

Results from CMS and ATLAS

Electroweak Symmetry, Breaking and Beyond

Paolo Azzurri – INFN Pisa & CERN

54th International Winter Meeting on Nuclear Physics 25-29 January 2016 Bormio (Italy)

INFN

Outline

Extending & complementing : S. Bethke ATLAS & CMS: Strong Interactions and New Physics

- The CMS detector
- Selected Run2 results (ATLAS + CMS)

 heavy flavor
 - o electroweak
 - o Higgs
 - Supersymmetry searches
- Summary & Outlook

P. Azzurri

LHC & CMS

P. Azzurri

180 institution from 43 countries1700 physicists, 700 students, 950 engineers/technicians

P. Azzurri

75MPix 3D camera 40M frames/sec

P. Azzurri

6

13 TeV pp data (2015)

CMS Integrated Luminosity, pp, 2015, $\sqrt{s}=$ 13 TeV

 $50 \rightarrow 25$ ns min BX 5e33 /cm²/s max lumi data taking eff > 90%

Magnet LHe cryo system harmed by contamination

Currently under technical stop repair & cleaning

~3/4 of the delivered luminosity collected with magnetic field ON

CMS Reconstructed Objects

Bormio Wed 27/01/16 • 8

CMS & ATLAS : electroweak symmetry and beyond

P. Azzurri

CMS & ATLAS results:

heavy flavor

P. Azzurri

CMS & ATLAS : electroweak symmetry and beyond

Bormio Wed 27/01/16 • 9

ATLAS-CONF-2015-030

non-prompt J/ψ

B+ production CMS BPH-15-004 ATLAS-CONF-2015-064

CMS & ATLAS results:

electroweak

P. Azzurri

CMS & ATLAS : electroweak symmetry and beyond

Bormio Wed 27/01/16 • 12

ATLAS-CONF-2015-039

CMS-PAS-SMP-15-004

ATLAS-CONF-2015-039 CMS-PAS-SMP-15-004

inclusive W/Z

CMS (43pb⁻¹) σ (W+) B(l+ ν)=11370±50(stat)±230(syst)±550 (lumi) pb σ (W-) B(l- ν)=8580±50(stat)±160(syst)±410 (lumi) pb σ (Z) B(l+l-)=1910 ± 10 (stat) ± 40 (syst) ± 90 (lumi) pb

ATLAS (85pb⁻¹) σ (W+) B(l+ ν)=10960±20(stat)±440(sys)±990(lumi) pb σ (W-) B(l- ν)=8380±20 (stat)±350 (sys)±750(lumi) pb σ (Z) B(l+l-)=1869±7 (stat)±42 (sys)±168 (lumi) pb

$\Delta \sigma$ limited by **lumi** uncertainty

constraints on proton PDF

P. Azzurri

CMS & ATLAS : electroweak symmetry and beyond

test of e/μ universality

dibosons

entering the electroweak reign

WW, WZ,ZZ,WY,ZY,WWY,WZY,jjWW

Negative interferences between t-channel and schannel (TGC) productions [gauge cancellations]

Phys. Rev. D 87, 112001

no WW ATLAS/CMS update with run2 data yet

P. Azzurri

CMS SMP-15-006

dibosons WZ

with 1.34 fb⁻¹@13TeV $\sigma(pp \rightarrow WZ) = 36.8 \pm 4.6 \text{ (stat)} + 8.1_{-6.2} \text{ (syst)} \pm 0.6 \text{ (theo)} \pm 1.7 \text{ (lumi) pb}$

SM : 42.7^{+1.6}-0.8 pb with MCFM 7.0 / NNPDF3.0

P. Azzurri

P. Azzurri

CMS & ATLAS : electroweak symmetry and beyond

Bormio Wed 27/01/16 • 17

P. Azzurri

CMS & ATLAS results:

P. Azzurri

CMS & ATLAS : electroweak symmetry and beyond

Bormio Wed 27/01/16 • 19

The Higgs boson

Spontaneously breaks electroweak SU(2)xU(1) (SSB)

