

Lattice QCD: recent results and what to expect

Sinéad M. Ryan Trinity College Dublin

- Introduction and background
- A consumers guide to Lattice QCD
 - compromises and consequences
- Discussion and selected results
 - parallel tracks for progress
 - old challenges and new results
 - new and unexpected challenges and exploratory results
 - precision spectroscopy of single hadron states including excited and exotic states

Focus on Lattice Spectroscopy

- spectroscopy of scattering states progress and challenges
- Summary

PLAN

- Introduction and background
- A consumers guide to Lattice QCD
 - compromises and consequences
- Discussion and selected results
 - parallel tracks for progress
 - old challenges and new results
 - new and unexpected challenges and exploratory results
 - precision spectroscopy of single hadron states including excited and exotic states

Focus on Lattice Spectroscopy

- spectroscopy of scattering states progress and challenges
- Summary

Many details and topics omitted for time constraints - APOLOGIES!

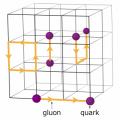
WHY LATTICE QCD?

- A systematically-improvable non-perturbative formulation of QCD
 - Well-defined theory with the lattice a UV regulator
- Arbitrary precision is in principle possible
 - of course algorithmic and field-theoretic "wrinkles" can make this challenging!
- Starts from first principles i.e. from the QCD Lagrangian
 - inputs are quark mass(es) and the coupling can explore mass dependence and coupling dependence but getting to physical values can be hard!

Focus on Lattice Spectroscopy

A LATTICE **QCD** PRIMER

Start from the QCD Lagrangian:


$$\mathcal{L} = \bar{\Psi} \left(i \gamma^{\mu} D_{\mu} - m \right) \Psi - \frac{1}{4} G^{a}_{\mu\nu} G^{\mu\nu}_{a}$$

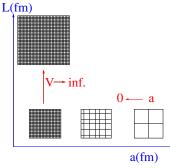
Gluon fields on links of a hypercube;

Quark fields on sites: approaches to fermion discretisation -

Wilson, Staggered, Overlap.;

Derivatives → finite differences.

Solve the QCD path integral on a finite lattice with spacing $a \neq 0$ estimated stochastically by Monte Carlo. Can only be done effectively in a Euclidean space-time metric (no useful importance sampling weight for the theory in Minkowski space).


Observables determined from (Euclidean) path integrals of the QCD action

$$\langle \mathcal{O} \rangle = 1/Z \int \mathcal{D} U \mathcal{D} \bar{\Psi} \mathcal{D} \Psi \mathcal{O}[U, \bar{\Psi}, \Psi] e^{-S[U, \bar{\Psi}, \Psi]}$$

Compromises and the Consequences

1. Working in a finite box at finite grid spacing

 Identify a "scaling window" where physics doesn't change with a or V. Recover continuum QCD by extrapolation.

A costly procedure but a regular feature in lattice calculations now

2. Simulating at physical quark masses

- Computational cost grows rapidly with decreasing quark mass $\rightarrow m_q = m_{u,d}$ costly. Care needed vis location of decay thresholds and identification of resonances.
- c-quark can be handled relativistically. b-quark with: NRQCD, FNAL etc.

Better algorithms for physical light quarks and/or chiral extrapolation. Relativistic m_b in reach

2. Breaking symmetry

• Lorentz symmetry broken at $a \neq 0$ so SO(4) rotation group broken to discrete rotation group of a hypercube.

Classify states by irreps of O_h and relate by subduction to J values of O_3 . Lots of degeneracies in subduction for $J \ge 2$ and physical near-degeneracies. Complicates spin identification.

Spin identification at finite lattice spacing: 0707.4162, 1204.5425

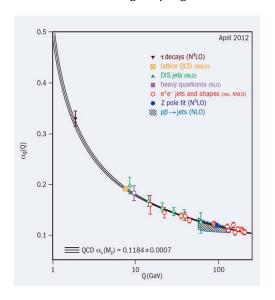
3. Working in Euclidean time.

