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As an example, consider

R-parity conserving Minimal Supersymmetric
Standard Model (MSSM)

Consider the R-odd lightest SUSY particle (LSP)
as the lightest neutralino X1and is the dark matter.

Consider
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X1produced thermally.

ly, consider LSP coannihilating
Most mass-degenerate

SY particle X2 (not necessarily the second

ightest neutralino). Coannihilation becomes vital.
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How coannihilation works? [Griest et al.’91]

conditions:

X2 has large annihilation cross section with itself or X1

X2X2 < SMSM Yox1 & SMSM

X2 can convert to X1 efficiently.

XQSM Awrs XlsM



Boltzmann equations

assuming fast conversion  x25M < x1SM

dn
- 3HNn =
dt
call this <UU>eﬂ-‘
dnx L 2 eq2
note that F3Hny = —(00)yy—s5Mm (M) — 1Y

without coannihilation



call this (OV)eft

Two limits

[ ] = s

9%<UU>11—>SM + 9§<UU>22—>SM + 29192<UU>12—>SM
mo = mf: (OV)er = .
(91 + g2)

note that n;? = g; (miT/Qﬂ-)S/Q o—mi/T



If X2is colored (squark or gluino in MSSM)
formation of QCD bound state of X2
could be important

Gg <> Rg, R <+ gg  for gluino [Ellis et al.‘15]
tt < Ng, 71 < gg for stop

Compare recombination process ¢ p <> Hvy



If X2is colored (squark or gluino in MSSM)
formation of QCD bound state of X2
could be important

Gg <> Rg, R <> gg  for gluino [Ellis et al.‘|5]
tt < g, N1 < qgg for stop

Compare recombination process € p <> H~

note: bound state formation is important only when

Fann z F{/g

bound state
decay rate

annihilation rate



Use Coulomb approximation
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Use Coulomb approximation

oF

with  C = % (Cl + CQ — 0(12))

MSSM | SU(3)
MSSM | binding | non-binding (gg)
qg 1,85,84 | 10,10,27
it 1 8 3/2
i | 3 6 R 13
tg 3,6 15 PO

2/3

3/2
1/2
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Use methods in Landau’s QM textbook

photoelectric effect: Hy —ep
: : : 1 — T\ 2

Electromagnetic Hamiltonian H = %(p + eA)

2
H~t 24 - D
2m  m
e -
calculate the matrix ~ {¢¢] —A-p i)

rescale with appropriate color factors



Stoponium (preliminary)
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Bound state annihilation removes 2 R-odd
particles, thus helps reducing DM density

gluino bound state R < qg

stop bound state 7] <> g¢




The Boltzmann equation is modified by adding
the following terms:

see also [Ellis et al.l 5]



The Boltzmann equation is modified by adding
the following terms:

see also [Ellis et al.l 5]

Rg — gg becomes unimportant at low temperature compared to R — gg



Assume zero mass splitting (stop)

The relic abundance vs mass plane is as follows:
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bino/stop coan. 5-sigma discovery becomes
impossible at 100 TeV collider

100 Tev
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Assume zero mass splitting (gluino)
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formation rate times 2



A slightly different topic...

The 750 GeV LHC excesses could be a bound state of
375 GeV colored particles

e.g. [Han et al.’| 6]
[Kats, Strassler ’1 6]

[Hamaguchi, SPL "1 6]
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Consider a 375 GeV colored vector-like fermion
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requires hypercharge 4/3 to fit the data
[Han et al.’ 1 6]



The 375 GeV colored vector-like fermion
cannot be long-lived due to cosmological
and collider constraints.

The 375 GeV particle has to decay

Model building is not straightforward as the -4/3 hypercharged
particle cannot have renormalizable couplings to SM particles



The 375 GeV colored vector-like fermion
cannot be long-lived due to cosmological
and collider constraints.

The 375 GeV particle has to decay

Model building is not straightforward as the -4/3 hypercharged
particle cannot have renormalizable couplings to SM particles

We consider its decay into an almost mass-degenerate DM
to avoid jets plus MET constraints



The 375 GeV colored vector-like fermion
cannot be long-lived due to cosmological
and collider constraints.

The 375 GeV particle has to decay

Model building is not straightforward as the -4/3 hypercharged
particle cannot have renormalizable couplings to SM particles

We consider its decay into an almost mass-degenerate DM
to avoid jets plus MET constraints

Extra colored mediator needs to be introduced to mediate
its decay



There is another excess: ATLAS on-Z excess
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g—=>3ix = 3iG+ 2
gluino Higgsino gravitino

We also attempt to accommodate it (w/ colored mediator)
simultaneously with the 750 GeV excess
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Model

model XY n

~375 GeV particle X

T
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Dark Matter
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Ynidri PL(Y - n)

X mixes with Y

+ h.c.

Y decays to DM plus jet
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Model

model XY n
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On-Z excess fit

13TeV on-Z (10) -

>
N o6
’l\ |
>c<\lo'4\/\/\/\—/\/\/
M oo

X1 mass fixed at 375 GeV



On-Z excess fit

13TeV on-Z (10) -

X1 mass fixed at 375 GeV

a benchmark
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Monojet costraints
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A benchmark myx, = 620GeV
mx, = 375GeV

my = 335GeV

explains 750 GeV excess, on-Z excess, and gives a DM candidate!



DM phenomenology

n=(n*,n°)" is an inert scalar doublet with mass splitting Am ~ 350MeV

Am ?
I'(n— 0 )~ 10~
decay rate (n~ —=n' +71)~3x10"GeV (35OMeV> B

annihilation cross section

—2
~ 9 % 107 Pem’s ™ ()
v =9 S 335 Gev

e.g. [Cirelli et al.’05]
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