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Extension of the SM addressing

1. inflation

2. baryogenesis

3. dark matter

4. smallness of neutrino masses

5. strong CP problem



⌫MSM
SM + NiThree singlet neutrinos, , with Majorana masses

- Small masses of left-handed neutrinos from the see-saw mechanism

- The lightest of the  Ni is a DM candidate with ~ keV mass 

- Baryon asymmetry is generated by oscillations of the two heavier  

- The Higgs boson non-minimally coupled to gravity gives inflation

Ni

Asaka, Blanchet and Shaposhnikov 2005

Bezrukov and Shaposhnikov 2008
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⌫MSM

1. inflation

2. baryogenesis

3. dark matter

4. smallness of neutrino masses

a) Negative effective potential at large Higgs values

b) Loss of unitarity (due to large non-minimal coupling) 
and (consequently) lost of predictive power

5. strong CP problem

Burgess, Lee and Trott 2009
Barbón and Espinosa 2009



SMASH!

Standard Model - Axion -  See-saw - Hidden scalar 
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Ni

Q Q̃ SU(3)c

- A complex singlet, 

- Three singlet neutrinos, 

-      and      in the fund. and anti-fund. reps. of 

�

New global           symmetryU(1)

generic property of the model. We develop a semi-analytic understanding of the stability region in
parameter space and compare our results with a previous analysis of a similar extension of the SM in
which the Ni do not carry U(1) charges and in which correspondingly their masses are independent
of v� [52]. We explain in Section 3 how inflation occurs in SMASH. Importantly, we demonstrate
that Hidden Scalar Inflation in SMASH can occur for a non-minimal coupling of order unity. We
show that, within the island of stability in parameter space, the inflationary predictions are in perfect
agreement with the current observations. In Section 5, we present a comprehensive investigation
of reheating in SMASH. Importantly, unlike in many other models of inflation, here the inflaton’s
couplings (��, �H�, ⇠�) are specified and well constrained by stability and unitarity. Furthermore,
the dominant mechanism of reheating -resonant production of bosons during the oscillatory stage
of the inflaton’s evolution- is known. Therefore, solid estimates of the maximum thermalization
and reheating temperatures, as function of the couplings, can be derived and compared with the
stability and unitarity constraints. In Section 6 we return then to axion cosmology. We show that in
the parameter range satisfying the stability constraints the PQ symmetry is restored after inflation
in SMASH. This leaves us then with a preferred window in axion mass. Apart from an executive
summary, Section 7 contains a discussion of possible variants of SMASH and gives a perspective for
possible experimental tests of SMASH and further theoretical in-depth studies. Several appendices
are also included to make the paper self-contained.

2 The SMASH model {model}

The SMASH-1 model, first proposed in [27], has the following boson and fermion (Weyl spinor
notation) representations beyond the SM:

• In the scalar sector there is a new complex singlet � (“hidden scalar field”).

• Three SM-singlet neutrinos Ni, with i = 1, 2, 3,

• Q (Q̃) in the (anti)-fundamental of SU(3)c, with charge �1/3 (+1/3) under U(1)Y .

The variant SMASH-2 model has Q(Q̃) hypercharge assignment of +2/3(�2/3). It leads to almost
identical phenomenology so we will focus our discussion on SMASH-1 for simplicity and come back
to their di↵erences in Sec. 7. These hypercharge assignments ensure that the new quarks can mix
with the right-handed SM down-type or up-type quarks respectively, allowing its decay to the latter,
thereby evading problems associated with their overabundance [66,67].

All these new fields, Ni, Q, Q̃ and �, are charged under a global U(1) symmetry, which acts as
the Peccei-Quinn (PQ) and lepton number symmetries. Basically, the charges are vector-like for SM
particles and RH neutrinos and axial for the new quark Q, see Table 1.

q u d L N E Q Q̃ �
1/2 �1/2 �1/2 1/2 �1/2 �1/2 �1/2 �1/2 1

Table 1: Charge assignments of the fields in SMASH under the new U(1) PQ symmetry. The
remaining SM fields have no charge under this new symmetry.