Scattering matrix elements not directly accessible from Euclidean QFT [Maiani-Testa theorem]. Scattering matrix elements: asymptotic |in⟩, |out⟩ states: (out|e^{iĤt}|in⟩ → (out|e^{-Ĥt}|in⟩. Euclidean metric: project onto ground state. Analytic continuation of numerical correlators an ill-posed problem.

Lüscher and generalisations of: method for indirect access.

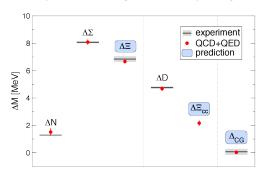
4. Quenching

No longer an issue: Simulations done with $N_f = 2, 2 + 1, 2 + 1 + 1$.

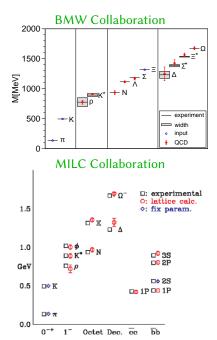

predictions?

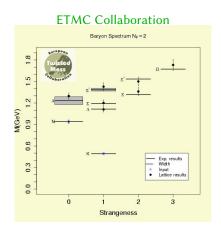
Validation: can we reproduce known results and make verified

VALIDATION


Introduction

The running coupling, α_s


Baryon electromagnetic mass splittings

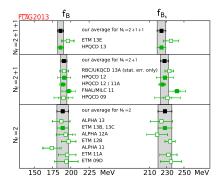

Focus on Lattice Spectroscopy

QED + QCD

BMW Collab. Science 347 (2015) 1452

BMW: SW-Wilson [Science 322:1224-1227,2008.] **ETMC**: Twisted Mass [arXiv:0910.2419,0803.3190]

MILC: Staggered [arXiv:0903.3598]


Two strategies for progress

Gold-plated quantities


- e.g. single hadron states, or decays below thresholds
- phenomenologically relevant
- incremental progress
- robust/well-tested methods
- careful error budgeting

New directions

- new ideas theoretical and algorithmic that open new avenues
- recent examples are scattering states, g-2, ...
- also improves gold-plated
- pioneering, error budgets not yet "robust"

FLAG 2013 itpwiki.unibe.ch/flag/

- Stable single-hadron states, below thresholds
- Including continuum extrapolation, realistic quark masses, renormalisation etc

STRATEGIES FOR PROGRESS: NEW DIRECTIONS - A SELECTION

New ideas in hadron spectroscopy

- **Distillation** for quark propagation enabled isoscalars, precision spectroscopy, efficient calculation and motivated ...
- Scattering and Coupled channels new theoreticla ideas to tackle scattering states and study (X,Y,Z), resonance parameters in eg πK , $\pi \eta$...

Focus on Lattice Spectroscopy

New ideas for g-2

• Dominant uncertainty is in hadronic contributions - HVP and HLbL

lots more!

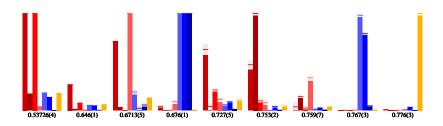
Lattice Hadron Spectroscopy precision & pioneering results

- (i) Precision spectroscopy of single-hadron states
- (ii) Exploratory studies of "exotic" and scattering states

A RECIPE FOR (MESON) SPECTROSCOPY

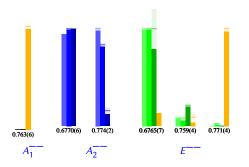
INTRODUCTION

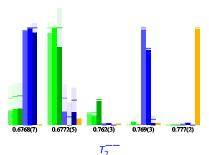
- Construct a basis of local and non-local operators $\bar{\Psi}(x) \Gamma D_i D_j \dots \Psi(x)$ from distilled fields [PRD80 (2009) 054506].
- Build a correlation matrix of two-point functions


$$C_{ij} = \langle 0 | \mathcal{O}_i \mathcal{O}_j^{\dagger} | 0 \rangle = \sum_n \frac{Z_i^n Z_j^{n\dagger}}{2E_n} e^{-E_n t}$$

