

Implication of the candidate detection of Dark Matter in the X-ray

Kevork Abazajian University of California, Irvine

June 8, 2016

Mainz Institute for Theoretical Physics Program: The Energy Ladder of the Universe

Note: keV≠eV

 $N_{\text{eff}} = 3.15 \pm 0.23$ (Planck Collab. 2015) \Rightarrow constrains *dark radiation*, not *dark matter*

Dark Matter Neutrinos

 $\sim 0.01~{\rm eV}$

The Cosmological Dark Matter Problem

First indications: velocity of galaxies in a cluster $GM = \langle v^2 \rangle r_{1/2} \alpha^{-1}$ $\Rightarrow M \gg M_{\rm stars} + M_{\rm gas}$

Zwicky (1933): the "dunkel-materiel"/ the "dark matter"

Sterile Neutrinos as Dark Matter: History

- "Super-weak" neutrinos (G < G_F) [Olive & Turner, 1982]: Earlier Decoupling, abundance set by standard dark matter production mechanism of decoupling temperature and degrees of freedom disappearance
- "Sterile" neutrinos [Dodelson & Widrow, 1993]: No SM interactions beyond mass terms, inclusion of finite-temperature modifications to self-energy, lack of thermalization. WDM.
- "Resonant" sterile neutrinos [Shi & Fuller, 1999]: Finite temperature production with non-zero lepton number resonant enhanced production. WDM to CDM. "Cool" Dark Matter.
- "Precision" Sterile Neutrino Dark Matter & Proposal for X-ray <u>Detection</u> [Abazajian, Fuller & Patel 2001; KA 2005]: Full momentum-space production description with QCD transition corrections, resonant to non-resonant solutions as a continuum in lepton number.

Sterile Neutrinos

Beyond the Standard Model of Particle Physics

- *V_s* Phenomenological Insertion of Majorana & Dirac Mass
 Terms of Comparable Magnitude (atmos. & solar)
 (e.g. *v*MSM Asaka et al 2006)
- Left-Right Symmetric Models (Pati & Salam 1974;
 Mohapatra & Pati 1975)
- Vs Higher Dimensional Operators in String-Inspired models (Langacker 1998)
- *Vs* Bulk Fermions in Large Extra Dimensions
 (ADD; Dvali & Smirnov 2000)
- Vs Axino in R-parity Violating Minimal Supersymmetric
 Models (Chun & Kim 1999)

The ν MSM: a minimalist model

- "Neutrino Minimal Standard Model of Particle Physics"
- Model stipulates that short-baseline anomalies have nothing to do with neutrino oscillations
- Basically the minimal "mini see-saw" mechanism

$$\delta \mathcal{L} = \bar{N}_I i \partial_\mu \gamma^\mu N_I - f_{I\alpha}^\nu \Phi \bar{N}_I L_\alpha - \frac{M_I}{2} \bar{N}_I^c N_I + h.c.$$

- Two heavier ~1 GeV sterile neutrinos provide atmospheric & solar mass scales, leptogenesis; no room for LSND
- Light sterile neutrino is the Dark Matter [Asaka, Blanchet & Shaposhnikov 2005]
- More involved models generally involve similar insertions for neutrino mass generation

Sterile v WDM Radiative Decay in the X-ray

Decay: Shrock 1974; Pal & Wolfenstein 1981 **X-ray**: Abazajian, Fuller & Tucker 2001

 $``\nu_s" \to ``\nu_\alpha" + \gamma$

 $E_{\gamma} = \frac{m_s}{2} \sim 1 \text{ keV}$

 $\Gamma_{\gamma} = 1.62 \times 10^{-28} \text{ s}^{-1} \left(\frac{\sin^2 2\theta}{7 \times 10^{-11}}\right) \left(\frac{m_s}{7 \text{ keV}}\right)^5$

Virgo Cluster: 10⁷⁸ DM particles

Upper Mass Limit on v_s DM: X-ray observations of Virgo Abazajian, Fuller & Tucker 2001

Slíde from 2001

Future Detection?