tab:smash_charges

The most general Yukawa couplings and renormalizable scalar potential3 compatible with this PQ
3The global U(1) symmetry may actually be an accidental symmetry of the low energy e↵ective field theory emerging

from an exact discrete symmetry of a more fundamental theory which includes quantum gravity. For explicit examples,
see [27,68].
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(allowing them to decay into SM quarks)

SM +SMASH  =



symmetry read

L ��

Yuijqi✏Huj + YdijqiH

†dj +GijLiH
†Ej + FijLi✏HNj +

1

2
Yij�NiNj

+y Q̃�Q+ yQd i�Qdi + h.c.
i
,

(1) {lyukseesaw}

and

V (H,�) = �H

✓
H†H � v2

2

◆2

+ ��

✓
|�|2 � v2�

2

◆2

+ 2�H�

✓
H†H � v2

2

◆✓
|�|2 � v2�

2

◆
, (2) {scalar_potential}

where we have included also the Higgs field H. Here, Li are the left-handed lepton doublets of the
SM and Ei left-handed fields related to the conjugates of the usual right-handed leptons.

The self couplings in the scalar potential are assumed to satisfy �H ,�� > 0 and �2
H� < �H�� , to

ensure that the minimum of the scalar potential is attained at the VEVs

hH†Hi = v2/2, h|�|2i = v2�/2 , (3)

where v = 246GeV and v� is expected to be at a high energy scale, very roughly v� ⇠ 1011 GeV
although we will explore all possible working values. The hidden scalar –the particle excitation ⇢ of
the modulus of the hidden scalar field � in the expansion around the VEV,

�(x) =
1p
2

⇥
v� + ⇢(x)

⇤
eiA(x)/v� , (4) {sigma:}

– gets a mass from symmetry breaking and the same happens for the other new fields, Ni and Q

Mij =
Yijp
2
v� +O

✓
v

v�

◆
, m⇢ =

p
2�� v� +O

✓
v

v�

◆
, mQ =

yp
2
v� +O

✓
v

v�

◆
. (5) {eq:masses}

As long as the dimensionless couplings Yij , ��, and y are sizeable these masses will be large so, as
far as physics at the electroweak scale or below is concerned, these heavy particles can be integrated
out. The emerging low-energy e↵ective field theory only contains a new field, the axion A, and
automatically solves the neutrino mass and the strong CP problem, as reviewed in the next subsection.

2.1 Solving the active neutrino mass problem and the strong CP problem

The two last terms in the first row of Eq. (1) give rise to a neutrino mass matrix of the form

M⌫ =

✓
0 MD

MT
D MM

◆
=

1p
2

✓
0 Fv

F T v Y v�

◆
, (6)

realizing the see-saw mechanism [19–22], i.e. explaining the smallness of the masses of the left-handed
SM active neutrinos by the hierarchy between v and v�,

m⌫ = �MDM
�1
M MT

D = �F Y �1 F T

p
2

v2

v�
= 0.04 eV

✓
1011GeV

v�

◆✓�F Y �1 F T

10�4

◆
. (7) {seesaw}

The unavoidable Nambu-Goldstone boson (NGB) arising from the breaking of the global U(1)
symmetry, corresponding to the particle excitation of the real scalar field A parametrizing the phase in
equation (4), plays at the same time the role of a KSVZ-type [28,29] axion [31,32] and of the majoron,
the NGB of spontaneous global lepton number breaking [23–25], which is usually called J . In fact,
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Strong CP problem and DM

Strong CP problem, DM, inflation  and stability

3 Inflation {inflation}

In this section we discuss inflation in SMASH, which in principle may occur with the Higgs (Higgs
Inflation, HI), the hidden scalar (HSI) or a mixture of both (HHSI) playing the role of the inflaton.
We will see that HI should be discarded in favour of HSI and HHSI for reasons related to the violation
of perturbative unitarity at large field values in HI, as anticipated in the Introduction. Throughout
the section we assume that the potentials are absolutely stable and find the relevant parameters to
fit cosmological observations. In the next section we will investigate the stability issues and construct
explicit models that give successful inflation as described here.

