Collider Physics Lecture 1

Maxim Perelstein, Cornell University MITP Summer School, August 2, 2016

Past Colliders

Name	Туре	Ecm (GeV)	Lint (pb-1)	Years of Operatio n	Detectors	Location
LEP-1	e+e-	91.2 (Mz)	~200	1989-95	ALEPH, L3,DELPHI, OPAL	CERN
LEP-2	e+e-	161-209	~600	1996- 2000	ALEPH, L3,DELPHI, OPAL	CERN
SLC	e+e- (polarized)	91.2	20	1992-98	SLD	SLAC
HERA	e-p, e+p	320	500	1992- 2007	ZEUS, H1	DESY (Germany)

Past and Present

Name	Туре	Ecm (TeV)	Lint (fb-1)	Years of Operation	Detectors	Location
TeVatron Run 1	p pbar	1.8	0.16	1987-96	CDF, D0	FNAL
TeVatron Run 2	p pbar	1.96	10	2001-11	CDF, D0	FNAL
LHC Run 1.1	рр	7	5	2010-11	ATLAS, CMS, LHC-b	CERN
LHC Run 1.2	рр	8	20	2012-13	ATLAS, CMS, LHC-b	CERN
LHC Run 2	рр	13	150 (planned)	2015-18	ATLAS, CMS, LHC-b	CERN

Future Colliders

Name	Туре	Ecm (TeV)	Lint (fb-1)	Years of Operation	Detectors	Location
LHC Run 3	рр	14	300?	2020-22	ATLAS, CMS	CERN
HL-LHC	рр	14	3,000?	2025-35	ATLAS, CMS	CERN
ILC	e+ e-	0.25-0.5	6,000?	20X - 20X+20	???	Japan?
Circular Higgs Factory	e+ e-	0.25	10,000?	20X- 20X+Y	???	CERN? China?
100 TeV Monster tron	рр	100	???	2100?	???	CERN? China?

Parton Distribution Functions

Figure 1: MSTW 2008 NLO PDFs at $Q^2 = 10 \text{ GeV}^2$ and $Q^2 = 10^4 \text{ GeV}^2$.

Martin, Stirling, Thorne, Watt, 0901.0002

Lesson: All PDFs (including valence) drop fast with x

Tuesday, October 6, 15

$$\begin{aligned} xu_v(x,Q_0^2) &= A_u \, x^{\eta_1} (1-x)^{\eta_2} (1+\epsilon_u \sqrt{x}+\gamma_u \, x), \\ xd_v(x,Q_0^2) &= A_d \, x^{\eta_3} (1-x)^{\eta_4} (1+\epsilon_d \sqrt{x}+\gamma_d \, x), \\ xS(x,Q_0^2) &= A_S \, x^{\delta_S} (1-x)^{\eta_S} (1+\epsilon_S \sqrt{x}+\gamma_S \, x), \\ x\Delta(x,Q_0^2) &= A_\Delta \, x^{\eta_\Delta} (1-x)^{\eta_S+2} (1+\gamma_\Delta \, x+\delta_\Delta \, x^2), \\ xg(x,Q_0^2) &= A_g \, x^{\delta_g} (1-x)^{\eta_g} (1+\epsilon_g \, \sqrt{x}+\gamma_g \, x) + A_{g'} \, x^{\delta_{g'}} (1-x)^{\eta_{g'}}, \\ x(s+\bar{s})(x,Q_0^2) &= A_+ \, x^{\delta_S} \, (1-x)^{\eta_+} (1+\epsilon_S \, \sqrt{x}+\gamma_S \, x), \\ x(s-\bar{s})(x,Q_0^2) &= A_- \, x^{\delta_-} (1-x)^{\eta_-} (1-x/x_0), \end{aligned}$$

