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Introduction

© 2015, European Space Agency

Inflation solves flatness, horizon, relic... problems

Inflation is also generic explanation for origin of anisotropies in the CMB

No definitive driving mechanism for inflation exists; increasing complexity
of models poses a challenge in extracting analytical predictions
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Scalar-Curvature Theories

Action S = S[gµ⌫ ,', f ('), k('),V (')] for wide class of inflation models
in the Jordan frame given by:

S =

Z
d4x

p
�g


� f (')

2
R +

1
2

k(')gµ⌫rµ'r⌫'� V (')

�

Conformal transformation and reparametrisation of the inflaton
(collectively frame transformation) link different scalar-curvature theories
(Einstein frame defined by f (') = M2

P , k(') = 1):

gµ⌫ ! g̃µ⌫ = ⌦(x)2gµ⌫ ,

' ! '̃ = '̃('), (d'̃/d')2 = K (')

The above transformation properties of model parameters imply

S[gµ⌫ ,', f ('), k('),V (')] = S[g̃µ⌫ , '̃, f̃ ('̃), k̃('̃), eV ('̃)]

Frame problem: are frame transformations physical or not? A given
action may not necessarily be a priori frame invariant
Aim to answer this by developing formalism applicable to
scalar-curvature theories with general model functions
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Classical Dynamics

Einstein field equations modified due to non-minimal coupling f (') 6= M2
P

Assume homogeneous inflaton and Friedman-Walker-Robertson metric:

gµ⌫ = diag(N2
L ,�a2,�a2,�a2)

NL is general lapse function, used to define the Hubble parameter

H ⌘ ȧ
a
⌘ 1

NL

d ln a
dt

Energy density and pressure are replaced by their non-minimal (NM)
extensions:

⇢ (NM)

M2
P

=
⇢
f
� 3Hḟ

f
,

p (NM)

M2
P

=
p
f
+

2Hḟ
f

� f̈
f

Form of acceleration, Friedman, and continuity equations is unchanged
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Cosmological perturbations

Observable anisotropies seeded by primordial perturbations of the metric
(gµ⌫dxµdx⌫ = (1 + 2�)N2

L dt2 + · · · ) and the inflaton field (' = '̄+ �')

The only physically relevant inflationary quantity is the
diffeomorphism-invariant comoving curvature perturbation

R ⌘ �� H
˙̄'
�'

“Freezes” outside the horizon (Weinberg, 2003)

Scalar and tensor power spectra extracted via two-point functions of R
evaluated at horizon crossing:

PR ⌘ k3

4⇡2
H4

ZR'̇2 , PT ⌘ 2k3

⇡2
H2

ZT
, r = 8ZR

ZT

'̇2

H2
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Slow-roll inflation

Define scalar spectral index and its running, evaluated at horizon
crossing of largest cosmological scales (k = 0.002 Mpc�1):

nR � 1 =
d ln PR

d ln k

����
k=aH

, ↵R =
dnR

d ln k

Slow-roll approximation '̈ ⌧ H'̇ ⌧ H2' implies that Hubble slow-roll
parameters (HSRP) (Hwang, 1996) are small and slowly varying:

✏H ⌘ � Ḣ
H2 , �H ⌘ � '̈

H'̇
,

H ⌘ 1
2

ḟ
Hf

, �H ⌘ 1
2

Ė
HE

, E ⌘ kf +
3
2

f 2
,'

We may express cosmological observables in terms of HSRP:

nR = 1 � 4✏H � 2�H + 2H � 2�H ,

r = 16(✏H + H)
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Slow-roll inflation

HSRP expressions for nR and r require solving the cosmological
equations of motion (impractical in all but the simplest of cases)

Inflationary attractor: class of solutions which all inflationary trajectories
approach in phase space

The equations of motion simplify in the limit of vanishing SRP:

H2 ⇡ fU
3
, �3EH'̇ ⇡ f 3U,',

H
'̇

⇡ � EU
f 2U,'

New potential slow-roll parameters (PSRP) reduce to the corresponding
HSRP in the slow-roll limit:

✏U ⌘ 1
2

fU,'(fU),'
EU2 , �U ⌘ 1

2
fU,'(fU),'

EU2 +

✓
f 2U,'

EU

◆

,'

,

U ⌘ � f,'
2

fU,'

EU
, �U ⌘ �1

2
E,'

E2
f 2U,'

U
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Frame covariance

Extract model functions f , k , and V from transformed action after a
general frame trasformation