- Ground state mass from fits to $e^{-E_n t}$
- Beyond ground state: Solve generalised eigenvalue problem $C_{ij}(t)v_i^{(n)} = \lambda^{(n)}(t)C_{ij}(t_0)v_i^{(n)}$
- eigenvalues: $\lambda^{(n)}(t) \sim e^{-E_n t} \left[1 + O(e^{-\Delta E t}) \right]$ principal correlator
- eigenvectors: related to overlaps $Z_i^{(n)} = \sqrt{2E_n}e^{E_nt_0/2}v_i^{(n)\dagger}C_{ji}(t_0)$

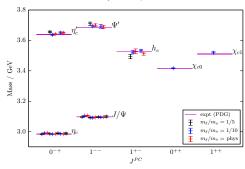
- operators of definite J^{PC} constructed in step 1 are subduced into the relevant irrep
- a subduced irrep carries a "memory" of continuum spin *J* from which it was subdduced it **overlaps** predominantly with states of this *J*.


J	0	1	2	3	4
A_1	1	0	0	0	1
<i>A</i> ₂	0	0	0	1	0
E	0	0	1	0	1
T_1	0	1	0	1	1
<i>T</i> ₂	0	0	1	1	1


- Using $Z = \langle 0 | \Phi | k \rangle$, helps to identify continuum spins
- For high spins, can look for agreement between irreps
- Data below for τ_1^{--} irrep, colour-coding is **Spin 1**, **Spin 3** and **Spin 4**.

... THE REST OF THE SPIN-4 STATE

- All polarisations of the spin-4 state are seen
- Spin labelling: Spin 2, Spin 3 and Spin 4.



Precision Spectroscopy: states below strong decay thresholds

SINGLE HADRON STATES: BELOW THRESHOLD - "GOLD-PLATED"

- Methods: tested, validated.
- High statistics and improved actions for precise results.
- Different actions in agreement.
- Simulation at m_a^{phys} or extrapolation $m_q \to m_q^{\rm phys}$.
- Discretisation errors $\mathcal{O}(am_c)$ and $\mathcal{O}(am_b)$ under control,

Charmonium, HPQCD 1411.1318

Continuum limit, physical quark masses

No disconnected diagrams in $c\bar{c}$ spectrum: OZI suppressed - assumed to be small ⇒ mixing with lighter states not included

Precision Spectroscopy:

single hadron states near/above thresholds

SINGLE HADRON STATES: ABOVE THRESHOLD

Precision calculation of high spin $(J \ge 2)$ and exotic states is relatively new

500

 η_c J/ ψ

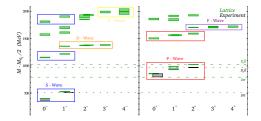
Caveat Emptor

- Only single-hadron operators
- Physics of multi-hadron states appears to need relevant operators
- No continuum extrapolation
- Relatively heavy pions ← already changing

part of G-wave 1500 F-wave D-wave 1000 $D_s\overline{D}_s$ $M-M_{\eta_e}$ (MeV) P-wave $D\overline{D}$

Charmonium

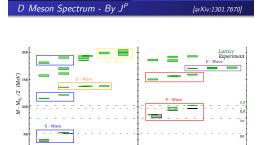
Exotics

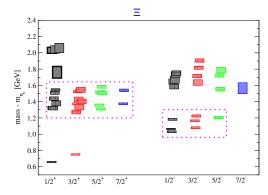

from HSC 2012

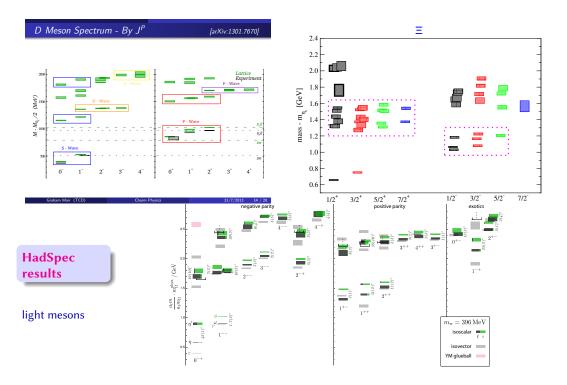
 χ_{c0} h_c χ_{c1} χ_{c2}

→ Expect improvements now methods established

D Meson Spectrum - By J^P






Granam Moir (1CI

Charm Physic

31/7/2013 14 / 20

Lightest hybrid supermultiplet and excited hybrid supermultiplet same pattern and scale as in open charm and light^[HadSpec:1106.5515] sectors.

