Some Concepts about Heavy Ion Reactions

- Chiral Symmetry
- Sideward and Elliptic Flow
- Phase Diagram of Nuclear Matter
- Jets (Suppresion)
- RAA

the mass of composite systems

binding energy effect $\approx 10^{-8}$

 $M \approx \Sigma m_i$

binding energy effect $\approx 10^{-3}$

M » m_i

nucleon: mass not determined by sum of constituent masses $m = E/c^2$; "mass without mass" (Wilczek) mass given by energy stored in motion of quarks and by energy in colour gluon fields

$m_N = 938 \text{ MeV} >> m_q \approx 5 - 10 \text{ MeV}$

the interaction among quarks has to become so strong that it overcomes their quantum mechanical resistance to localization (Wilczek) V. Metag, Uni. Giessen

the role of chiral symmetry breaking

- chiral symmetry = fundamental symmetry of QCD for massless quarks
- chiral symmetry broken on hadron level

mass split comparable to hadron masses !

Chiral Symmetry

Strong interaction is the same for left- and right-handed quarks and for all the flavours

Spontenous Chiral Symmetry Breaking

Vacuum state of the QCD Lagrangian is not 0 and hence does not have the same symmetries has the Lagrangian

Quark Condensate

$$\langle \bar{q}q
angle pprox -(240\,{
m MeV})^3 imes N_f$$

The Usual Example

 interaction between microscopic magnetic dipoles (spins) does not prefer any direction

$$m{\mathcal{H}}_{ ext{int}} = g \sum_{i
eq j} ec{m{s}}_i \cdot ec{m{s}}_j$$

 \rightarrow rotational invariance

- in contrast ground state (unexcited solid state) has preferred direction
- → breaking of rotational invariance

S. Leupold Lectures HADES Summer School

Spontaneous Chiral Symmetry Breaking

Vacuum state of the QCD Lagrangian is not 0 and hence does not have the same symmetries has the Lagrangian

Quark Condensate $\langle ar{q}q
angle pprox -(240\,{
m MeV})^3 imes {\it N_f}$

Explicit Symmetry Breaking

Mass term in the QCD Lagrangian due to the non-0 quark masses

QCD lagrangian:
$$L_{QCD} = L_0 + m_q \overline{q} q$$

L₀ invariant under chiral transformations (L,R) Small explicit breaking

$$SU_L(N_f) \times SU_R(N_f) = SU_V(N_f) \times SU_A(N_f)$$

→Isopin/Parity partners should be degenerate to restore the symmetry The isospin partner might become degenerate with increasing T and ρ

 η and η' are two different particles in vacuum -> do their masses approach to each other when the density increases?

phase transition: ferromagnetism → paramagnetism

restoration of full rotational symmetry

hadron masses

⇒ widespread experimental activities to search for in-medium modifications of hadrons

V. Metag, Uni. Giessen

Hadron In-Medium Modification

There are several scenarios.. 2 examples: Old One: Brown-Rho scaling (1992)

$$m = m_0 \left(1 - \alpha \frac{\rho}{\rho_0} \right)$$

One of the new: QCD Sum-Rules

$$-Q^{2}\int ds \frac{\mathrm{Im}\Pi_{Had}(s)}{(s+Q^{2})s^{2}} = A(Q^{2}) + \frac{1}{Q^{4}}\left(B \cdot \left\langle \overline{q} q \right\rangle_{med}\right) + C \cdot \left\langle G^{2} \right\rangle + \ldots\right) + \frac{1}{Q^{6}}\left(D \cdot \left\langle q^{4} \right\rangle + \ldots\right) + \ldots$$

S. Leupold et al. Int.J.Mod.Phys.E19:147-224,2010

Tools to study the in-medium modifications of hadrons:

possible in-medium modifications of hadrons:

• in-medium mass shift

(partial restoration of chiral symmetry, meson-baryon coupling)

- in-medium broadening of hadron resonances (meson-baryon coupling, collisional broadening)
- Transparency Ratio

 (imaginary part of the interacting potential)
- Momentum and Energy Shift (real part of the interacting potential)
- hadron-nucleus bound states

(meson-nucleus attractive potential)

In-Medium Mass Shifts

Vector Meson in Medium

Penetrating probes:

- information from the early stage
- ★ low branching ratio, O (10⁻⁵)

reconstruction of invariant mass from 4-momenta of decay products:

$$\mathbf{m}_{\omega}(\mathbf{\rho},\mathbf{T},\vec{\mathbf{p}}) = \sqrt{(\mathbf{p}_1 + \mathbf{p}_2)^2}$$

dilepton spectroscopy: ρ , ω , $\phi \rightarrow e^+e^$ essential advantage: no final state interactions !!