X-ray Constraint Summary

XMM Newton: The Virgo Cluster

Andromeda Galaxy: Watson et al. 2011 $m_s < 2.2 \text{ keV}$ Ursa Minor: Lowenstein et al. 2008 $m_{s} < 3.1 \,\,{\rm keV}$ Milky Way in CXB: Abazajian et al. 2006 $m_s < 5.7 \text{ keV}$ Coma + Virgo Clusters: Boyarsky et al. 2006

 $m_s < 6.3 \text{ keV}$

X-Ray Background: Boyarsky et al. 2006 $m_s < 8.9 \ {\rm keV}$

Sterile Neutrino Dark Matter Parameter Space Summary

Abazajian 2011

Best constraints are from Horiuchi+ 2013

Combined subhalo and X-ray constraints: exclude standard DW dark matter v_s

Horiuchi, Humphrey, Abazajian & Kaplinghat, PRD arXiv:1311.0282

Forecast X-ray Observation Sensitivity for Constellation-X Abazajian, Fuller & Tucker 2001

The Detection of an Unidentified Line

Bulbul et al. ApJ arXiv:1402.2301

Chandra X-ray M31 plus substructure constraints

Combined subhalo and X-ray constraints: exclude standard v_s

Horiuchi, Humphrey, Abazajian & Kaplinghat, PRD 2013

The Detection of an Unidentified Line II

Boyarsky et al. PRL arXiv:1402.4119

Metal Lines in Clusters at 3.5 keV? unlikely

- Most lines at this energy are too low in flux for the typical plasma temperatures
- Those that could be close, Ar XVII DR, would have accompanying lines that make its flux a factor of 30 too low

3.5 keV X-ray Line Observations

- Bulbul et al. (ApJ arXiv:1402.2301)
 - 73 clusters with *XMM-Newton*, **MOS** + **PN** CCDs
 - stacking z = 0.01 to 0.35 clusters blends features in the instrument response function
 - 4 5σ in full MOS data set
 - found in several subsets of observations → *Trials factor* unnecessary
 - Indications at 2.2σ Perseus with Chandra
 - Not seen in Virgo, but consistent upper limit
- Boyarsky et al. (PRL arXiv:1402.4119)
 - Andromeda indication at 3σ XMM-Newton
 - **Perseus indication** at 2.3σ *XMM-Newton*
 - Combined detection at $\textbf{4.4}\sigma$
- Boyarsky et al. (PRL 1408.2503)
 - Milky Way Galactic Center 3.5 keV line at 5.7 σ XMM-Newton
 - Consistent with dark matter in field of view
 - Due to complexity of this region, atomic lines could be responsible (*here alone*)

3.5 keV X-ray Line Observations

Jeltema & Profumo (MNRAS arXiv:1408.1699)

- subtract an unconstrained KXVIII line from XMM-Newton Galactic Center data
- use new data to constrain presence of dark matter line, concluding to room for line (*methodology!*)

• Andersen et al. (MNRAS arXiv:1408.4115)

- Stack ~80 galaxies with *XMM-Newton* & *Chandra*
- Have systematic residuals in continuum of order signal
- Claim high statistical significance exclusion regardless
- Urban et al. (MNRAS arXiv:1411.0050)
 - Detected at 7.4 σ with Suzaku in Perseus,
 - Claim that the flux profile appears inconsistent with dark matter (**Franse+ arXiv:1604.01759** reanalysis shows consistency the line profile)
- Iakubovskyi et al. (arXiv:1508.05186)
 - **Detected in 8 new clusters** at >2σ in *XMM-Newton* and *Chandra* observations
 - Redshifting of line is consistent with it being at the source (i.e., not instrumental)

Sterile Neutrino Dark Matter: Parameter Space Summary

8 New Cluster Detections at >2σ Reported in August Consistent with DM in FOV, with proper redshifting of line

1508.05186Iakubovskyi+ New clusters:

Constraints from Energy Loss in Supernovae

Hidaka & Fuller (2006): Active-sterile conversion on collapse alters the electron fraction profile, temperature, etc. Cases were found with double resonances, re-converting steriles produced deep into active neutrinos and below the neutrino sphere, so the steriles never even exit the core

Argüelles, Brdar & Kopp (2016) arrive at stronger limits from energy loss, but do not address issues raised in previous work, both during collapse and later in the core energy loss: degeneracy pressure, rapid timescale evolution of ρ, multiple resonances.

