})-N_{\eta}^{\uparrow}(heta_{\eta},arphi_{\eta}+\pi)}{N_{\eta}^{\uparrow}(heta_{\eta},arphi_{\eta})+N_{\eta}^{\uparrow}(heta_{\eta},arphi_{\eta}+\pi)}$$

$$\epsilon_{\eta}^{\downarrow}(N(\theta_{\eta},\varphi_{\eta}),N(\theta_{\eta},\varphi_{\eta}+\pi)) \equiv \frac{N_{\eta}^{\downarrow}(\theta_{\eta},\varphi_{\eta}+\pi) - N_{\eta}^{\downarrow}(\theta_{\eta},\varphi_{\eta})}{N_{\eta}^{\downarrow}(\theta_{\eta},\varphi_{\eta}+\pi) + N_{\eta}^{\downarrow}(\theta_{\eta},\varphi_{\eta})}$$

eta->6g p(beam) = 2188 MeV/c

Result for the Polarization

Eta meson

- 1. Only 2 charge in the FD;
- 2. More then 2 neutral in the CD;
- 3. Cut for the deposit energy of the protons on FD

Cuts on the invariant Mass

eta->3pi->6g

Luminosity

$$L^{new} = L \cdot \frac{1}{10^{-27}}$$

Madison convention

Vertex position determination:Levents

x and y vertex coordinates, the method

MC

Simulation: (x_,y_,z_) = (0,0,0) mm p₁ ×10³ d [cm] 1.2 0.8 R₁ d 0.6 0.4 0.2 Φ_{d} 80 4 [deg] Φ'_1 χ Simulation: $(x_1, y_1, z_2) = (5, 0, 0) mm$ <10³ d [cm] Φ', 0.8 vertex (x_{ν}, y_{ν}) 0.6 0.4 ₽ p₂ 0.2 $d = x^{vertex} \cos(\phi_d) + y^{vertex} \sin(\phi_d)$ Φ_d [deg] Fit

Vertex position determination: Levents

z-vertex coordinate, the method

Result for the distance method

Fit parameters for Asymmetry

Theta	$A \pm \sigma A$	$B \pm \sigma B$	$P \pm \sigma P$
$30 < \theta < 34$	$0.2009 {\pm} 0.0058$	-0.011 ± 0.0042	0.5294 ± 0.053
$34 < \theta < 38$	$0.1997{\pm}0.0063$	-0.0031 ± 0.0045	$0.5188 {\pm} 0.05$
$38 < \theta < 42$	0.197 ± 0.0070	-0.016 ± 0.0050	0.5218 ± 0.046
$42 < \theta < 46$	$0.1925{\pm}0.0087$	-0.008 ± 0.0062	$0.5218 {\pm} 0.051$

Spin up

Theta	$a \pm \sigma a$	$b \pm \sigma b$	$P \pm \sigma P$
$30 < \theta < 34$	-0.255 ± 0.0059	-0.0024 ± 0.0043	-0.6719 ± 0.066
$34 < \theta < 38$	-0.2427 ± 0.0065	-0.0045 ± 0.0046	-0.6306 ± 0.06
$38 < \theta < 42$	-0.2417 ± 0.0072	-0.0155 ± 0.0052	-0.6403 ± 0.055
$42 < \theta < 46$	-0.2341 ± 0.0089	-0.0165 ± 0.0064	-0.6346 ± 0.06

$$\overline{P} \equiv \frac{\sum_{n=1}^{4} \frac{p_n}{\sigma_n^2}}{\sum_{n=1}^{4} \frac{1}{\sigma_n^2}}$$

$$\sigma_{\overline{P}} \equiv \sqrt{\frac{1}{\sum_{n=1}^{4} \left(\frac{1}{\sigma_{n}^{2}}\right)}}$$

EDDA data base

$$A_y(p_{beam}) \equiv a \cdot p_{beam} + b$$

$$A_y(p_{beam}) \equiv \alpha \cdot e^{-\beta \cdot p_{beam}}$$

Calculations of the error bars for Asymmetry(δε)

$$\delta \epsilon \equiv \sqrt{\left(\frac{\delta \epsilon}{\delta N_{+}} \cdot \delta N_{+}\right)^{2} + \left(\frac{\delta \epsilon}{\delta N_{-}} \cdot \delta N_{-}\right)^{2}}$$

MC for the shift of vertex position

Hodana M. Moskal P. Ozerianska I. http://arxiv.org/abs/1309.0430

N	Theta	A_y	P Up	P Down
1	28 < heta < 32	0.3817	$0.56 \pm \ 0.01$	$0.69\pm~0.01$
2	$32 < \theta < 36$	0.3811	$0.55\pm~0.02$	$0.68\pm~0.02$
3	$36 < \theta < 40$	0.3788	$0.56 \pm \ 0.02$	$0.69\pm~0.02$
4	$40 < \theta < 44$	0.3669	0.56 ± 0.03	$0.69\pm~0.02$
5	$44 < \theta < 48$	0.3339	$0.55 \pm \ 0.04$	$0.74\pm~0.04$

Experiment with WASA-at-COSY

Q [MeV/c]	P [MeV/c]	
15	2026	
72	2188	

Compare with previous Experiment (reconstructed Eta=2000 events)

Ν _{η->γγ}	N _{η->3πο}
99770	81861
447739	375580

R.Czyżykiewicz at al., Phys.Rev.Lett. 98, 122003 (2007)

(control systematic error of the Polarization determination to about 1%)

Measurement time: 164 h *With P=70%*: 74 h *With P=60%*: 47 h

Spin Up/Down measurements

Spin Up

Spin Down

Vertex position determination:Levents

x and y vertex coordinates, the method

MC

Simulation: (x_,y_,z_) = (0,0,0) mm p₁ ×10³ d [cm] 1.2 0.8 R₁ d 0.6 0.4 0.2 Φ_{d} 80 4 [deg] Φ'_1 χ Simulation: $(x_1, y_1, z_2) = (5, 0, 0) mm$ <10³ d [cm] Φ', 0.8 vertex (x_{ν}, y_{ν}) 0.6 0.4 ₽ p₂ 0.2 $d = x^{vertex} \cos(\phi_d) + y^{vertex} \sin(\phi_d)$ Φ_d [deg] Fit

Vertex position determination: Levents

z-vertex coordinate, the method

Vertex position determination: coplanarity

Result for the coplanarity method

vertex	unpolarized $P_{beam} = 2.026 \text{ Gev/c}$	$P_{beam} = 2.026 \text{ Gev/c}$	$P_{beam} = 2.188 \text{ Gev/c}$	
The χ^2 method				
x _v	-0.1164±0.0052	-0.1230±0.0011	-0.2834±0.0010	
y_v	0.1119±0.0052	0.1099 ± 0.0011	0.1551 ± 0.0010	
The distance method				
x _v	-0.0908±0.0017	-0.0968±0.0012	-0.3755±0.0019	
y_v	0.1386±0.0019	0.1369 ± 0.0011	0.1793±0.0015	

18

Result for the distance method