Information on medium modifications of mesons

from heavy-ion collisions

from <u>elementary</u> reactions

advantage:

sizable effects due to high densities and temperatures

disadvantage:

any signal represents an integration over the full space-time history of the heavy-ion collision with strong variations in densities and temperatures

<u>advantage</u>: well controlled conditions: important for theoretical interpretation no time dependence of baryon density: $\rho_B \neq \rho_B(t);T=0;$

 $\frac{\text{disadvantage}}{\text{small medium effects since}}$ $\rho \le \rho_0$ and T=0

The HADES experiment at GSI

Technical layout of HADES

HADES

HADES + FW

inner MDC

PANIC2014 Hamburg, Germany R. Holzmann, GSI

e⁺e⁻ spectroscopy in few-GeV reactions

Dilepton sources in HI collisions

Dileptons are emitted in all phases of the collisions...

HADES - WASA workshop, 10/4/2011 R. Holzmann - GSI

The RICH: excellent lepton ID

The RICH: excellent lepton ID

<u>HADES</u>

e

 π^0 Dalitz pair

γ conversion pair

PANIC2014 Hamburg, Germany R. Holzmann, GSI

Electron/positron identification

discussion 12/10/2015

Performance: Dielectron production in Ar+KCl

Romain Holzmann SRC discussion 12/10/2015

Reaction Plane and angular variables

φ'= φ - Ψr

Beam Direction=z

 ϕ = Azimuthal Emission angle of one particle

S. Voloshin, Y. Zhang, hep-ph/9407082 J.Y. Ollitrault, nucl-ex/9711003

V2=-0.2; Enhancement out of reaction plane

V1=0.2; Enh. in Proj. Direction

V1=-0.2 ; Enh. in Target Direction

Elliptic Flow

Increasing velocity = decreasing shadowing time of the spectators

Sideward Flow

Phase Diagramm of Nuclear Matter

Nuclear Equation of State

<u>Outline</u>

- 1. Reminders on Thermodynamics
- 2. Nuclear Equation of State
 - a) Importance of the EoS for the understanding of the universe
 - b) Approach from Nuclear Physics (EoS around ρ_0)
 - c) Approach from Heavy Ion Physics (EoS for $\rho > \rho_0$)

Equation of State

How a system behaves depends on its equation of state.

The equation of state connects the different state variables to each other. E.g.:

P=P(T,V,N); E=E(T,V,N); $\mu(T,V,N)$ etc.

Example of a phase diagram is given by the different phases of water

In general always the phase with the **lowest** chemical potential is present.

Phase Diagram

By going from left to right one crosses the phase boarder from the liquid (A) to the gaseous (B) phase at **constant pressure.** At the boarder the two phases are in equilibrium, i.e. their chemical potentials are equal:

$$\mu_A(T,P) = \mu_B(T,P) \implies Phaseboarder: P = P(T)$$

This does not have to be true for the derivatives of the chemical potential:

$$\left(\frac{\partial \mu_A(T,P)}{\partial T}\right)_P \neq \left(\frac{\partial \mu_B(T,P)}{\partial T}\right)_P \Longrightarrow s_A \neq s_B$$

By going from down to up one crosses the phase boarder from the gas (B) to the liquid (A) at **constant temperature.** At the boarder the two phases are again in equilibrium, i.e. their chemical potentials are equal:

The first derivatives of the chemical potential is:

$$\left(\frac{\partial \mu_A(T,P)}{\partial P}\right)_T \neq \left(\frac{\partial \mu_B(T,P)}{\partial P}\right)_T \Longrightarrow v_A \neq v_B$$

Phase Transitions

- The first derivative has a jump \rightarrow 1. Order Phase Transition
- By moving to higher temperatures in the water Phase Diagram one reaches the critical point
 - Jumps in Entropy and Volume go to 0
 - 2. Order phase transition
- Moving to even higher Temperatures, derivatives to all order become static
 - \rightarrow Cross Over!