Issues in Cosmological Small-scale Structure?

Dwarf galaxies around the Milky Way are less dense than they should be if they held cold dark matter

OBSERVED DWARF GALAXY CONCENTRATIONS ARE MUCH TOO LOW, WHILE CDM SUBHALOS ARE "TOO BIG TOO FAIL"

Boylan-Kolchin et al. 2011, 2012

16 September 2011 Last updated at 13:47 ET

6,051 < Share 🧗 📘 🗠 🖹

Dwarf galaxies suggest dark matter theory may be wrong

By Leila Battison Science reporter, Bradford

Dwarf galaxies around the Milky Way are less dense than they should be if they held cold dark matter

Scientists' predictions about the mysterious dark matter purported to make up most of the mass of the Universe may have to be revised.

Research on dwarf galaxies suggests they cannot form in the way they do if dark matter exists in the form that the most common model requires it to.

That may mean that the Large Hadron Collider will not be able to spot it.

Leading cosmologist Carlos Frenk spoke of the "disturbing" developments

Related Stories

Dark matter hunters see 67 hints

Is LHC closing in on elusive Higgs particle?

'Filaments' hold dark

WDM Solution to All Local Group Galaxy Properties?

Anderhalden et al. arXiv:1212.2967 "It seems that only the pure WDM model with a 2 keV [thermal] particle is able to match the all observations" of the Milky Way Satellites: "the total satellite abundance, their radial distribution and their mass profile" (or TBTF)

What is the relationship between particle mass and warm dark matter free streaming scale?

Now: Sterile Neutrino Dark Matter Production

Quantum Field Theory + Statistical Mechanics

$$\rho(\epsilon, t) = \sum_{i,j} \rho_{i,j}(\epsilon, t) |\nu_i\rangle \langle \nu_j | \qquad \epsilon \equiv p_{\nu}/T$$

$$|\nu_{\alpha}\rangle = \cos \theta |\nu_1\rangle + \sin \theta |\nu_2\rangle$$

$$|\nu_s\rangle = -\sin \theta |\nu_1\rangle + \cos \theta |\nu_2\rangle$$

$$\dot{\rho}(\epsilon, t) = -i[H, \rho] \implies \rho(\epsilon, t) = \frac{1}{2} P_0(\epsilon, t) [1 + \mathbf{P}(\epsilon, t) \cdot \sigma]$$

$$\frac{\partial}{\partial t} \mathbf{P}(\epsilon, t) = \mathbf{V}(\epsilon, t) \times \mathbf{P}(\epsilon, t) + [1 - P_z(\epsilon, t)]$$

$$\times \left[\frac{\partial}{\partial t} \ln P_0(\epsilon, t)\right] \hat{z}$$

$$- \left[D(\epsilon, t) + \frac{\partial}{\partial t} \ln P_0(\epsilon, t)\right] (P_x(\epsilon, t) \hat{x} + P_y(\epsilon, t) \hat{y}$$

