Solving five problems of particle physics and cosmology in one stroke

Guillermo Ballesteros

IPhT CEA-Saclay

In collaboration with: Javier Redondo, Andreas Ringwald and Carlos Tamarit

06/06/2016 Exploring the energy ladder of the universe

Extension of the SM addressing

- 1. inflation
- 2. baryogenesis
- 3. dark matter
- 4. smallness of neutrino masses
- 5. strong CP problem

νMSM

 $SM + Three singlet neutrinos, N_i$, with Majorana masses

- Small masses of left-handed neutrinos from the see-saw mechanism
- The lightest of the N_i is a DM candidate with ~ keV mass
- Baryon asymmetry is generated by oscillations of the two heavier N_i

Asaka, Blanchet and Shaposhnikov 2005

- The Higgs boson non-minimally coupled to gravity gives inflation Bezrukov and Shaposhnikov 2008

u MSM

- 1. inflation
- 2. baryogenesis
- 3. dark matter
- 4. smallness of neutrino masses
- 5. strong CP problem

u MSM

1. inflation

3. dark matter

4. smallness of neutrino masses

5. strong CP problem

u MSM

1. inflation

3. dark matter

4. smallness of neutrino masses \checkmark

<u>– 5. strong CP problem</u>

νMSM

3. dark matter

4. smallness of neutrino masses

5. strong CP problem

νMSM

1. inflation

a) Negative effective potential at large Higgs values

b) Loss of unitarity (due to large non-minimal coupling) and (consequently) lost of predictive power

> Burgess, Lee and Trott 2009 Barbón and Espinosa 2009

-5. strong CP problem

SMASH!

Standard Model - Axion - See-saw - Hidden scalar

Strong CP problem KSVZ model **SMASH**

complex scalar + two extra quarks

SMASH

Dark matter

(via leptogenesis)

SMASH = SM +

- Q and \tilde{Q} in the fund. and anti-fund. reps. of $SU(3)_c$ and hypercharges -1/3 and 1/3

(allowing them to decay into SM quarks)

New global U(1) symmetry with charges:

q	u	d	L	N	E	Q	$ ilde{Q}$	σ
1/2	-1/2	-1/2	1/2	-1/2	-1/2	-1/2	-1/2	1

Yukawa couplings and potential:

$$\mathcal{L} \supset -\left[Y_{uij}q_i\epsilon Hu_j + Y_{dij}q_iH^{\dagger}d_j + G_{ij}L_iH^{\dagger}E_j + F_{ij}L_i\epsilon HN_j + \frac{1}{2}Y_{ij}\sigma N_iN_j + y\tilde{Q}\sigma Q + y_{Q_di}\sigma Q d_i + h.c.\right],$$

Neutrino masses
Strong CP problem and DM

$$V(H,\sigma) = \lambda_H \left(H^{\dagger}H - \frac{v^2}{2} \right)^2 + \lambda_\sigma \left(|\sigma|^2 - \frac{v_\sigma^2}{2} \right)^2 + 2\lambda_{H\sigma} \left(H^{\dagger}H - \frac{v^2}{2} \right) \left(|\sigma|^2 - \frac{v_\sigma^2}{2} \right)$$

Strong CP problem, DM, inflation and stability

Couplings to gravity:

$$S \supset -\int d^4x \sqrt{-g} \left[\frac{M^2}{2} + \xi_H H^{\dagger} H + \xi_\sigma \sigma^* \sigma\right] R$$

Inflation

SMASH Lagrangian

Proposed in

Dias, Machado, Nishi, Ringwald and Vaudrevange (2014) to relate the PQ symmetry breaking scale to the see-saw scale

It did not consider inflation

A similar model was proposed by *Salvio (2015)*. Same field content, but extra quark without hypercharge \longrightarrow standard see-saw Higgs as the inflaton