Process	Subprocess	Partons	x range
$\ell^{\pm}\left\{p,n\right\} \to \ell^{\pm} X$	$\gamma^* q \to q$	q, ar q, g	$x \gtrsim 0.01$
$\ell^{\pm} n/p \to \ell^{\pm} X$	$\gamma^* d/u \to d/u$	d/u	$x \gtrsim 0.01$
$pp \to \mu^+ \mu^- X$	$u\bar{u}, d\bar{d} \to \gamma^*$	\bar{q}	$0.015 \lesssim x \lesssim 0.35$
$pn/pp \rightarrow \mu^+\mu^- X$	$(u\bar{d})/(u\bar{u}) \rightarrow \gamma^*$	\bar{d}/\bar{u}	$0.015 \lesssim x \lesssim 0.35$
$\nu(\bar{\nu}) N \to \mu^-(\mu^+) X$	$W^*q \rightarrow q'$	q, ar q	$0.01 \lesssim x \lesssim 0.5$
$\nu N \to \mu^- \mu^+ X$	$W^*s \to c$	s	$0.01 \lesssim x \lesssim 0.2$
$\bar{\nu} N \to \mu^+ \mu^- X$	$W^*\bar{s} \to \bar{c}$	\bar{s}	$0.01 \lesssim x \lesssim 0.2$
$e^{\pm} p \rightarrow e^{\pm} X$	$\gamma^* q \to q$	$g,q,ar{q}$	$0.0001 \lesssim x \lesssim 0.1$
$e^+ p \to \bar{\nu} X$	$W^+\left\{d,s\right\} \to \left\{u,c\right\}$	d, s	$x \gtrsim 0.01$
$e^{\pm}p \rightarrow e^{\pm} c \bar{c} X$	$\gamma^* c \to c, \gamma^* g \to c \bar{c}$	c, g	$0.0001 \lesssim x \lesssim 0.01$
$e^{\pm}p \rightarrow \text{jet} + X$	$\gamma^*g \to q\bar{q}$	g	$0.01 \lesssim x \lesssim 0.1$
$p\bar{p} \rightarrow \text{jet} + X$	$gg, qg, qq \rightarrow 2j$	g,q	$0.01 \lesssim x \lesssim 0.5$
$p\bar{p} \to (W^{\pm} \to \ell^{\pm}\nu) X$	$ud \to W, \bar{u}\bar{d} \to W$	u, d, \bar{u}, \bar{d}	$x \gtrsim 0.05$
$p\bar{p} \rightarrow (Z \rightarrow \ell^+ \ell^-) X$	$uu, dd \rightarrow Z$	d	$x \gtrsim 0.05$