6

⇒ Suppress active-sterile neutrino mixing at early times

A Simplified View of Sterile Neutrino Dark Matter Production

Quasi-Classical Full Boltzmann Transport

0 = 0 $\mathbf{L}[f] = \mathbf{C}[f]$

$$\frac{\partial}{\partial t}f_{\nu_{\rm s}}(p,t) - H\,p\,\frac{\partial}{\partial p}f_{\nu_{\rm s}}(p,t) =$$

$$\sum_{\nu_x+a+\dots\to i+\dots} \int \frac{d^3 p_a}{(2\pi)^3 2E_a} \cdots \frac{d^3 p_i}{(2\pi)^3 2E_i} \cdots (2\pi)^4 \delta^4 (p+p_a+\dots-p_i-\dots)$$

$$\times \frac{1}{2} \left[\langle P_{\mathrm{m}}(\nu_\mu \to \nu_{\mathrm{s}}; p, t) \rangle \left(1-f_{\nu_{\mathrm{s}}}\right) \sum |\mathcal{M}|^2_{i+\dots\to a+\nu_\mu+\dots} f_i \dots (1\mp f_a) \left(1-f_{\nu_{\mu}}\right) \dots \right]$$

$$- \langle \underline{P_{\mathrm{m}}(\nu_{\mathrm{s}} \to \nu_{\mu}; p, t)} \rangle f_{\nu_{\mathrm{s}}} \left(1-f_{\nu_{\mu}}\right) \sum |\mathcal{M}|^2_{\nu_{\mu}+a+\dots\to i+\dots} f_a \dots (1\mp f_i) \dots \right].$$

Resonant Production

Matter (thermal) mixing angle: $\sin^{2} 2\theta_{m} = \frac{\Delta^{2}(p) \sin^{2} 2\theta}{\Delta^{2}(p) \sin^{2} 2\theta + [\Delta(p) \cos 2\theta - V^{D} - V^{T}(p)]^{2}}$ $\Rightarrow \quad \epsilon_{\rm res} \approx \frac{\delta m^{2}}{(8\sqrt{2}\zeta(3)/\pi^{2})G_{\rm F}T^{4}L}$ $\approx 3.65 \left(\frac{\delta m^{2}}{(7\,{\rm keV})^{2}}\right) \left(\frac{10^{-3}}{L}\right) \left(\frac{170\,{\rm MeV}}{T}\right)^{4}$

New Physics in 2015: A tale of weak interactions in the strong coupling epoch

Updated physics included in past year:

- 1. Redistribution of lepton asymmetry in collisional processes
- 2. More accurate inclusion of neutrino scattering on leptons, hadrons, quarks
- 3. Updated time-temperature evolution of the plasma, and more robust numerics

Teja Venumadhav, Francis-Yan Cyr-Racine, K. A., Chris Hirata, arXiv:1507.06655

Redistribution of Lepton Asymmetries

The following reactions redistribute lepton asymmetry among the charged leptons and neutrinos:

$$\begin{pmatrix} \langle Q \rangle \\ \langle B \rangle \end{pmatrix} = \begin{pmatrix} \chi_2^Q & \chi_{11}^Q \\ BQ & \chi_2^B \\ \chi_{11}^B & \chi_2^B \end{pmatrix} \begin{pmatrix} \mu_Q, \text{sys} \\ \mu_B, \text{sys} \end{pmatrix}$$

$$\stackrel{0.15}{\underset{\scriptstyle 0.05}{\overset{\scriptstyle 0}{\underset{\scriptstyle 0}{\atop\scriptstyle 0}{\underset{\scriptstyle 0}{\atop\atop 0}{\underset{\scriptstyle 0}{\atop\atop 0}{\atop\atop}}{\atop\atop{1}{\atop\atop 0}{\atop\atop{1}{\atop\atop 0}{\atop\atop{1}{\atop\atop 0}{\atop\atop{1}{\atop\atop 0}{\atop\atop 0}{\atop\atop{1}{\atop\atop 0}{\atop\atop{1}{\atop{1}{\atop{1}{\atop{1}{1}{\atop{1}{1}{1}{1}{1}$$