3.1 Two-field inflation with non-minimal couplings to R

Our analysis builds upon Higgs Inflation [7], realizing (in a particularly well motivated model) the
ideas of e.g. [125–132] for two fields non-minimally coupled to gravity. Including gravity, the most
general SMASH action at operator dimension four4 is completed (in the Jordan frame) by including
a term

S � �
Z

d4x
p�g


M2

2
+ ⇠H H†H + ⇠� �

⇤�

�
R , (48) {Lmain}

where ⇠H and ⇠� are dimensionless non-minimal couplings to the curvature scalar R, and the mass
scale M is related to the actual Planck mass by

M2
P = M2 + ⇠Hv2 + ⇠�v

2
�. (49) {eq:MMP}

We recall that these non-minimal couplings are generated radiatively, even if they are set to zero at
some scale, and therefore they should be included in a general analysis. As we will only be interested
in inflation for absolutely stable potentials, we point out that the non-minimal couplings ⇠� and ⇠H
will not a↵ect our considerations on the stability.

In the following, we will assume that both non-minimal couplings are positive. We will also
require that �H� > �p

�H��, which is needed for tree-level absolute stability. As far as the tree-level
dynamics is concerned, it is su�cient to consider the Higgs in the unitary gauge and the modulus of
the hidden scalar, which we will often discuss two components of a vector field � ,

|H(x)| = 1p
2

✓
0

h(x)

◆
, |�(x)| = ⇢(x)p

2
, �(x) = (h(x), ⇢(x)) . (50) {choiceg}

Performing a Weyl transformation to the Einstein frame, in which the metric is

g̃µ⌫(x) = ⌦2(h(x), ⇢(x)) gµ⌫(x), (51) {weyl}

where ⌦2 is defined as

⌦2 = 1 +
⇠H(h2 � v2) + ⇠�(⇢2 � v2�)

M2
P

, (52) {conf_fac}

we get that the relevant part of the action reads

S(E)
SMASH �

Z
d4x

p
�g̃

2

4�M2
P

2
R̃+

1

2

1,2X

i,j

Gij g̃
µ⌫@µ�i@⌫�j � Ṽ

3

5 , (53) {Eact}

4Notice, however, that once the graviton is properly normalized by giving it dimensions of mass, the operators
⇠H H†H R and ⇠� �⇤� R have dimension five by power-counting.
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Inflation

Yukawa couplings and potential:

Couplings to gravity:



Proposed in 
Dias, Machado, Nishi, Ringwald and Vaudrevange (2014)

to relate the PQ symmetry breaking scale to the see-saw scale

SMASH Lagrangian

It did not consider inflation

A similar model was proposed by Salvio (2015). 
Same field content, but extra quark without hypercharge standard see-saw

Higgs as the inflaton
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SM and Ei left-handed fields related to the conjugates of the usual right-handed leptons.
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Mij =
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v� +O

✓
v

v�

◆
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p
2�� v� +O

✓
v

v�

◆
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2
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✓
v

v�

◆
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As long as the dimensionless couplings Yij , ��, and y are sizeable these masses will be large so, as
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realizing the see-saw mechanism [19–22], i.e. explaining the smallness of the masses of the left-handed
SM active neutrinos by the hierarchy between v and v�,

m⌫ = �MDM
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M MT

D = �F Y �1 F T

p
2

v2

v�
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✓
1011GeV

v�

◆✓�F Y �1 F T
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◆
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symmetry, corresponding to the particle excitation of the real scalar field A parametrizing the phase in
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The strong CP problem

�S /
Z

GG̃

✓ ⌘ ✓0 � arg(detM)

quark mass 
matrix

Invariant under chiral 
transformations

✓ . 10�10

making ✓ unphysical.

LQCD 2 � ✓

32⇡2
GG̃ breaks CP

Solution: another transformation under which ,

global sym that is anomalous under SU(3)cExample:
But there is no global symmetry with this property in the SM

from neutron e.d.m.