Neutrino masses

$$F_{ij}L_i\epsilon HN_j + \frac{1}{2}Y_{ij}\sigma N_iN_j$$

 σ takes a large VEV v_{σ}

$$M_{\nu} = \begin{pmatrix} 0 & M_D \\ M_D^T & M_M \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & Fv \\ F^Tv & Yv_{\sigma} \end{pmatrix}$$

$$m_{\nu} = -M_D M_M^{-1} M_D^T = -\frac{F Y^{-1} F^T}{\sqrt{2}} \frac{v^2}{v_{\sigma}} = 0.04 \,\text{eV} \left(\frac{10^{11} \,\text{GeV}}{v_{\sigma}}\right) \left(\frac{-F Y^{-1} F^T}{10^{-4}}\right)$$

Example: global sym that is anomalous under SU(3)c But there is no global symmetry with this property in the SM

The KSVZ axion

$$\mathcal{L} \in \frac{1}{2} \partial_{\mu} a \, \partial^{\mu} a + i \frac{a}{32\pi^2} G \tilde{G} \qquad a \to a + c \,, \quad \partial_{\mu} c = 0$$

The coupling of the axion to QCD is a dim. 5 operator.

UV completion ?

$$\frac{1}{2}\partial_{\mu}\sigma \,\partial^{\mu}\sigma^{*} + \lambda_{\sigma} \left(|\sigma|^{2} - \frac{v_{\sigma}^{2}}{2} \right)^{2} + y \,\tilde{Q}\sigma Q + h.c.$$
$$\sigma \to e^{i\alpha} \,\sigma \,, \quad Q \to e^{-i\frac{\alpha}{2}\gamma_{5}} \,Q$$

Redefine Q with a chiral transformation of parameter $\alpha = \frac{a}{v_{\sigma}}$

and integrate out Q and $|\sigma|$ below v_{σ} (large VEV)

Axion mass

Can be computed using chiral perturbation theory

$$m_a \sim m_\pi \frac{f_\pi}{v_\sigma} , \quad v_\sigma = f_A$$

$$m_a = \left(\frac{10^{12} \text{GeV}}{v_\sigma}\right) (5.70 \pm 0.07) \,\mu\text{eV}$$

(at zero temperature)

Grilli di Cortona, Hardy, Pardo Vega, Villadoro (2016)

Matter/anti-matter asymmetry

obtained from thermal leptogenesis:

Fukugita and Yanagida, 1986

Example:

Hierarchical RH neutrino mass spectrum $3M_1 \lesssim M_3 \sim M_2$ (determined by the Yukawas in our case)

For a thermal distribution of the lightest RH neutrino and neglecting flavour effects, the observed baryon asymmetry is generated if

 $M_1 \gtrsim 5 \times 10^8 \text{ GeV};$ $(M_D M_D^T)_{11}/M_1 \lesssim 10^{-3} \text{ eV}$

Davidson and Ibarra, 2002

Buchmüller, di Bari and Plumacher 2002 For smaller RH masses, resonant leptogenesis may occur *Pilaftsis and Underwood, 2003*

Stability of the effective potential and inflation

$$V(H,\sigma) = \lambda_H \left(H^{\dagger}H - \frac{v^2}{2} \right)^2 + \lambda_\sigma \left(|\sigma|^2 - \frac{v_\sigma^2}{2} \right)^2 + 2\lambda_{H\sigma} \left(H^{\dagger}H - \frac{v^2}{2} \right) \left(|\sigma|^2 - \frac{v_\sigma^2}{2} \right)^2$$

<u>Absolute stability</u>: the potential is positive everywhere

- Safe choice to avoid quantum tunneling during inflation
- Required if we want inflation to occur along the direction where an instability may develop. E.g. Higgs inflation
 - If there is an instability, inflation might occur away from it, but quantum fluctuations still need to be under control