 \rightarrow vector bosons W,Z receive mass terms from SSB

 \rightarrow fermions receive mass terms from Yukawa couplings

 \rightarrow SSB leaves a massive scalar particle : the Higgs boson $Re(\phi)$

All SM particles receive mass terms Cancels divergences and unitarity violation in WW→WW,ZZ

Searched for ~50 years. Indirect indications from EW precision measurements

Discovered at the LHC by ATLAS & CMS 5σ/ experiment with 5/fb @7TeV + 5/fb @8TeV (2012)

 $Im(\phi)$

 $V(\phi)$

ATLAS m_{H} =125.36±0.37(stat)±0.18(syst) GeV <u>Phys. Rev. D 90 (2014) 052004</u> CMS m_{H} = 125.02^{+0.26}_-0.27(stat)^{+0.14}_-0.15(syst) GeV Eur.Phys.J.C 75 (2015) 212

m_H=125.09±0.21(stat.)±0.11(syst.) GeV Phys.Rev.Lett.114 (2015) 191803

• 21

P. Azzurri

CMS & ATLAS : electroweak symmetry and beyond Bormio Wed 27/01/16

Higgs mass: Run1 legacy

CMS & ATLAS : electroweak symmetry and beyond

P. Azzurri

ATLAS-CONF-2015-044/ CMS-PAS-HIG-15-002

gluon fusion (GF)

vector boson fusion (VBF) Higgs

Higgs-strahlung(VH) top quark fusion (ttH)

Combined Likelihood of ~580 signal and control distributions._{µ_{goF}}

Care in building acceptance matrix

Care in treating correlations among (~4200) systematic effects

ATLAS-CONF-2015-044/CMS-PAS-HIG-15-002 Higgs couplings: Run1 legacy

coupling modifiers κ also in SM loops

ATLAS-CONF-2015-044/CMS-PAS-HIG-15-002

P. Azzurri

Higgs coupling ratios

cross section and BR ratios more generic exploration with reduced systematic uncertainties

 $H \rightarrow bb$ deficit enhanced by VH & ttH excesses in other decay modes

ATLAS Hbb VH: μ=0.52±0.40 ttH : μ=1.5±1.1 CMS Hbb VH: µ=0.89±0.43 ttH : µ=0.7±1.8 VBF: µ=2.8±1.5

+ Tevatron: VH(bb) : μ=1.6±0.7

... still need to establish H coupling to down quarks

ATLAS-CONF-2015-059

Higgs @13 TeV : $ZZ^* \rightarrow 41$

expect 4 signal candidates: fitted 1.0+2.3-1.5

Expected sensitivity to SM Higgs: 2.8σ Observed : 0.7σ

cross section $\sigma = 12^{+25}$ pb

P. Azzurri

ATLAS-CONF-2015-060

P. Azzurri

s [TeV]

ATLAS-CONF-2015-069

Higgs @13 TeV : $\rightarrow \gamma \gamma + 41$

Combined observation significance:

- Expected: 3.4σ
- Observed: 1.4σ

Compatibility with SM: 1.3σ

	$7 \mathrm{TeV}$	8 TeV	13 TeV
Acceptance factor			
$H \rightarrow \gamma \gamma$	0.620 ± 0.007	0.611 ± 0.012	0.570 ± 0.006
$H \rightarrow ZZ^* \rightarrow 4\ell$	0.467 ± 0.010	0.460 ± 0.010	0.427 ± 0.006
Fiducial cross section [fb]			
$H \rightarrow \gamma \gamma$	49 ± 18	43 ± 10	52^{+40}_{-37}
$H \rightarrow ZZ^* \rightarrow 4\ell$	$1.9^{+1.2}_{-0.9}$	2.1 ± 0.5	$0.6^{+1.3}_{-0.9}$
Total cross section [pb]			
$H \rightarrow \gamma \gamma$	35^{+13}_{-12}	$30.5^{+7.5}_{-7.4}$	40^{+31}_{-28}
$H \rightarrow ZZ^* \rightarrow 4\ell$	33^{+21}_{-16}	37^{+9}_{-8}	12^{+25}_{-16}
Combination	$34 \pm 10 \text{ (stat.)} ^{+4}_{-2} \text{ (syst.)}$	$33.3^{+5.5}_{-5.3}$ (stat.) $^{+1.7}_{-1.3}$ (syst.)	24^{+20}_{-17} (stat.) $^{+7}_{-3}$ (syst.)
LHC-XS	17.5 ± 1.6	22.3 ± 2.0	$50.9^{+4.5}_{-4.4}$