The KSVZ axion
L 2 1

2
@µa @

µa+ i
a

32⇡2
GG̃ a ! a+ c , @µc = 0

The coupling of the axion to QCD is a dim. 5 operator.
symmetry read
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
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i
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◆
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Axion mass

Can be computed using chiral perturbation theory

ma =

✓
1012GeV

v�

◆
(5.70± 0.07)µeV

(at zero temperature)

ma ⇠ m⇡
f⇡
v�

v� = fA,

Grilli di Cortona, Hardy, Pardo Vega, Villadoro  (2016)



Matter/anti-matter asymmetry
obtained from thermal leptogenesis:

3M1 . M3 ⇠ M2

For a thermal distribution of the lightest RH neutrino 
and neglecting flavour effects, the observed baryon asymmetry 

is generated if

Figure 3: The value of the initial misalignment ✓I,c that fits the observed cold dark matter abundance
⌦ch2 = 0.12 as a function of fA for di↵erent values of n = 3, 4, 5, 6, 7, 8, 9 from top to bottom. We
plot 2 tan(✓I,c/2) which coincides with ✓I,c when small and with 1/(⇡ � ✓I,c) when large. {thetaIDM}

one finds that the observed baryon asymmetry is generated as long as [95–97]

M1 & 5⇥ 108 GeV; (MDM
T
D)11/M1 . 10�3 eV, (47) {leptogenesis}

for a thermal initial abundance of N1. Remarkably, this can be the case in SMASH, as we will find in
Sections 5 and 6. However, we will see that this turns out to be a very strong constraint in SMASH
that we want to circumvent.

Leptogenesis can happen for smaller values of M1 in scenarios in which the mass di↵erences among
the right-handed neutrinos are of the order of their decay widths. In that case there is a resonant
enhancement of CP violation in the decays of the heavy neutrinos, giving rise to the mechanism of
“resonant leptogenesis” [98,99]. This allows for a substantial relaxation of the mass bound of equation
(47), so that right-handed neutrinos can have masses even in the TeV range.

WRITE ABOUT ANNIHILATIONS AND MOTIVATION FOR LOW ⇤).

Finally, it is worth mentioning that in SMASH, axionic strings can support zero modes of the
right-handed neutrinos and the new quark Q. This allows lepton number to be trapped in strings in
RH neutrinos, which are released when string loops collapse and decay out of equilibrium injecting
new lepton number in the Universe. Numerical estimates show that the contribution to the baryon
asymmetry is negligible for the relatively small values of M1 in which we are interested [100–102] but
the conclusions are based on poor knowledge about the evolution of the string network so an updated
study might be worth but is beyond the scope of this paper .
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For smaller RH masses, resonant leptogenesis may occur  

Hierarchical RH neutrino mass spectrum 
(determined by the Yukawas in our case)

Example:

Pilaftsis and Underwood, 2003

Davidson and Ibarra, 2002 

Fukugita and Yanagida, 1986

Buchmüller, di Bari and Plumacher 2002



Stability of the effective potential and inflation

Absolute stability: the potential is positive everywhere

- Safe choice to avoid quantum tunneling during inflation

- If there is an instability, inflation might occur away from it, 
but quantum fluctuations still need to be under control

- Required if we want inflation to occur along the direction where 
an instability may develop. E.g. Higgs inflation
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As long as the dimensionless couplings Yij , ��, and y are sizeable these masses will be large so, as
far as physics at the electroweak scale or below is concerned, these heavy particles can be integrated
out. The emerging low-energy e↵ective field theory only contains a new field, the axion A, and
automatically solves the neutrino mass and the strong CP problem, as reviewed in the next subsection.

2.1 Solving the active neutrino mass problem and the strong CP problem

The two last terms in the first row of Eq. (1) give rise to a neutrino mass matrix of the form
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0 MD
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=
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realizing the see-saw mechanism [19–22], i.e. explaining the smallness of the masses of the left-handed
SM active neutrinos by the hierarchy between v and v�,
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The unavoidable Nambu-Goldstone boson (NGB) arising from the breaking of the global U(1)
symmetry, corresponding to the particle excitation of the real scalar field A parametrizing the phase in
equation (4), plays at the same time the role of a KSVZ-type [28,29] axion [31,32] and of the majoron,
the NGB of spontaneous global lepton number breaking [23–25], which is usually called J . In fact,
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Implications of Mt (and Mh) for vacuum stability