Inflation and the Higgs

Quantum fluctuations of the Higgs:

$$\sqrt{\langle h^2 \rangle} \sim H \sim \frac{\sqrt{V_{\text{inf}}(\phi)}}{M_P} \sim 10^{-5} M_P \sim 10^{14} \text{GeV} \gg \Lambda_I$$

$$M_P = 1/\sqrt{8\pi G} \simeq 2.435 \cdot 10^{18} \,\mathrm{GeV}$$

Stability

$$V = m_H^2 H^{\dagger} H + \frac{m_S^2}{2} S^2 + \frac{\lambda}{2} (H^{\dagger} H)^2 + \frac{\lambda_S}{4!} S^4 + \frac{\lambda_{SH}}{2} H^{\dagger} H S^2$$

At large field values, V > 0 requires:

 $\lambda > 0, \quad \lambda_S > 0, \quad \lambda_{SH} > -\sqrt{\lambda \lambda_S/3}$

$$\beta_{\lambda} = \frac{1}{16\pi^2} \left[-12y_t^4 + \lambda \left(-\frac{9}{5}g_1^2 - 9g_2^2 + 12y_t^2 \right) + \frac{27}{100}g_1^4 + \frac{9}{10}g_2^2g_1^2 + \frac{9}{4}g_2^4 + 12\lambda^2 + \lambda_{SH}^2 \right]$$

$$\beta_{\lambda_S} = \frac{1}{16\pi^2} \left[3\lambda_S^2 + 12\lambda_{SH}^2 \right]$$

$$\beta_{\lambda_{SH}} = \frac{1}{16\pi^2} \left[\lambda_{SH} \left(-\frac{9}{10} g_1^2 - \frac{9}{2} g_2^2 + 6\lambda + \lambda_S + 6y_t^2 \right) + 4\lambda_{SH}^2 \right]$$

Threshold stabilization

Elias-Miro, Espinosa, Giudice, Lee, Strumia 2012

Inflation with a new singlet

$$V(H,\sigma) = \lambda_H \left(H^{\dagger}H - \frac{v^2}{2} \right)^2 + \lambda_\sigma \left(|\sigma|^2 - \frac{v_\sigma^2}{2} \right)^2 + 2\lambda_{H\sigma} \left(H^{\dagger}H - \frac{v^2}{2} \right) \left(|\sigma|^2 - \frac{v_\sigma^2}{2} \right)^2 + \lambda_\sigma \left(|\sigma|^2 - \frac{v_\sigma^2}{2} \right)^2 + 2\lambda_{H\sigma} \left(H^{\dagger}H - \frac{v^2}{2} \right) \left(|\sigma|^2 - \frac{v_\sigma^2}{2} \right)^2 + \lambda_\sigma \left(|\sigma|^2 - \frac{v_\sigma^2}{2} \right)^2 + 2\lambda_{H\sigma} \left(H^{\dagger}H - \frac{v^2}{2} \right) \left(|\sigma|^2 - \frac{v_\sigma^2}{2} \right)^2 + \lambda_\sigma \left(|\sigma|^2 - \frac{v_\sigma^2}{2} \right)^2 + 2\lambda_{H\sigma} \left(H^{\dagger}H - \frac{v_\sigma^2}{2} \right) \left(|\sigma|^2 - \frac{v_\sigma^2}{2} \right)^2 + \lambda_\sigma \left(|\sigma|^2 - \frac{v_\sigma^2}{2} \right)^2 + 2\lambda_{H\sigma} \left(H^{\dagger}H - \frac{v_\sigma^2}{2} \right) \left(|\sigma|^2 - \frac{v_\sigma^2}{2} \right)^2 + \lambda_\sigma \left(|\sigma|^2 - \frac{v_\sigma^2}{2} \right)^2 + 2\lambda_{H\sigma} \left(H^{\dagger}H - \frac{v_\sigma^2}{2} \right) \left(|\sigma|^2 - \frac{v_\sigma^2}{2} \right)^2 + \lambda_\sigma \left(|\sigma|^2 - \frac{v_\sigma^2}{2} \right)^2 + 2\lambda_{H\sigma} \left(H^{\dagger}H - \frac{v_\sigma^2}{2} \right) \left(|\sigma|^2 - \frac{v_\sigma^2}{2} \right)^2 + \lambda_\sigma \left(|\sigma|^2 - \frac{v_\sigma^2}{2} \right)^2 + 2\lambda_{H\sigma} \left(H^{\dagger}H - \frac{v_\sigma^2}{2} \right) \left(|\sigma|^2 - \frac{v_\sigma^2}{2} \right)^2 + \lambda_\sigma \left(|\sigma|^2 - \frac{v_\sigma^2}{2} \right)^2 + 2\lambda_{H\sigma} \left(H^{\dagger}H - \frac{v_\sigma^2}{2} \right) \left(|\sigma|^2 - \frac{v_\sigma^2}{2} \right)^2 + \lambda_\sigma \left(|\sigma|^2 - \frac{v_\sigma^2}{2} \right)^2 + 2\lambda_{H\sigma} \left(H^{\dagger}H - \frac{v_\sigma^2}{2} \right) \left(|\sigma|^2 - \frac{v_\sigma^2}{2} \right)^2 + 2\lambda_{H\sigma} \left(H^{\dagger}H - \frac{v_\sigma^2}{2} \right)^2 + 2\lambda_{$$

