

QCD factorization for exclusive hadronic decays

Matthias König THEP, Johannes Gutenberg-University (Mainz) MITP Summer School New Physics on Trial Mainz, 1 August, 2016

Cluster of Excellence

Precision Physics, Fundamental Interactions and Structure of Matter

When we ask the question "How big is $BR(Z \to M\gamma)$?" the M in the final state is a bit unsettling.

When we ask the question "How big is $BR(Z \to M\gamma)$?" the M in the final state is a bit unsettling.

We do know, that this hadronic matrix element exists:

$$\sim\sim\sim$$
 (decay constant) $\propto \langle M | \bar{q} \dots q | 0 \rangle \sim f_M$ (decay constant)

Exclusive hadronic decays, how to?

When we ask the question "How big is $BR(Z \to M\gamma)$?" the M in the final state is a bit unsettling.

We do know, that this hadronic matrix element exists:

$$\sim\sim\sim\sim$$
 (decay constant) $\propto \langle M|ar{q}\dots q|0
angle \sim f_M$ (decay constant)

So is this the answer?

Sure, that should exist. But...

Exclusive hadronic decays, how to?

When we ask the question "How big is $BR(Z \to M\gamma)$?" the M in the final state is a bit unsettling.

We do know, that this hadronic matrix element exists:

$$\sim\sim\sim$$
 (decay constant) $\propto \langle M | \bar{q} \dots q | 0 \rangle \sim f_M$ (decay constant)

So is this the answer?

Sure, that should exist. But... What about diagrams of this type?

Exclusive hadronic decays, how to?

When we ask the question "How big is $BR(Z \to M\gamma)$?" the M in the final state is a bit unsettling.

We do know, that this hadronic matrix element exists:

$$\sim\sim\sim$$
 (decay constant) $\propto \langle M|ar{q}\dots q|0
angle \sim f_M$ (decay constant)

So is this the answer?

Sure, that should exist. But... What about diagrams of this type?

 \Rightarrow These diagrams **do exist** and are typically important.

How to...

What are the complications from this diagram?

How to...

What are the complications from this diagram?

1. The $q\bar{q}$ -current generated from the diagram is of a **more complicated spin structure** than what we know from the decay constant's definition:

$$J \sim \bar{q} \left(\gamma^{\mu} \not\!\!\!p \not\!\!\!/ \epsilon_{\gamma}^{*} \right) q$$

How to...

What are the complications from this diagram?

1. The $q\bar{q}$ -current generated from the diagram is of a **more complicated spin structure** than what we know from the decay constant's definition:

•

$$J \sim \bar{q} \left(\gamma^{\mu} \not\!\!\!p \not\!\!\!/ \epsilon_{\gamma}^{*} \right) q$$

2. The field operators are **not** evaluated **at the same space-time coordinate**:

$$J \sim \bar{q}(x) \dots q(y)$$

Exclusive Radiative Decays of ${\rm W}$ and ${\rm Z}$ Bosons in QCD Factorization

Yuval Grossman, MK, Matthias Neubert

JHEP 1504 (2015) 101, arXiv:1501.06569

Exclusive Radiative Z-Boson Decays to Mesons with Flavor-Singlet Components

Stefan Alte, MK, Matthias Neubert

JHEP 1602 (2016) 162, arXiv:1512.09135

Exclusive Radiative Higgs Decays as Probes of Light-Quark Yukawa Couplings MK. Matthias Neubert

JHEP 1508 (2015) 012, arXiv:1505.03870

Exclusive Weak Radiative Higgs Decays

Stefan Alte, MK, Matthias Neubert

arXiv:160x.soonish

JGU

The scale separation in the case at hand calls for an effective theory description!

The simplest way to imagine the meson in its rest frame:

The simplest way to imagine the meson in its rest frame:

JGU

Now: Boost to the rest frame of the decaying Z boson:

The simplest way to imagine the meson in its rest frame:

Now: Boost to the rest frame of the decaying Z boson:

In the Z boson's rest frame, the two quarks move collinear with momenta

$$k_i^{\mu} = \frac{m_Z}{2} \left(x_i n^{\mu} + \lambda \, n_{i\perp}^{\mu} \right) \qquad \lambda = \frac{\Lambda_{\rm QCD}}{m_Z}$$

JG U

The proper EFT is **Soft-Collinear Effective Theory**, where **fields** are **split** into *n*-collinear, \bar{n} -collinear and soft modes **at the Lagrangian level**.

JG U

The proper EFT is **Soft-Collinear Effective Theory**, where **fields** are **split** into *n*-collinear, \bar{n} -collinear and soft modes **at the Lagrangian level**.