P. Azzurri

CMS & ATLAS results:

SUSY searches

P. Azzurri

CMS & ATLAS : electroweak symmetry and beyond

Bormio Wed 27/01/16 • 31

Supersymmetry (SUSY)

symmetry between fermions and bosons
→ super partners (double particle content)
→ broken symmetry

Provides Gauge coupling unification

Ameliorates hierarchy problem (fine tuning) (protects Higgs mass from quantum corrections)

Provides Dark matter candidate Stable Lightest SUSY Particle (RPC)

Searched for ~40 years.

2015 Run2 eyes open for high mass, strongly produced SUSY gluino / squark pairs: $\sigma(13\text{TeV})/\sigma(8\text{TeV}) = 15-35$ for M=1-1.5 TeV

ATLAS-CONF-2015-061

SUSY(2HDM): $H/A \rightarrow \tau \tau$

Data recorded: 2015-Sep-28 06:09:43.129280 GMT Run / Event / LS: 257645 / 1610868539 / 1073

P. Azzurri

P. Azzurri

CMS & ATLAS : electroweak symmetry and beyond Bormio

Bormio Wed 27/01/16 • 35

2.2 fb⁻¹ (13 TeV) **CMS** Preliminary 2.2 fb⁻¹ (13 TeV) 2.2 fb⁻¹ (13 TeV) CMS Preliminary CMS Preliminary m_{io} [GeV] $m_{\chi_1^0}$ [GeV] 95% C.L. upper limit on cross section [pb] 95% C.L. upper limit on cross section [pb] Events pp $\rightarrow \tilde{g} \tilde{g}, \tilde{g} \rightarrow q \bar{q} \tilde{\chi}^0$ NLO+NLL exclusion pp $\rightarrow \tilde{g} \tilde{g}, \tilde{g} \rightarrow t t \tilde{\chi}^0$ NLO+NLL exclusion $7 \le N_{iet} \le 8$ $4 \le N_{int} \le 6$ $N_{iet} \ge 9$ 160 Conserved±1 σ_{theory} -Observed±1 σ_{theory} 140 Expected $\pm 1 \sigma_{experiment}$ Data Expected±1 σ_{evperimen} ≥ 3 72 search 1200 1000 10 10⁻¹ regions of QCD 1000 800 800 Nj, Nb, 600 600 10-2 10⁻² MET, HT 400 400 10 (Obs.-Exp.) Exp. 200 200 800 1000 1200 1400 1600 1800 1000 1200 1400 800 1600 1800 10 20 30 40 50 60 70 m_a [GeV] m_a [GeV] Search region bin number "stranverse" mass $M_{\mathrm{T2}}(m_{\widetilde{\chi}}) =$ $\max(M_{T}^{(1)}, N)$ min $\vec{p}_{\mathrm{T}}^{\tilde{\chi}(1)} + \vec{p}_{\mathrm{T}}^{\tilde{\chi}(2)} = \vec{p}_{\mathrm{T}}^{\mathrm{miss}}$ CMS Preliminary 2.2 fb⁻¹ (13 TeV) ا 180 [GeV 1800 م C.L. upper limit on cross section [pb] pp $\rightarrow \tilde{g} \tilde{g}, \tilde{g} \rightarrow b \bar{b} \tilde{\chi}^0$ NLO+NLL exclusion ш 2-3j lb 2-3j 2b 4-61.01 27] **Nutio** \equiv Observed $\pm 1 \sigma_{\text{theory}}$ сń 115 lost Lepton Expected \pm 1 $\sigma_{_{experimen}}$ 10 nvs ble Z 1400 10 1200 10 1000 800 10 10^{-1} 600 10^{-2} 101 400 95% 200 F atio 10⁻³ 600 800 1000 1200 1400 1600 1800 m_a [GeV]