$$S \supset -\int d^4x \sqrt{-g} \left[\frac{M^2}{2} + \xi_H H^{\dagger} H + \xi_\sigma \sigma^* \sigma \right] R,$$

 ξ_H and ξ_σ are always generated radiatively Newton's constant depends on the VEVs and on ξ_H and ξ_σ

$$M_P^2 = M^2 + \xi_H v^2 + \xi_\sigma v_\sigma^2.$$

The stability of the effective potential does not depend on ξ_H and ξ_σ

- They do not affect the running of the quartic couplings.
- In Jordan frame: effective masses, do not affect vacua existence
- In Einstein frame: the potential is proportional to their squares

Einstein Frame at tree-level

$$|H(x)| = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\h(x) \end{pmatrix}, \quad |\sigma(x)| = \frac{\rho(x)}{\sqrt{2}},$$

$$\tilde{g}_{\mu\nu}(x) = \Omega^2(h(x), \rho(x)) g_{\mu\nu}(x), \quad \Omega^2 = 1 + \frac{\xi_H(h^2 - v^2) + \xi_\sigma(\rho^2 - v_\sigma^2)}{M_P^2},$$

$$\int d^4x \sqrt{-\tilde{g}} \left[-\frac{M_P^2}{2} \tilde{R} + \frac{1}{2} \sum_{i,j}^{1,2} \mathcal{G}_{ij} \tilde{g}^{\mu\nu} \partial_\mu \phi_i \partial_\nu \phi_j - \tilde{V} \right]$$

$$\tilde{V}(h,\rho) = \frac{1}{\Omega^4(h,\rho)} \left[\frac{\lambda_H}{4} \left(h^2 - v^2 \right)^2 + \frac{\lambda_\sigma}{4} \left(\rho^2 - v_\sigma^2 \right)^2 + \frac{\lambda_{H\sigma}}{2} \left(h^2 - v^2 \right) \left(\rho^2 - v_\sigma^2 \right)^2 \right]$$

inflationary potential for large fields $\sim \lambda \frac{M_P^4}{4 \xi^2}$

Example, Higgs inflation: $\xi_H h^2 \gg M_P^2$ and $\xi_H \gg 1/6$

Canonically normalized field in Einstein frame: χ_H

$$\tilde{V}_{\rm HI} \simeq \frac{\lambda_H}{4} \frac{M_P^4}{\xi_H^2} \left[1 - \exp\left(-\sqrt{\frac{2}{3}} \frac{\chi_h}{M_P}\right) \right]^2,$$

Polar coordinates: $h=\varphi\cos\theta$, $\ \rho=\varphi\sin\theta$, for large φ

$$\tilde{V} \simeq \frac{\lambda_H \cos^4 \theta + \lambda_\sigma \sin^4 \theta + 2\lambda_{H\sigma} \cos^2 \theta \sin^2 \theta}{4 \left(\xi_H \cos^2 \theta + \xi_\sigma \sin^2 \theta\right)^2} M_P^4$$

