HEAVY HIGGS BOSONS AT LHC

Ying-Ying Li

arXiv:1504.07617 J. Hajer, T. Liu and J.F.H. Shiu

arXiv:1605.08744 N. Craig, J.Hajer, T.Liu and H. Zhang

Hong Kong Univ of Science and Technology

1

- An extended Higgs sector extensively exists in NP
- We focus on the MSSM Higgs bosons (no CP-violation): H, A, Hc
 - General Higgs mass spectrum and couplings only depend on two parameters (in additional to the SM ones) at tree-level: tan_beta, mA/mHc
 - So in principle we can make a sensitivity projection on a plane expanded by these two parameters: mA/mHc - tan_beta
- It is straightforward to generalise the analyses to many other models, such as 2HDM, NMSSM, etc.

MSSM Higgs Bosons at 14 TeV

- A sensitivity projected at the LHC, by rescaling the 7 and 8 TeV results to 14 TeV
- Neutral Higgs: excluded up to ~ O(1) TeV, except an expected wedge region
- Charged Higgs: excluded up to ~600 GeV, via pp -> tb Hc -> tbtb

Questions to Address

- For neutral Higgs search, how to probe the uncovered wedge region?
- What is wrong with the red dotted line?

 $g_{HVV} = g_{hZA} = g_{hW^{\mp}H^{\pm}} \propto \cos(\beta - \alpha) \rightarrow 0$

	Couplings	MSSM
Η	g_{HVV}	$\cos(\beta - \alpha)$
	$g_{Ht\bar{t}}$	$\sin \alpha / \sin \beta$
	$g_{Hbar{b}}$	$\cos \alpha / \cos \beta$
	$g_{H auar au}$	$\cos \alpha / \cos \beta$
Α	g_{AVV}	0
	$g_{Atar{t}}$	$\cot eta$
	$g_{Abar{b}}$	aneta
	$g_{A auar{ au}}$	aneta
H^{\pm}	$g_{H^+ \bar{u} d}$	$\frac{1}{\sqrt{2v}}V_{ud}^*[m_d\tan\beta(1+\gamma_5)+m_u\cot\beta(1-\gamma_5)]$
	$g_{H^-uar{d}}$	$\frac{1}{\sqrt{2v}}V_{ud}[m_d\tan\beta(1-\gamma_5)+m_u\cot\beta(1+\gamma_5)]$
	$g_{H^+ \bar{\nu} l}$	$\frac{1}{\sqrt{2}v}m_l \tan\beta(1+\gamma_5)$
	$g_{H^- \nu \bar{l}}$	$\frac{1}{\sqrt{2v}}m_l \tan\beta(1-\gamma_5)$

- ¢ moderate tan_beta enhanced !
- ¢ expected to yield a larger sensitivity for probing moderate tan_beta => the wedge region might be covered !

 $g_{HVV} = g_{hZA} = g_{hW^{\mp}H^{\pm}} \propto \cos(\beta - \alpha) \rightarrow 0$

Kinematics

Heavy Higgs resonance

related to the heaviness of Higgs bosons in the decoupling limits.

Forwardness/Backwardness of accompanying particles

the accompanying particles are less boosted, but tend to have a large rapidity.

BDT: Non-linear combination of variables.

optimise the analysis.

(a) Circular correlation example

- Construct top BDT: one is hadronic, another one is leptonic.
- Construct Bottom Fusion BDT: demand two b-like jets with large delta eta

Neutral Higgs Exclusion Limit-14TeV

- [¢] The wedge region centered on moderate tan_beta is covered(3/ab).
- A potential to exclude mA/mH up to 1 TeV via bbH/A -> bbtt, with tt decaying semi-leptonically.

Neutral Higgs Exclusion Limit-14TeV

- The red dotted line for low tan_beta region is covered to ~1 TeV for (0.3/ab) and to ~1.5TeV for (3/ab).
- Control Associated production help to probe the low tan_beta region.

Conclusion-Neutral Higgs at 100 TeV

• Different transy represents different luminosity, 30/ab and 3/ab.

- Carge tan_beta: bbH -> bbtautau continues to play a significant role.
- A potential to exclude mA/mH up to 10TeV via bbH/A -> bbtt (30/ab), with tt decaying semi-leptonically, except for low tan_beta region.

Conclusion-Charged Higgs at 100 TeV

(a) Exclusion limit

- © Different transparency represents different luminosity, 30/ab and 3/ab.
- A potential to exclude mHc up to 10 TeV via tbHc ->tbtb (30/ab) for the whole tan_beta region, with tt decaying semi-leptonically
- Cover up to 20TeV (30/ab) for both high and low tan_beta region.

Kinematics - Particles Accompanying Higgs Production

- All b quarks are required to have pt > 40 GeV for 100TeV, and pt > 20GeV for 14TeV.
- Control The b-quarks accompanying Higgs production tend to be forward and backward => large delta eta