CMS & ATLAS : electroweak symmetry and beyond

CMS-PAS-SUS-15-002

CMS-PAS-SUS-15-003

CMS-PAS-SUS-15-004 CMS-PAS-SUS-15-005

P. Azzurri

ATLAS-CONF-2015-066 ATLAS-CONF-2015-067 ATLAS-CONF-2015-082

stop and sbottom

CMS & ATLAS : electroweak symmetry and beyond

Bormio Wed 27/01/16

SUSY : lepton + jets

CMS-PAS-SUS-15-007 ATLAS-CONF-2015-076

SUSY same sign leptons

2.2 fb⁻¹ (13 TeV) **CMS** Preliminary Events / 25 Ge/ **ATLAS** Preliminarv SR0b3j before E Entries **HH SRs** Data s=13 TeV. 3.2 fb⁻¹ 🔶 data SM Total Top + V 12 50 Fakes SUSY ã→ galb Multi-Boson Rare WZ m=1.2 TeV, m=500 GeV Fake Leptons Charge-Flip 10 X+γ 40 ttW Flips SR tīZ/H 30 WW Rares 20 10 80 100 120 140 160 180 40 60 > 200E_T^{miss} [GeV] $\widetilde{g}\widetilde{g}$ production, $\widetilde{g} \rightarrow qqWZ\widetilde{\chi}^{0}$; $m(\widetilde{\chi}^{1}) = (m(\widetilde{g}) + m(\widetilde{\chi}^{0}))/2$, $m(\widetilde{\chi}^{0}) = (m(\widetilde{\chi}^{1}) + m(\widetilde{\chi}^{0}))/2$ 30 10 15 20 25 5 اللية إصفعا SR 25 GeV **ATLAS** Preliminary SR1b before E^m_T **ATLAS** Preliminarv cut 1000 xpected limit $(\pm 1 \sigma_{...})$ Data vs=13 TeV, 3.2 fb s=13 TeV, 3.2 fb SM Total Charge-Flip Binned in Events / 2 LAS 8 TeV. 20.3 fb ----- SUSY b̃,→ tWỹ Fake Leptons Rare 800 All limits at 95% CL Multi-Boson m_c=600 GeV, m_=50 GeV Top + V Njet, nB, MET, HT, MT 10 background from non-600 SR prompt leptons 400 (measured in data) 200 60 80 100 120 140 1300 m_ã [GeV] 40 > 150 1100 1200 700 1000 E^{miss}_T [GeV]

CMS-PAS-SUS-15-008

ATLAS-CONF-2015-078

CMS & ATLAS : electroweak symmetry and beyond

P. Azzurri

Summary & Outlook

- Nice start of Run2 in 2015 with ~3/fb pp@13TeV
- Selected Run2 results (ATLAS + CMS)
 - electroweak measurements σx^2 and $\delta \sigma / \sigma x^2$ • first glimpse of Higgs boson (~ $\sigma x 2$ -4) • nothing yet from (many!) SUSY searches
- Just the first small step in the max LHC energy era
 o Run2 →20/fb→100/fb in 2016→2018
 - Run3 (phase1) \rightarrow 300/fb in \rightarrow 2022
 - o Run4-5-6 (phase2 up)3000/fb in →2035

the frontier energy and intensity exploration of the electroweak symmetry, its breaking and beyond has just begun