SCET tightly constrains the number of fields you can include **in the operator** we are trying to construct:

JG U

The proper EFT is **Soft-Collinear Effective Theory**, where **fields** are **split** into *n*-collinear, \bar{n} -collinear and soft modes **at the Lagrangian level**.

SCET tightly constrains the number of fields you can include **in the operator** we are trying to construct:

A collinear quark field operator counts as one power of λ in SCET power counting.

 \Rightarrow Every field we add to the operator leads to power-suppression.

The proper EFT is **Soft-Collinear Effective Theory**, where **fields** are **split** into *n*-collinear, \bar{n} -collinear and soft modes **at the Lagrangian level**.

SCET tightly constrains the number of fields you can include **in the operator** we are trying to construct:

A collinear quark field operator counts as one power of λ in SCET power counting.

 \Rightarrow Every field we add to the operator leads to power-suppression.

In an expansion in λ our list of operators starts with two collinear quarks at leading power and contributions with three or more particles are power-suppressed - and in our case completely negligible.

 $J_q \sim \bar{q}_c \dots q_c$

$$J_q \sim \bar{q}_c \dots q_c$$

JG U

However: Derivatives along the \bar{n} -direction scale with the large momentum and hence do not lead to power suppression!

$$J_q \sim \bar{q}_c \dots q_c$$

JG U

However: Derivatives along the \bar{n} -direction scale with the large momentum and hence do not lead to power suppression!

In fact, an **infinite number of derivatives** can be has to be taken into account. Summing these up leads to:

$$J_q \sim \bar{q}_c \dots q_c + \bar{q}_c \dots (\bar{n} \cdot \partial)q_c + \bar{q}_c \dots (\bar{n} \cdot \partial)^2 q_c + \dots$$
$$= \bar{q}_c(x) \dots q_c(x + t\bar{n})$$

$$J_q \sim \bar{q}_c \dots q_c$$

JG U

However: Derivatives along the \bar{n} -direction scale with the large momentum and hence do not lead to power suppression!

In fact, an **infinite number of derivatives** can be has to be taken into account. Summing these up leads to:

$$J_q \sim \bar{q}_c \dots q_c + \bar{q}_c \dots (\bar{n} \cdot \partial)q_c + \bar{q}_c \dots (\bar{n} \cdot \partial)^2 q_c + \dots$$
$$= \bar{q}_c(x) \dots q_c(x + t\bar{n})$$

The result is that the current **operator** can be **non-local along the light-cone** - a typical feature of SCET.

With our effective operator $J_q(t) = \bar{q}_c(t\bar{n})\Gamma[t\bar{n}, 0]q_c(0)$ the amplitude for $X \to M + V$ is then given by:

$$i\mathcal{A} = \int \mathcal{C}(t,\dots) \langle M(k) | J_q(t,\dots) | 0 \rangle dt$$

With our effective operator $J_q(t) = \bar{q}_c(t\bar{n})\Gamma[t\bar{n}, 0]q_c(0)$ the amplitude for $X \to M + V$ is then given by:

$$i\mathcal{A} = \int \mathcal{C}(t,\dots) \langle M(k) | J_q(t,\dots) | 0 \rangle dt$$

The hadronic matrix element defines a function analogous to the decay constants. In fact, these are just the local case (t = 0) above. The generalization to our **bi-local current operator**

$$\langle M(k)| J_q(t,\dots) |0\rangle \sim f_M \int e^{i(t\bar{n})\cdot(xk)} \phi_M^q(x) dx$$

defines the light-cone distribution amplitude (LCDA), which encodes the non-perturbative physics in the exclusive hadronic final state.

With our effective operator $J_q(t) = \bar{q}_c(t\bar{n})\Gamma[t\bar{n}, 0]q_c(0)$ the amplitude for $X \to M + V$ is then given by:

JG U

$$i\mathcal{A} = \int \mathcal{C}(t,\ldots) \langle M(k) | J_q(t,\ldots) | 0 \rangle dt$$

The hadronic matrix element defines a function analogous to the decay constants. In fact, these are just the local case (t = 0) above. The generalization to our **bi-local current operator**

$$\langle M(k)| J_q(t,\dots) |0\rangle \sim f_M \int e^{i(t\bar{n})\cdot(xk)} \phi_M^q(x) dx$$

defines the light-cone distribution amplitude (LCDA), which encodes the non-perturbative physics in the exclusive hadronic final state.

The Wilson coefficients C contain the hard scattering processes that are integrated out at the factorization scale.

Renormalization of the LCDAs

Remember, we are dealing with a huge scale hierarchy: m_Z vs. $\Lambda_{
m QCD}$

JGU

 \Rightarrow Large logarithms $\alpha_s \log(m_Z/\Lambda_{\rm QCD})$ need to be resummed.