1. The metastability of the electroweak vacuum after the first LHC run

In the first LHC run we have learned that the Higgs boson exists; it is light, with mass Mh '
125 GeV [1]; and it has SM-like couplings (still with room for significant deviations). Moreover,
no trace of BSM physics has showed up, leading to bounds on the mass scale L of new physics in
the TeV range for the main BSM scenarios, supersymmetric or not. For those of us willing to hold
on to the naturalness paradigm, the hierarchy problem affecting electroweak symmetry breaking
implies that new physics should be around the corner, likely on the reach of the second LHC run.
However, it is also possible that naturalness has mislead us and we are just seeing evidence that
the SM is all there is up to very high energy scales, possibly up to L ⇠ MP. Figure 1 (left plot)
shows how the most relevant SM couplings evolve when extrapolated to very high scales [2]. It was
not guaranteed but the theory stays weakly coupled up to MP but it does. We see the three gauge
couplings almost unifying at µ ⇠ 1014 GeV. The top Yukawa coupling decreases at high energy
(due to as effects) and eventually becomes smaller than all gauge couplings. The Higgs quartic
coupling evolves in a very interesting way: it is small at the EW scale, l (Mt)⇠ 1/8, as the Higgs
boson is light, and it decreases when run to higher scales. The zoomed-in right plot in Fig. 1 shows
l becoming negative at µ ⇠ 1010 GeV.

The steep slope of l (µ) is caused by one-loop top corrections, that give the dominant contribu-
tion to bl = dl/d log µ , which dictates the evolution of l with scale. One has bl =�6y4

t /(16p2)+

... where yt is the sizable top Yukawa coupling. This dependence of bl on the fourth power of yt

explains the crucial sensitivity of the running of l on the top quark mass Mt , illustrated by the gray
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Figure 1: Left: Extrapolation of SM couplings from the Fermi scale to MPl. Right: Zoom-in on the evolution
of the Higgs quartic coupling, l (µ), for Mh = 125.7 GeV. The 3s uncertainties in Mt , as and Mh are shown
by the colored intervals as indicated. (Taken from Ref. [2]).
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Figure 1: Left: SM RG evolution of the gauge couplings g1 =
p

5/3g0, g2 = g, g3 = gs, of the
top and bottom Yukawa couplings (yt, yb), and of the Higgs quartic coupling �. All couplings are
defined in the MS scheme. The thickness indicates the ±1� uncertainty. Right: RG evolution of
� varying Mt, Mh and ↵s by ±3�.

the Yukawa sector and can be considered the first complete NNLO evaluation of ��(µ).

We stress that both these two-loop terms are needed to match the sizable two-loop scale

dependence of � around the weak scale, caused by the �32y4t g
2
s + 30y6t terms in its beta

function. As a result of this improved determination of ��(µ), we are able to obtain a

significant reduction of the theoretical error on Mh compared to previous works.

Putting all the NNLO ingredients together, we estimate an overall theory error on Mh of

±1.0GeV (see section 3). Our final results for the condition of absolute stability up to the

Planck scale is

Mh [GeV] > 129.4 + 1.4

✓

Mt [GeV]� 173.1

0.7

◆

� 0.5

✓

↵s(MZ)� 0.1184

0.0007

◆

± 1.0th . (2)

Combining in quadrature the theoretical uncertainty with the experimental errors on Mt and

↵s we get

Mh > 129.4± 1.8 GeV. (3)

From this result we conclude that vacuum stability of the SM up to the Planck scale is

excluded at 2� (98% C.L. one sided) for Mh < 126GeV.

Although the central values of Higgs and top masses do not favor a scenario with a

vanishing Higgs self coupling at the Planck scale (MPl) — a possibility originally proposed
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the Yukawa sector and can be considered the first complete NNLO evaluation of ��(µ).

We stress that both these two-loop terms are needed to match the sizable two-loop scale

dependence of � around the weak scale, caused by the �32y4t g
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s + 30y6t terms in its beta

function. As a result of this improved determination of ��(µ), we are able to obtain a

significant reduction of the theoretical error on Mh compared to previous works.

Putting all the NNLO ingredients together, we estimate an overall theory error on Mh of
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From this result we conclude that vacuum stability of the SM up to the Planck scale is

excluded at 2� (98% C.L. one sided) for Mh < 126GeV.