T [MeV]

$$\begin{split} \nu_{\mu} + e^{-} \rightleftharpoons \nu_{e} + \mu^{-} \\ \nu_{e} + e^{+} \rightleftharpoons \nu_{\mu} + \mu^{+} \\ \nu_{e} + e^{+} \rightleftharpoons \pi^{+} + \text{stuff} \\ \nu_{\mu} + \mu^{+} \rightleftharpoons \pi^{+} + \text{stuff} \\ \nu_{e} + e^{+} \rightleftharpoons K^{+} + \text{stuff} \\ \nu_{\mu} + \mu^{+} \rightleftharpoons K^{+} + \text{stuff} \\ \pi^{+} + \pi^{0} \leftrightarrows K^{+} + \text{stuff} \end{split}$$

Exact neutrino scattering

Important ν_{μ} scattering rates via hadronic channels at T = 100 MeV

Final phase space density results

Structure Formation Transfer Functions

7 keV Alleviation of Too Big To Fail...

Features could be differentiable in future high-redshift measures

Brandon Bozek, Michael Boylan-Kolchin, Shunsaku Horiuchi, Shea Garrison-Kimmel, Kevork Abazajian, James S. Bullock (2016)

3.5 keV Confirmation: Hitomi (Astro-H) X-ray Telescope

Bulbul et al. ApJ arXiv:1402.2301

Confirmation: Hitomi (Astro-H) X-ray Telescope

Successful launch Feb. 17

Communication anomaly of X-ray Astronomy Satellite "Hitomi" (ASTRO-H) - March 26

JAXA Press Releases:

- loss of orbit altitude
- loss of communication
- debris reported by JSpOC (Joint Space Operations Center)
- estimated rotation period calculated from the light curve is about 5.2 seconds

 JAXA: "cause for this fast rotations is anomaly in attitude control system. Based on information from several overseas organizations indicating the separation of the two SAPs from ASTRO-H, JAXA concluded that the functions of ASTRO-H could not be restored. Accordingly, JAXA ceased efforts to recover the satellite and turned to investigating the cause of the anomaly."

Hitomi (Astro-H) X-ray Telescope: Data?

Jonathan McDowell (Harvard CfA): "some of the data that's been returned is scientifically exciting" [Gizmodo March 30]

P L ©	iz Kruesi LyraLunaris				\$	Following
Andy Fabian: the data from Hitomi's soft X-ray spectrometer "are completely transformational" even though just a few days of data. #head16						
RETWEETS	LIKES 5	-()	🌌 🚳 🖗			
2:14 PM - 5 Apr 2016						
•	13	۲	•••			

Confirmation Method: #2 Sounding Rocket X-ray Observations: Micro-X & XQC

Figueroa-Feliciano+ 1506.05519

Confirmation Method #3: kinematic searches in nuclear β-decay

Confirmation Method #4: full kinematic reconstruction of K-capture nuclear decay

Original studies: Finocchiaro & Schrock 1992

CACHE (Cesium Atomic-electron Capture with Heavy neutrino Emission)

¹³¹Cs Ion trap proposal:
Peter Smith at UCLA Dark Matter
Conference, Feb. 2016
[Martoff, Napolitano, Hudson, Wang, Smith, Renshaw, Fuller, E Grohs]

Summary

- An unidentified line has been detected at 4σ to 5σ in two independent samples of stacked X-ray clusters with XMM-Newton, with several subsamples showing the line. It is seen by the same group in the Perseus Cluster with Chandra data. (Bulbul et al. ApJ 2014)
- Within a week, an independent group reported a line at the same energy toward Andromeda (M31) and Perseus with *XMM-Newton*, with combined statistical evidence of 4.4 σ . (Boyarsky et al. PRL 2014).
- Seen in 8 more clusters at lower significance. No consistent astrophysical interpretation exists.
- Follow up observations:
 - current: Hitomi (data implications uncertain)
 - 2017-2018: Micro-X, XQC
 - 2028+: ATHENA
- The simplest model for the signal is resonant sterile neutrino production with a cosmological *L*. The signal crosses a transition region from "cold" dark matter to "warm" dark matter, particularly at a small-scale structure cutoff scale of great interest in galaxy formation of the local group of galaxies, ~2 keV thermal WDM.