• A state variable, which shows a characteristic change at the Phase Transition is called the **Order Parameter**.

- e.g. the volume in the case of water
- > e.g. the magnetization in case of a ferro magnet (2. Order Phase Transition)
- > e.g. Entropy (heat) for transition from QGP to hadron gas

 $S_{QGP} {\approx} N_{color}^2$; $S_{HG} {\approx} N_{color}^0$

Phase Diagrams

Water (Electromagnetism)

Quark Matter (QCD)

Can we establish/study a QCD phase diagram with 1.Phase transitions?
2.Critical point?
3.Other phases of matter, e.g. Quarkyonic?

The QCD Phase Diagram

Basic motivation: Exploration of the QCD phase diagram

- -Hadron gas phase at low T and/or μ_B
- We expect from QCD lattice calculations a cross over at high energies
- QGP at high T and/or $\mu_B \rightarrow R_{CP'} NCQ$ scaling of $v_{2'}...$
- First order phase transition? \rightarrow HBT, v₁ analyses
- Critical point?
- \rightarrow Fluctuation analyses (net-protons)
- Chiral symmetry restoration?
 → Di-leptons
- Quarkyonic matter? \rightarrow ???

Courtesy of K. Fukushima & T. Hatsuda Baryon

Baryon Chemical Potential $\mu_{\rm B}$

? QCD critical point? QCD phase transition? Quarkyionic matter? QGP phase

Phase Space Trajectories

The Beam Energy Scan Programs

$\sqrt{\mathrm{s}_{\mathrm{NN}}}$ (GeV)	*MB Events in 10 ⁶
7.7	4.3
11.5	11.7
14.5	24**
19.6	35.8
27	70.4
39	130.4
62.4	67.3

*Au+Au minimum bias events at STAR usable for analysis

- Two dimensional scan in energy and system size
 → Criticality
- p+p and p+Pb reference runs
- High statistic runs with vertex tracker from 2017

Present Experiments

- 7.7 < $\sqrt{s_{NN}}$ < 200 GeV
- Excellent PID
- Full azimuthal coverage
- Energy scan started: 2010
- 7.7 < $\sqrt{s_{NN}}$ < 200 GeV
- High granularity calorimeter
- Energy scan started: 2010
- $\sqrt{s_{NN}}$ = 5-17 GeV
- Full forward ToF
- Energy scan started: 2009

Relatively low statistics at lowest energies (~ few million events)
→Focus mainly on bulk observables
→ For rare probes and lower energies CBM/HADES is needed!

Freeze-Out Systematics

Where are we in the phase diagram?

- Saturation of T_{chem} above ~10 GeV
- Splitting between T_{chem} and T_{kin} starts at ${\sim}6~GeV$

• Connected to a phase change?

- Maximum baryon density reached at ~8 GeV
- → pions processes become more important

Lattice chemical freeze-out parameters: S. Mukherjee. arXiv:1211.7048 [nucl-th] A. Bazavov et al., Phys. Rev. Lett. 109,192302 (2012) S. Borsanyi et al., Phys. Rev. Lett. 111, 062005 (2013)

Particle Ratios

- Pronounced structures in particle
- ratios at ~ 5-10 GeV
- \rightarrow indications for a phase transition?
- Net-baryon density has a maximum
- at ~ $\sqrt{s_{NN}}$ ~ 8 GeV at freeze-out (Λ/π)
- + Associate production channels like N+N \rightarrow N + Λ + K⁺
- Canonical strangeness suppression at low energies?
- Statistical hadronization model can describe the various structures,
- **EXCEPT** multi=strange particles
- $\rightarrow \Xi$
- \rightarrow What about Ω ?