PSRP transform as

✏̃U = ✏U � 2�⌦, �̃U = �U � 2�⌦ +�K ,

̃U = U + 2�⌦, �̃U = �U + 4�⌦ +�K ,

�⌦ ⌘ 1
2

f 2U,'

EU
⌦,'

⌦
, �K ⌘ 1

2
f 2U,'

EU
K,'

K

Inflationary observables are frame-invariant to first (slow-roll) order

Number of e-foldings (dN ⌘ HNL dt) not frame-invariant to all orders:

N ! eN = N + ln[⌦(t)/⌦(tend)]

In potential formalism, N is frame-invariant as long as end-of-inflation
condition max(✏U , |✏U + �U |) = 1 is extended to:

max(✏U + U , |✏U + �U + 4U � �U |) = 1
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Specific models

Induced gravity inflation: f (') = ⇠'2, V (') = �('2 � 1/⇠)2

Higgs inflation: f (') = M2
P + ⇠'2, V (') = �('2 � v2)2

Induced gravity inflation Higgs inflation

r 128 ⇠ (1+6⇠)
[(8N�6)⇠�1]2

16(1+6⇠)
8⇠N2+N

nR
4(16N2�56N�15)⇠2�4(4N+1)⇠+1

[(8N�6)⇠�1]2
64⇠2N3+(1�40⇠�192⇠2)N�16⇠(8⇠�1)N2�3(1+6⇠)

N(1+8⇠N)2

↵R � 1024N⇠3(2(4N+9)⇠+3)
[(6�8N)⇠+1]4

� 1
N2(1+8⇠N)4

h
2048⇠3N2

⇣
4N2 + 15N + 9

⌘
⇠4

+32N
⇣

160N2 + 300N + 81
⌘

+ 12(8N +

3)⇠ + 3 +4
⇣

272N2 + 252N + 27
⌘
⇠2

i

↵T � 2048N⇠3(1+6⇠)
[(6�8N)⇠+1]4 � 2(1+6⇠)(32N(4N+3)⇠2+6(4N+1)⇠+1)

N2(8⇠N+1)3

Possible to incorporate F (R) models in the formalism via Legendre
transformation � = F (R),R
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Conclusion

Frame problem resolved in a natural way; frame invariance of the action
not imposed “by hand”

Easy-to-use calculational tool for extracting cosmological observables
from any scalar-curvature theory:

All higher-order runnings of cosmological observables may be calculated
without defining additional slow-roll parameters

No further approximation beyond inflationary attractor is necessary (such as
approximating the high-field potential in the Einstein frame)

Possible extensions to the formalism:

Multi-field non-minimally coupled inflation

F (',R) theories (recast in multi-field form via Legendre transformations)

Form invariance of action is starting point for studying effect of frame
transformations to radiative corrections in inflation
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Cosmological perturbations: backup slides

SVT decomposition leads to linearised modified Einstein field equations
(where T (NM)

µ⌫ is non-minimal energy-momentum tensor):

�Gµ⌫ = �T (NM)
µ⌫

Comoving curvature perturbation satisfies

1
N2

L a3QR

d
dt

⇣
NLa3QRṘ

⌘
+

k2R
a2 = 0, QR =

k'̇2 +
3ḟ 2

2f 
H +

ḟ
2f

!2 ⌘ '̇2

H2 ZR

Canonicalizing the primordial perturbation via zR ⌘ a
p

QR, vR ⌘ zRR,
we derive the generalised Sasaki-Mukhanov (SM) equation (with
NLdt ⌘ a d⌧)

d2vR,k

d⌘2 +

✓
k2 � 1

zR

d2zR

d⌘2

◆
vR,k = 0
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Cosmological perturbations: backup slides

Power spectrum of perturbations is quantum in origin

Quantise SM equation by imposing usual commutation relations and the
Bunch-Davies vacuum (fields behave as if free at very early times)

Solving for the mode functions at large scale limit, we find the two-point
function of the primordial perturbations via

hvR,k1 |vR,k2i = |vR,k |2 �(k1 + k2)

Taking into account transfer functions which induce a multiplicative
multipole contribution, we extract the observed scalar power spectrum
and tensor-to-scalar ratio from the two-point function:

PR ⌘ k3

4⇡2
H4

ZR'̇2 , PT ⌘ 2k3

⇡2
H2

ZT
, r = 8ZR

ZT

'̇2

H2
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