Characterised by

- New methods (developed/applied in last 5 years)
 - algorithmic: distillation allows access to all elements of propagators and construction of sophisticated basis of operators.
 - theoretical: spin-identification; construction of multi-hadron operators and mesons in flight; scattering below inelastic thresholds; coupled-channels (new in '14).
- Generally high statistics, improved actions etc results can be very precise.
- Systematic errors not all controlled in exploratory studies: e.g. no continuum extrapolation, relatively heavy pions ...

Rapid progress in the last 5 years!

INTRODUCTION

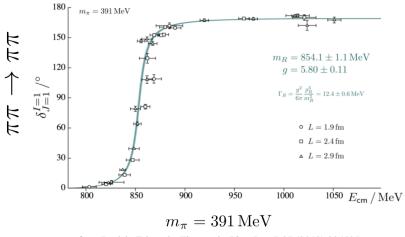
SCATTERING IN A EUCLIDEAN THEORY

Lose direct access to scattering in (Euclidean) lattice calculations

Lüscher found a way to extract scattering information in the elastic region from LQCD . [NPB354, 531-578 (1991)]

 related lattice energy levels in a finite volume to a decomposition of the scattering amplitude in partial waves in infinite volume

$$\det\left[\cot\delta(E_n^*)+\cot\phi(E_n,\vec{P},L)\right]=0$$

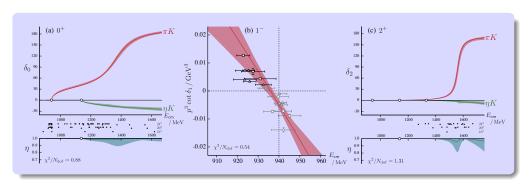

and $\cot \phi$ a known function (containing a generalised zeta function).

• The idea dates from the quenched era. To use it in a dynamical simulation need energy levels at extraordinary precision. This is why it has taken a while ...

Using Lüscher's idea

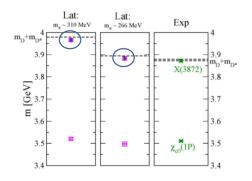
Introduction

Now in use to determine resonance parameters

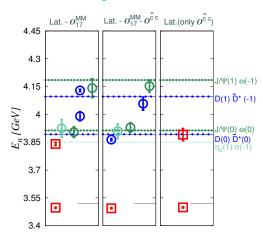

Focus on Lattice Spectroscopy

from Dudek, Edwards, Thomas in Phys. Rev. D87 (2013) 034505

EVEN MORE RECENT PROGRESS


- Generalised for: moving frames; non-identical particles; multiple two-particle channels, particles with spin, by many authors.
- The precision and robustness of some numerical implementations is now very impressive. [See talks at Lattice 2015 & 2016]
- First coupled-channel resonance in a lattice calculation

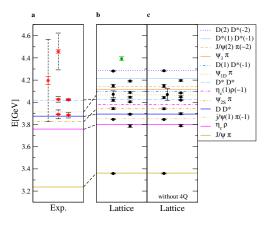
 $\pi K \to \eta K$ by D. Wilson et al 1406.4158 and 1507.02599



X(3872) - A FIRST LOOK

Prelovsek & Leskovec 1307.5172

ground state: $\chi_{c1}(1P)$ $D\bar{D}^*$ scattering mx: pole just below thr. Threshold $\sim m_{u,d}$ and m_c discretisation? Padmanath, Lang, Prelovsek 1503.03257


X(3872) not found if $c\bar{c}$ not in basis.

Also results from Lee et al 1411.1389

State is within 1MeV of $D^0\bar{D}^{0*}$ and 8MeV of D^+D^* thresholds: isospin breaking effects important?