Examples of corrections to the LCDAs at $\mathcal{O}(\alpha_s)$:

The LCDAs are renormalized according to:

Renormalization of the LCDAs

Remember, we are dealing with a huge scale hierarchy: m_Z vs. $\Lambda_{
m QCD}$

 \Rightarrow Large logarithms $\alpha_s \log(m_Z/\Lambda_{\rm QCD})$ need to be resummed.

Examples of corrections to the LCDAs at $\mathcal{O}(\alpha_s)$:

The LCDAs are renormalized according to:

$$\begin{pmatrix} \phi_q^{\text{ren}} \\ \phi_g^{\text{ren}} \end{pmatrix} = \begin{pmatrix} \checkmark & \checkmark \\ \checkmark & \checkmark \\ \checkmark & \checkmark \end{pmatrix} \otimes \begin{pmatrix} \phi_q^{\text{bare}} \\ \phi_g^{\text{bare}} \end{pmatrix}$$

Renormalization of the LCDAs

Remember, we are dealing with a huge scale hierarchy: m_Z vs. $\Lambda_{
m QCD}$

 \Rightarrow Large logarithms $\alpha_s \log(m_Z/\Lambda_{\rm QCD})$ need to be resummed.

Examples of corrections to the LCDAs at $\mathcal{O}(\alpha_s)$:

The LCDAs are renormalized according to:

$$\begin{pmatrix} \phi_q^{\text{ren}}(x,\mu)\\ \phi_g^{\text{ren}}(x,\mu) \end{pmatrix} = \int_0^1 \left[\mathbf{1} \cdot \delta(x-y) + \frac{\alpha_s(\mu)}{4\pi\epsilon} \begin{pmatrix} V_{qq}(x,y) & V_{qg}(x,y)\\ V_{gq}(x,y) & V_{gg}(x,y) \end{pmatrix} \right] \begin{pmatrix} \phi_q^{\text{bare}}(y)\\ \phi_g^{\text{bare}}(y) \end{pmatrix} dy$$

[Brodsky, Lepage (1980), Phys. Rev. D 22, 2157]
 [Terentev (1981), Sov. J. Nucl. Phys. 33, 911]
 [Ohrndorf (1981), Nucl. Phys. B 186, 153]
 [Shifman, Vysotsky (1981), Nucl. Phys. B 186, 475]
 [Baier, Grozin (1981), Nucl.Phys. B192 476-488]

The LCDAs are expanded in the eigenfunctions of the evolution Kernels:

$$\phi_M^q(x,\mu) = 6x \,\bar{x} \left[1 + \sum_{n=1}^{\infty} a_n^M(\mu) C_n^{(3/2)}(2x-1) \right]$$

$$\phi_M^q(x,\mu) = 30x^2 \bar{x}^2 \left[\sum_{n=1}^{\infty} b_n^M(\mu) C_{n-1}^{(5/2)}(2x-1) \right]$$

The LCDAs are expanded in the eigenfunctions of the evolution Kernels:

$$\phi_M^q(x,\mu) = 6x \,\bar{x} \left[1 + \sum_{n=1}^{\infty} a_n^M(\mu) C_n^{(3/2)}(2x-1) \right]$$

$$\phi_M^g(x,\mu) = 30x^2 \bar{x}^2 \left[\sum_{n=1}^{\infty} b_n^M(\mu) C_{n-1}^{(5/2)}(2x-1) \right]$$

 $C_n^{(\alpha)}(z)$: Gegenbauer polynomials $a_n(\mu), b_n(\mu)$: Gegenbauer moments, constant dependence hadronic integration Gegenbauer moments, contain the scaledependence, hadronic input parameters

The LCDAs are expanded in the eigenfunctions of the evolution Kernels:

JGU

$$\phi_M^q(x,\mu) = 6x \,\bar{x} \left[1 + \sum_{n=1}^{\infty} a_n^M(\mu) C_n^{(3/2)}(2x-1) \right]$$

$$\phi_M^g(x,\mu) = 30x^2 \bar{x}^2 \left[\sum_{n=1}^{\infty} b_n^M(\mu) C_{n-1}^{(5/2)}(2x-1) \right]$$

 $C_n^{(\alpha)}(z)$: Gegenbauer polynomials $a_n(\mu), b_n(\mu)$: Gegenbauer moments, contain the scaledependence, hadronic input parameters

At one-loop order, the scaling is governed by:

$$\left[\mu \frac{d}{d\mu} + \frac{\alpha_s(\mu)}{4\pi} \begin{pmatrix} \gamma_n^{qq} & \gamma_n^{qg} \\ \gamma_n^{gq} & \gamma_n^{gg} \end{pmatrix}\right] \begin{pmatrix} a_n^M \\ b_n^M \end{pmatrix} + \mathcal{O}(\alpha_s^2) = 0$$