Although the central values of Higgs and top masses do not favor a scenario with a

vanishing Higgs self coupling at the Planck scale (MPl) — a possibility originally proposed
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Inflation and the Higgs

Quantum fluctuations of the Higgs:
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Figure 4. Corrections beyond the leading one-dimensional approximation to the mass parameter
(left) and to the quartic coupling (right), in terms of the field S along the h-line for the same
scenario as in figure 3, with mt = 171.7GeV, λS = 3.82 · 10−13, λSH = 3.67 · 10−10, and m2

S =
−1.06·1026 GeV2. The left red points mark the beginning of observable inflation, and the right points
mark the end of inflation. The corrections to the mass and quartic parameters were estimated with
the tree-level potential, while the cosmological parameters were calculated with the RG-improved
effective potential. Notice that the corrections to the quartic coupling are much smaller than λS .

Equations (4.5) and (4.6) can be used, together with the tree-level formulae of the pre-

vious sections, to estimate the validity of the one-dimensional approximation for inflation

along the h-valley in the SMS. Doing so, we find that the approximation works with high

accuracy, as the corrections to the couplings (4.5) and (4.6) are many orders of magnitude

below the values obtained by simply considering the potential along the projection of the

bottom of the valley as a function of the length σ. Figure 4 shows the corrections evaluated

along the h-line (which, as shown in section 3.3, is a good approximation to the projection

of the valley’s floor for large h) at tree-level, for a concrete choice of parameters which

gives successful inflation. The peak in the size of the relative mass correction happens

when the valley potential crosses an inflection point, so that V ′′ = 0. Away from this peak

the relative corrections are very strongly suppressed.

4.2 Slow-roll approximation

In the one-dimensional and slow-roll approximation, we compute the primordial spectra

produced during inflation in terms of the first three slow-roll (potential) parameters ε, η

and ξ, defined as

ε =
M2

P

2

(
V ′

V

)2

, η = M2
P
V ′′

V
, ξ = M4

P
V ′V ′′′

V 2
, (4.7)

where MP = 1/
√
8πG # 2.435 · 1018GeV is the reduced Planck mass. In these expressions

the potential is understood to be evaluated along the projection of the bottom of a valley

in field space and, for simplicity, the primes denote derivatives with respect to the field

σ, which parametrizes the valley’s length. If the orthogonal corrections to the dynamics

and the primordial spectra where not negligible, we would need a two-field description

and similar parameters for the orthogonal direction as well, see e.g. [46]. However, as
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Stability
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the appearance of the new scale in the stability conditions for the threshold mechanism

precludes stabilization and, therefore, a different mechanism is required. This could be

provided, for instance, by an additional heavy scalar that is stabilized at the origin. We

have checked that stabilizing the inflationary valleys in this way, the predictions for the

cosmological parameters (including loop corrections) remain extremely close to the tree-

level results with the SM plus the inflaton alone.

We also revisit the idea of Higgs false-vacuum inflation [25, 37], mentioned earlier, and

conclude that it cannot produce successful inflation for the measured values of the SM

couplings. A similar conclusion was already found in [26, 37], and we confirm that the

trouble is related to the tensor-to-scalar ratio r, as argued in [26]. An accurate evaluation

of the energy of the false vacua, compatible with the results of [4], yields a lower bound of

r ! 2 which excludes the result of [43], according to which a value of r compatible with

the latest measurements of Planck could be generated inside the false-vacuum valley.

The paper is organized as follows. In section 2 we introduce the model: the SM coupled

to a singlet through the Higgs portal with a Z2 symmetry, to be referred to as SMS. The

tree-level potential valleys are described in section 3, and the corresponding inflationary

dynamics is analyzed in detail in section 4, discussing the single-field and slow-roll approx-

imations and the generation of curvature perturbations. We devote section 5 to radiative

effects. In section 5.1 we review the RG-improved potential, emphasizing the importance

of the field-independent piece for cosmology. In section 5.2 we analyze the issue of the sta-

bility of the effective potential, and in section 5.3 we study the implications for inflation.

In section 5.4 we study if a coupling of the Higgs to the Ricci scalar can affect the stability

during inflation. In section 5.5, we revisit the scenario of false-vacuum inflation. The con-

clusions are drawn in section 6. In addition, three appendices are provided: section A gives

the two-loop RG equations that we use, section B reviews the matching of the relevant SM

parameters to experimental measurements, and section C contains the details about the

matching between the SM and SMS.