MSTW, 0901.0002

Parameter	LO		NLO		NNLO	
$\alpha_S(Q_0^2)$	0.68183		0.49128		0.45077	
$\alpha_S(M_Z^2)$	0.13939		0.12018		0.11707	
A_u	1.4335		0.25871		0.22250	
η_1	0.45232	$+0.022 \\ -0.018$	0.29065	+0.019 -0.013	0.27871	+0.018 -0.014
η_2	3.0409	+0.079 -0.067	3.2432	$+0.062 \\ -0.039$	3.3627	+0.061 -0.044
ϵ_u	-2.3737	$+0.54 \\ -0.48$	4.0603	$^{+1.6}_{-2.3}$	4.4343	$^{+2.4}_{-2.7}$
γ_u	8.9924	0.10	30.687	2.0	38.599	2
A_d	5.0903		12.288		17.938	
η_3	0.71978	+0.057 -0.082	0.96809	+0.11 -0.11	1.0839	+0.12 -0.11
$\eta_4 - \eta_2$	2.0835	+0.32 -0.45	2.7003	$+0.50 \\ -0.52$	2.7865	+0.50 -0.44
ϵ_d	-4.3654	+0.28 -0.22	-3.8911	+0.31 -0.29	-3.6387	+0.27 -0.28
γ_d	7.4730		6.0542		5.2577	
A_S	0.59964	$+0.036 \\ -0.030$	0.31620	$^{+0.030}_{-0.021}$	0.64942	$^{+0.047}_{-0.041}$
δ_S	-0.16276		-0.21515		-0.11912	
η_S	8.8801	$^{+0.33}_{-0.33}$	9.2726	$^{+0.23}_{-0.33}$	9.4189	$^{+0.25}_{-0.33}$
ϵ_S	-2.9012	$^{+0.33}_{-0.37}$	-2.6022	$^{+0.71}_{-0.96}$	-2.6287	$^{+0.49}_{-0.51}$
γ_S	16.865		30.785		18.065	
$\int_0^1 \mathrm{d}x \Delta(x,Q_0^2)$	0.091031	$+0.012 \\ -0.009$	0.087673	$^{+0.013}_{-0.011}$	0.078167	$^{+0.012}_{-0.0091}$
A_{Δ}	8.9413		8.1084		16.244	
η_{Δ}	1.8760	$^{+0.24}_{-0.30}$	1.8691	$^{+0.23}_{-0.32}$	2.0741	$^{+0.18}_{-0.35}$
$\gamma \Delta$	8.4703	$^{+2.0}_{-0.3}$	13.609	$^{+1.1}_{-0.6}$	6.7640	$^{+0.77}_{-0.41}$
δ_{Δ}	-36.507		-59.289		-36.090	
A_g	0.0012216		1.0805		3.4055	
δ_g	-0.83657	$^{+0.15}_{-0.14}$	-0.42848	+0.066 -0.057	-0.12178	$^{+0.23}_{-0.16}$
η_g	2.3882	+0.51 -0.50	3.0225	$^{+0.43}_{-0.36}$	2.9278	$^{+0.68}_{-0.41}$
ϵ_g	-38.997	$^{+36}_{-35}$	-2.2922		-2.3210	
γ_g	1445.5	$^{+880}_{-750}$	3.4894		1.9233	
$A_{g'}$			-1.1168		-1.6189	
$\delta_{g'}$	_		-0.42776	+0.053 -0.047	-0.23999	$^{+0.14}_{-0.10}$
$\eta_{g'}$	—		32.869	$^{+6.5}_{-5.9}$	24.792	$^{+6.5}_{-5.2}$
A_+	0.10302	$+0.029 \\ -0.017$	0.047915	$+0.0095 \\ -0.0076$	0.10455	$+0.019 \\ -0.016$
η_+	13.242	$^{+2.9}_{-1.4}$	9.7466	$^{+1.0}_{-0.8}$	9.8689	$^{+1.0}_{-0.6}$
A_{-}	-0.011523	$+0.009 \\ -0.018$	-0.011629	+0.009 -0.023	-0.0093692	$+0.006 \\ -0.024$
η_{-}	10.285	$^{+16}_{-6}$	11.261	$^{+22}_{-6}$	9.5783	$^{+26}_{-5}$
x_0	0.017414		0.016050		0.018556	
r_1	$-0.\overline{39484}$		-0.57631		-0.80834	
r_2	-1.0719		0.81878		1.2669	
r_3	-0.28973		-0.083208		0.15098	

Tuesda, Lessons: PDFs are obtained by fitting to data The have error bars; the x-range is limited "Test SM"=test overall consistency

Lessons: Below x~0.01, u=ubar=d=dbar Below x~0.1,g >> quarks

Х

esday, October 6, 15

 $pp \to Z + X, \quad Z \to \ell^+ \ell^-$

proton - (anti)proton cross sections

Tuesday, October 6, 15

CMS Experiment at LHC, CERN Run 135149, Event 125426133 Lumi section: 1345 Sun May 09 2010, 05:24:09 CEST

Muon $p_T = 67.3, 50.6 \text{ GeV/c}$ Inv. mass = 93.2 GeV/c²

 $pp \to Z + X, \quad Z \to \ell^+ \ell^-$

Figure 2: The dilepton mass distributions for Z boson candidate events in the electron (left) and muon (right) final states. The variable χ shown in the lower plot is defined as $(N_{obs} - N_{exp})/\sqrt{N_{obs}}$, where N_{obs} is the number of observed events and N_{exp} is the total of the signal and background yields.

CMS, 1402.0923

W mass measurement at the Tevatron D0, PRL 103, 141801 (2009), arXiv:0908.0766 $M_W = 80.385 \pm 0.015 \text{ GeV}$