 ρ φ

$$\frac{\rho}{h} = \sqrt{-\frac{\lambda_H}{\lambda_H\sigma}} + \mathcal{O}\left(\frac{\xi_H}{\xi_\sigma}\right)$$

Extrema for $\theta = 0$, $\pi/2$ and

Amplitude of primordial perturbations

$$\tilde{V}_{\text{eff}} \simeq \frac{\tilde{\lambda}_{\text{eff}}}{4} M_P^4 \left[1 - \exp\left(-\sqrt{\frac{2}{3}} \frac{|\chi_{\text{eff}}|}{M_P}\right) \right]^2$$

Recall also: if the potential is unstable, no inflation at large field

Loss of unitarity

$$\xi_H \sim 10^5 \sqrt{\lambda_H} \sim 10^4$$

$$\Lambda_U = \frac{M_P}{\xi_H} \sim 10^{14} \,\text{GeV} \ll \frac{M_P}{\sqrt{\xi_H}} \sim 10^{16} \,\text{GeV}$$

To restore unitarity something must occur at or below Λ_U , very likely altering the inflationary dynamics

Loss of unitarity

The inflationary predictions depend critically on the potential shape

$$\mathcal{H} \sim \frac{\sqrt{V}}{M_P} \sim \sqrt{\lambda_H} \Lambda_U$$

Free the Higgs from the burden of inflating!

$$\Lambda_U = \frac{M^2 + \xi_\sigma \, v_\sigma^2 + 6\xi_\sigma^2 \, v_\sigma^2}{\xi_\sigma \sqrt{M^2 + \xi_\sigma \, v_\sigma^2}}, \qquad M_P^2 \simeq M^2 + \xi_\sigma \, v_\sigma^2$$

$$\xi_\sigma \gg 1 \quad \text{and} \quad \xi_\sigma v_\sigma^2 \sim M_P^2/6 \quad \rightarrow \Lambda_U \sim M_P$$

$$Giudice, Min-Lee$$

$$v_\sigma \lesssim 10^{15} \text{GeV} \gg 10^{12} \text{GeV}$$

Instead: $\xi_H \ll \xi_\sigma \lesssim 1 \to M_P \sim M$ and $\Lambda_U \sim M_P$

 $\sigma \sim M_P$ as in usual "large field" models

$$\tilde{V}_{\text{eff}} \simeq \frac{\tilde{\lambda}_{\text{eff}}}{4} M_P^4 \left[\tanh\left(\sqrt{\frac{\xi_\sigma}{a}} \frac{|\chi_\rho|}{M_P}\right) \right]^4$$

Axion dark-matter

1. PQ symmetry restored after inflation $T_{\text{max}} > f_A > T_c$

- vacuum misalignment
- decay of strings and domain walls

$$f_A(\Omega_{A,c}h^2 = 0.12) \simeq 7.0 \times 10^{10} \,\text{GeV} \times \frac{1 - 0.084(n-8)}{(n/8)^{1.1}}$$

n depends on the behaviour of the axion mass with temperature and can be between ~2 and ~10

$$5 \times 10^{10} \,\text{GeV} < f_A < 5 \times 10^{11} \,\text{GeV}$$

Axion dark-matter

2. PQ symmetry NOT restored after inflation $T_{\rm max} < T_c$

- vacuum misalignment

Isocurvature perturbations below current bounds (~3%) if

 $f_A < 10^{14} \text{GeV}$

Conclusion

Solving the strong CP problem, by the KSVZ axion and explaining the smallness of neutrino masses, by the see-saw, we can identify the dark matter, which is the QCD axion, obtain *baryogenesis*, via *leptogenesis* and explain and the origin of *primordial inflation*.

All we need is to extend the SM with: a complex singlet, a heavy quark and three RH neutrinos