2 Standard Model coupled to a real scalar

We consider the SM coupled to a real singlet S, with a tree-level scalar potential given by

V tree(H,S; δi) = m2
HH†H +

m2
S

2
S2 +

λ

2
(H†H)2 +

λS
4!

S4 +
λSH
2

H†HS2 , (2.1)

where H is the Higgs SU(2) doublet. The symbol δi is used to denote generically the

couplings and squared masses of the model. This encompasses not only the couplings (λ, λS ,

λSH) and the masses (m2
H , m2

S) of the scalar potential (2.1), but also the Yukawa and gauge

couplings of the SM. If a Z2 symmetry is imposed, (2.1) is the most general renormalizable

potential for S and H, excluding an allowed vacuum energy term V0, which can be used

to accommodate the measured value of the cosmological constant Λ ∼ (10−3eV)4. For

practical purposes, we can assume Λ = 0, which does not change our results.5 As we will

5We assume that at the end of inflation the fields come to rest at a minimum of the potential corre-

sponding to the cosmological constant that we measure today. Since this value is many orders of magnitude

smaller than the energy scales involved during inflation we can safely take it to be zero.
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range of Higgs and top quark masses [4, 12]. This effect may also change qualitatively the

potential around the lines of minima in the SMS, the h- and S-lines that were described in

section 3. In particular, it may destabilize the h-valley, that was shown to be able support

inflation at tree-level. Naively, this could ruin the possibility of obtaining inflation, as the

energy density could become negative inside the valley were the field should roll. Since

the valley acts as an attractor for the dynamics of fields rolling in its vicinity, inflation

would then have to be discarded for initial conditions in a wide region around the valley.

In addition to this geometrical effect, there is also the crucial issue of large quantum

fluctuations of the Higgs field induced by inflation, which can displace it directly into the

instability region. It is therefore important to know under which conditions a potential

SM instability can be cured in the SMS, which we analyze now.

For values of S below the VEV of S in the Higgs vacuum, and in the limit in which h

is larger than the other mass scales, a well motivated choice for the renormalization scale

is µ ∼ h [29]. Then, using the tree-level potential, neglecting terms other than the quartic

Higgs coupling and ignoring the field-renormalization factor, we have that for S = 0

∂V
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" 1

2

(
λ(h) +

1

4
βλ(h)

)
h3 . (5.15)

For βλ(h) < 0, which causes λ(h) to be a decreasing function, the derivative of the potential

can become negative at high enough values of h, triggering an instability. In the SM, for

mt = 173.15GeV and mh = 125.09GeV, after matching the experimental measurements

to the SM parameters as detailed in appendix B, the scale at which the potential becomes

negative is around ΛI ∼ 5·1011GeV. This effect is absent in the other two quartic couplings

of the SMS, since their beta functions lack the top-Yukawa driven contributions present in

λ. Indeed, the one-loop beta functions in the SMS are the following:

βλ =
1
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+ 4λ2SH

]
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Notice that the negative contribution to βλ coming from y4t may in principle be compensated

by λ2SH (and this possibility is of course absent in the SM). However, this will typically

require rather large values of λSH .

If the S- and h-lines of minima extend to values of h that are large enough to sense the

instability, there will be a value of the top quark mass, mt, above which the potential along

them will end up developing a runaway behavior. It will be seen in the next section that

for the large values of vS needed for successful tree-level inflation along the h-valley, see

section 4.4, small values of λSH suffice to make the h-valley reach values of h larger than

the instability scale. The lower bound of λSH for which this happen is given by (5.29).

An example is provided by the choice of parameters shown in figures 3 and 4, for which

inflation takes place at tree-level for h > 1014GeV with λSH ∼ 10−10.
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range of Higgs and top quark masses [4, 12]. This effect may also change qualitatively the

potential around the lines of minima in the SMS, the h- and S-lines that were described in

section 3. In particular, it may destabilize the h-valley, that was shown to be able support

inflation at tree-level. Naively, this could ruin the possibility of obtaining inflation, as the

energy density could become negative inside the valley were the field should roll. Since

the valley acts as an attractor for the dynamics of fields rolling in its vicinity, inflation

would then have to be discarded for initial conditions in a wide region around the valley.