FIRST LOOK ON THE LATTICE

Prelovsek, Lang, Leskovec, Mohler: 1405.7615

- 13 expected 2-meson e'states found (black)
- no additional state below 4.2GeV
- no Z⁺ candidate below 4.2GeV

Focus on Lattice Spectroscopy

Similar conclusion from Lee et al [1411.1389] and Chen et al [1403.1318]

Why no eigenstate for Zc? Is Z_c^+ a coupled channel effect? What can other groups say? Work needed!

$$Z_c^+$$

An "exotic" hadron i.e. does not fit in the quark model picture.

There are a number of exploratory calculations on the lattice.

Challenges:

• The Z_{+}^{+} (and most of the XYZ states) lies above several thresholds and so decay to several two-meson final states

Focus on Lattice Spectroscopy

- requires a coupled-channel analysis for a rigorous treatment
- on a lattice the number of relevant coupled-channels is large for high energies.

State of the art in coupled-channel analysis:

- Lüscher: $K\pi$, $K\eta$ [HSC 2014,2015]
- HALQCD: Z_c [preliminary results]

Many other states being investigated

Tetraquarks:

- Double charm tetraquarks $(I^P = 1^+, I = 0)$ by HALQCD [PLB712 (2012)]
 - attractive potential, no bound tetraquark state
- Charm tetraquarks: variational method with DD*, D* D* and tetraquark operators finds no candidate.

Focus on Lattice Spectroscopy

Y(4140)

- Ozaki and Sasaki [1211.5512] no resonant Y(4140) structure found
- Padmanath, Lang, Prelovsek [1503.03257] considered operators: $c\bar{c}$, $(\bar{c}s)(\bar{s}c)$, $(\bar{c}c)(\bar{s}s)$, $[\bar{c}\bar{s}][c\bar{s}]$ in $J^P = 1^+$. Expected 2-particle states found and χ_{c1} , $\chi(3872)$ **not** Y(4140).

See Prelovsek @ Charm2015 for more

CHALLENGES

There have been many successes the last 5 years including

- "Gold-plated" quantities increasingly well-determined
- New ideas have led to rapid progress in spectroscopy precision excited and exotic states and scattering analyses
- New results in g-2, finite temperature continue to flow not discussed here.

Many challenges remain

- Improving existing calculations understanding the effect of lighter light quarks on thresholds etc, simulations at multiple and larger volumes
- ♦ Handling the large number of coupled-channels that emerged on larger volumes
- ◆◆ A general framework for coupled channels for scattering involving more than 2 hadrons. Some progress [M. Hansen @ Lattice 2015]
 - Haven't discussed the many other open problems including finite density, BSM, ...!

CHALLENGES

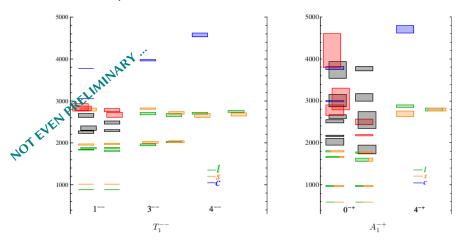
There have been many successes the last 5 years including

- "Gold-plated" quantities increasingly well-determined
- New ideas have led to rapid progress in spectroscopy precision excited and exotic states and scattering analyses
- New results in g-2, finite temperature continue to flow not discussed here.

Many challenges remain

- Improving existing calculations understanding the effect of lighter light quarks on thresholds etc, simulations at multiple and larger volumes
- ♦ Handling the large number of coupled-channels that emerged on larger volumes
- ◆◆ A general framework for coupled channels for scattering involving more than 2 hadrons. Some progress [M. Hansen @ Lattice 2015]
 - Haven't discussed the many other open problems including finite density, BSM, ...!

Thanks for listening!


LAST COMMENT ON SINGLE-HADRON SPECTRUM

Disconnected diagrams a remaining uncertainty in most $c\bar{c}$ calculations. Distillation allows precision determination. BUT it's a can of worms!

LAST COMMENT ON SINGLE-HADRON SPECTRUM

Disconnected diagrams a remaining uncertainty in most $c\bar{c}$ calculations. Distillation allows precision determination. BUT it's a can of worms!

Focus on Lattice Spectroscopy

$$\Delta(1^{--}) = -17(16)$$
MeV

from HadSpec