HADES, QM 2014

Hwa & Yang, Phys. Rev. C 75, 054904 (2007)

Collective Behavior

Hydrodynamic evolution

- $\bullet v_2$ is strength of correlation with event plane
- Baryon-meson splitting
 - \rightarrow signature for partonic degrees of freedom?
- This signature should go away in a hadronic environment
 - → SIS 100 energies
 - \rightarrow QGP at < 8 GeV?

v_2 NCQ Scaling of Particles

 NCQ-scaling holds for particles and anti-particles separately at all energies
 → Partonic degrees of freedom?

NCQ = Number of Constituent Quark

- High m_T-m₀ not measured at lower energies
- Do φ-mesons or multi-strange particles deviate?
- NCQ scaling should break down at even lower energies (2-5 GeV)!

Jet Suppresion

Probe the medium

• Goal:

Understand the property of QGP

- Problem: the lifetime of QGP is so short
 (O(fm/c)) such that it is not feasible to
 probe it with an external source.
- Solution: Take the advantage of the large cross-sections of high p_T jets, γ/W/Z, quarkonia at the LHC energy, use hard probes produced with the collision.

Quark Matter 2012 - Hard Probes

Factorization

Factorization

$$\sigma^{AB \to kl} \sim f_i^A(x_1, \mu_F^2) \otimes f_j^B(x_2, \mu_F^2) \otimes \hat{\sigma}^{ij \to kl}$$

Parton Distribution Function (PDF)

Parton density distribution

Low Q²: valence structure

Q² evolution (gluons)

Factorization

$$\sigma^{AB \to kl} \sim f_i^A(x_1, \mu_F^2) \otimes f_j^B(x_2, \mu_F^2) \otimes \hat{\sigma}^{ij \to kl}$$

Parton Distribution Function (PDF) Cross-section of $2 \rightarrow 2$ process

Testing QCD at RHIC with jets

10⁸ STAR, hep-ex/0608030 10' 1/2π dỗ/(dηdpī) [pb/GeV] 0.01,01,01,01,01 $p+p \rightarrow jet + X$ √s=200 GeV midpoint-cone cone=0.4 0.2<n<0.8 10 Combined MB Combined HT 10 NLO QCD (Vogelsang) NLO + Nonperturbative 1.8 Systematic uncertainty data / theory Theory scale uncertainty 1.00.6 10 20 30 40 50 0 p_T [GeV/c]

RHIC: p+p at √s = 200 GeV (recent run 500 GeV)

Jets also measured at RHIC

NLO pQCD also works at RHIC

However: signficant uncertainties in energy scale, both 'theory' and experiment

Factorization

$$\sigma^{AB \to kl} \sim f_i^A(x_1, \mu_F^2) \otimes f_j^B(x_2, \mu_F^2) \otimes \hat{\sigma}^{ij \to kl}$$

Nuclear Parton Distribution Function (nPDF) Cross-section of $2 \rightarrow 2$ process

Quark Matter 2012 - Hard Probes

How do we extract the medium effect in PbPb collisions?

One typical way is to compare PbPb data to pp reference measurement

Quark Matter 2012 - Hard Probes

How do we extract the medium effect in PbPb collisions?

One typical way is to compare PbPb data to pp reference measurement

How do we extract the medium effect in PbPb collisions?

One typical way is to compare PbPb data to pp reference measurement

Nuclear modification factor R_{AA}

Measured R_{AA} is a ratio of yields at a given p_T The physical mechanism is energy loss; shift of yield to lower p_T

From RHIC to LHC

 R_{AA} depends on *n*, steeper spectra, smaller R_{AA}

How about quarks and gluons?

• Want to measure quarks and gluons which carry color charge and see how they interact with QGP

How about out going quarks and gluons?

- Want to measure quarks and gluons which carry color charge and see how they interact with QGP
- → Practically: measure hadrons and jets

Jet composition

On average, charged hadrons carry 65% of the jet momentum

Measure the known part Correct the rest by MC simulation

Optimize the use of calorimeter and tracker Example: "Particle Flow" in CMS

clusters and tracks

Particles

Goal:

- Make use of the redundancy of measurements from calorimeter and tracker
- \bullet Improve the sensitivity to low p_{T} particles in jet

 \rightarrow Reduce the dependence on MC

(ex: PYTHIA)

Y.G. Lee, QM Lectures 2012

Quark Matter 2012 - Hard Probes