The LCDAs are expanded in the eigenfunctions of the evolution Kernels:

$$\phi_M^q(x,\mu) = 6x \,\bar{x} \left[1 + \sum_{n=1}^{\infty} a_n^M(\mu) C_n^{(3/2)}(2x-1) \right]$$

$$\phi_M^g(x,\mu) = 30x^2 \bar{x}^2 \left[\sum_{n=1}^{\infty} b_n^M(\mu) C_{n-1}^{(5/2)}(2x-1) \right]$$

 $C_n^{(\alpha)}(z)$: Gegenbauer polynomials $a_n(\mu), b_n(\mu)$: Gegenbauer moments, contain the scaledependence, hadronic input parameters

At one-loop order, the scaling is governed by:

$$\begin{bmatrix} \mu \frac{d}{d\mu} + \frac{\alpha_s(\mu)}{4\pi} \begin{pmatrix} \gamma_n^{qq} & \gamma_n^{qg} \\ \gamma_n^{gq} & \gamma_n^{gg} \end{pmatrix} \end{bmatrix} \begin{pmatrix} a_n^M \\ b_n^M \end{pmatrix} + \mathcal{O}(\alpha_s^2) = 0$$

At higher orders, moments of order $n \mod n$ mix with moments of order k < n.

When scale-evolved to high scales, all Gegenbauer moments decrease:

$$\mu \to \infty \Rightarrow a_n, b_n \to 0 \Leftrightarrow \phi_q \to 6x(1-x)$$

When scale-evolved to high scales, all Gegenbauer moments decrease:

$$\mu \rightarrow \infty \Rightarrow a_n, b_n \rightarrow 0 \Leftrightarrow \phi_q \rightarrow 6x(1-x)$$

JGU

For μ at the EW scale, they are already strongly suppressed:

LCDAs for mesons at different scales, dashed lines: $\phi_M(x, \mu = \mu_0)$, solid lines: $\phi_M(x, \mu = m_Z)$, grey dotted lines: $\phi_M(x, \mu \to \infty)$

When scale-evolved to high scales, all Gegenbauer moments decrease:

$$\mu \to \infty \Rightarrow a_n, b_n \to 0 \Leftrightarrow \phi_q \to 6x(1-x)$$

JGU

For μ at the EW scale, they are already strongly suppressed:

LCDAs for mesons at different scales, dashed lines: $\phi_M(x, \mu = \mu_0)$, solid lines: $\phi_M(x, \mu = m_Z)$, grey dotted lines: $\phi_M(x, \mu \to \infty)$

At high scales compared to $\Lambda_{\rm QCD}$ (e.g. $\mu \sim m_Z$) the sensitivity to poorly-known a_n^M , b_n^M is greatly reduced!

JGU

The factorization arises from the large scale separation between the hard scatter and the hadronization. It can be derived in Soft-Collinear Effective Theory (SCET).

- The factorization arises from the large scale separation between the hard scatter and the hadronization. It can be derived in Soft-Collinear Effective Theory (SCET).
- The amplitude is given by a convolution of the hard scattering kernel with the light-cone distribution amplitude, a hadronic matrix element of a current that is non-local along the light cone.

- The factorization arises from the large scale separation between the hard scatter and the hadronization. It can be derived in Soft-Collinear Effective Theory (SCET).
- The amplitude is given by a convolution of the hard scattering kernel with the light-cone distribution amplitude, a hadronic matrix element of a current that is non-local along the light cone.
- The relevant current operators start at leading power with two collinear quarks or gluons, these operators mix under renormalization.

JG U

- The factorization arises from the large scale separation between the hard scatter and the hadronization. It can be derived in Soft-Collinear Effective Theory (SCET).
- The amplitude is given by a convolution of the hard scattering kernel with the light-cone distribution amplitude, a hadronic matrix element of a current that is non-local along the light cone.
- The relevant current operators start at leading power with two collinear quarks or gluons, these operators mix under renormalization.
- Solving the RGE and running the LCDA to the hard scattering scale resums the large logarithms $\alpha_s \log m_Z^2 / \Lambda_{\text{OCD}}^2$.

JGU

The factorization arises from the large scale separation between the hard scatter and the hadronization. It can be derived in Soft-Collinear Effective Theory (SCET).

Thank you for your attention!

- collinear quarks or gluons, these operators mix under renormalization.
- Solving the RGE and running the LCDA to the hard scattering scale resums the large logarithms $\alpha_s \log m_Z^2 / \Lambda_{\rm QCD}^2$.