K⁻ multi-nucleon absorption processes in hadronic interaction studies by AMADEUS

Raffaele Del Grande*

INFN, Laboratori Nazionali di Frascati Università degli Studi di Roma TOR VERGATA

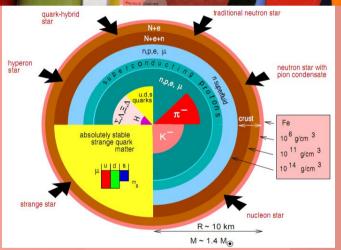
On behalf of the AMADEUS collaboration

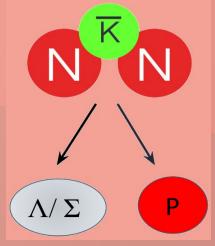
Anti-kaonic Matter At Da Da Da Experiment with Unraveling Spectrocopy

54th International Winter Meeting on Nuclear Physics, Bormio, Italy

25 January 2016

*raffaele.delgrande@Inf.infn.it


K⁻ in Matter and Kaonic Bound State

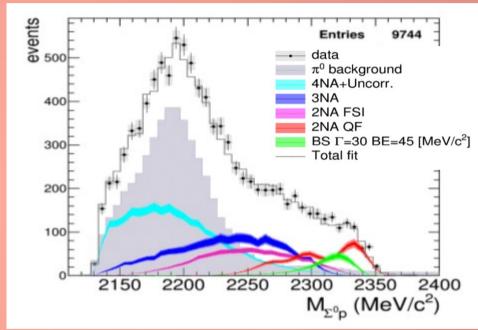

K⁻ in nuclear matter:

- K⁻ nucleon interaction is attactive: how deep can an antikaon be bound to a nucleus?
- Models for neutron stars with K⁻ condensate inside, depending on the strenght of the K⁻ nucleon potential
- if $U_{\overline{K}N}$ is strongly attractive \rightarrow possible K⁻ multi-N bound states

	Dote,Hyodo, Weise	Akaishi, Yamazaki	Barnea, Gal, Liverts	Ikeda, Sato	Ikeda, Kamano,Sato	Schevchenko ,Gal, Mares	Revai, Schevchenko	Maeda, Akaishi, Yamazaki
B (MeV)	17-23	48	16	60-95	9-16	50-70	32	51.5
Γ(MeV)	40-70	61	41	45-80	34-46	90-110	49	61

Search for the ppK⁻ bound state in Σ⁰p channel

We performed the simultaneus fit for all the relevant physical quantities $(p_p, p_{\Sigma 0}, m_{\Sigma 0p}, \cos\theta_{\Sigma 0p})$ with and without the bound state (AMADEUS-


KLOE2 collaboration).

Results:

• Bound State with B.E. 45 MeV/c² and width 30 MeV/c² gives the best fit ($\chi^2/v = 0.807$).

Significance:

 1σ according to F-test.

Obtention of the 2/3 NA yields for the first time:

	yield / $K_{stop}^- \cdot 10^{-2}$	$\sigma_{stat} \cdot 10^{-2}$	$\sigma_{syst} \cdot 10^{-2}$
2NA-QF	0.127	± 0.019	$^{+0.004}_{-0.008}$
2NA-FSI	0.272	± 0.028	$+0.022 \\ -0.023$
Tot 2NA	0.376	± 0.033	$^{+0.023}_{-0.032}$
3NA	0.274	± 0.069	$^{+0.044}_{-0.021}$
Tot 3 body	0.546	± 0.074	$+0.048 \\ -0.033$
4NA + bkg.	0.773	± 0.053	$+0.025 \\ -0.076$