In addition to this geometrical effect, there is also the crucial issue of large quantum

fluctuations of the Higgs field induced by inflation, which can displace it directly into the

instability region. It is therefore important to know under which conditions a potential
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the appearance of the new scale in the stability conditions for the threshold mechanism

precludes stabilization and, therefore, a different mechanism is required. This could be

provided, for instance, by an additional heavy scalar that is stabilized at the origin. We

have checked that stabilizing the inflationary valleys in this way, the predictions for the

cosmological parameters (including loop corrections) remain extremely close to the tree-

level results with the SM plus the inflaton alone.

We also revisit the idea of Higgs false-vacuum inflation [25, 37], mentioned earlier, and

conclude that it cannot produce successful inflation for the measured values of the SM

couplings. A similar conclusion was already found in [26, 37], and we confirm that the

trouble is related to the tensor-to-scalar ratio r, as argued in [26]. An accurate evaluation

of the energy of the false vacua, compatible with the results of [4], yields a lower bound of

r ! 2 which excludes the result of [43], according to which a value of r compatible with

the latest measurements of Planck could be generated inside the false-vacuum valley.

The paper is organized as follows. In section 2 we introduce the model: the SM coupled

to a singlet through the Higgs portal with a Z2 symmetry, to be referred to as SMS. The

tree-level potential valleys are described in section 3, and the corresponding inflationary

dynamics is analyzed in detail in section 4, discussing the single-field and slow-roll approx-

imations and the generation of curvature perturbations. We devote section 5 to radiative

effects. In section 5.1 we review the RG-improved potential, emphasizing the importance

of the field-independent piece for cosmology. In section 5.2 we analyze the issue of the sta-

bility of the effective potential, and in section 5.3 we study the implications for inflation.

In section 5.4 we study if a coupling of the Higgs to the Ricci scalar can affect the stability

during inflation. In section 5.5, we revisit the scenario of false-vacuum inflation. The con-

clusions are drawn in section 6. In addition, three appendices are provided: section A gives

the two-loop RG equations that we use, section B reviews the matching of the relevant SM

parameters to experimental measurements, and section C contains the details about the

matching between the SM and SMS.

2 Standard Model coupled to a real scalar

We consider the SM coupled to a real singlet S, with a tree-level scalar potential given by

V tree(H,S; δi) = m2
HH†H +

m2
S

2
S2 +

λ

2
(H†H)2 +

λS
4!

S4 +
λSH
2

H†HS2 , (2.1)

where H is the Higgs SU(2) doublet. The symbol δi is used to denote generically the

couplings and squared masses of the model. This encompasses not only the couplings (λ, λS ,

λSH) and the masses (m2
H , m2

S) of the scalar potential (2.1), but also the Yukawa and gauge

couplings of the SM. If a Z2 symmetry is imposed, (2.1) is the most general renormalizable

potential for S and H, excluding an allowed vacuum energy term V0, which can be used

to accommodate the measured value of the cosmological constant Λ ∼ (10−3eV)4. For

practical purposes, we can assume Λ = 0, which does not change our results.5 As we will

5We assume that at the end of inflation the fields come to rest at a minimum of the potential corre-

sponding to the cosmological constant that we measure today. Since this value is many orders of magnitude

smaller than the energy scales involved during inflation we can safely take it to be zero.
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consider are mt, m2
S , λS and λSH . Since we restrict the parameter space of the high energy

model to the region which reproduces the measured Higgs mass, the Higgs quartic and

quadratic couplings in the SMS are not independent of the parameters m2
S ,λS and λSH .

Given the decoupling of the singlet at low energies, in order to match the SM and

the SMS one should demand the equality of the flat spacetime Green functions computed

on both sides of the threshold at which the heavy singlet decouples. When it comes

to the parameters in the scalar potential V (which encodes the Green functions at zero

momentum) the decoupling of S amounts to integrating it out using the zero-momentum

equation of motion. This means that at sufficiently low scales, when quantum fluctuations

of the singlet are suppressed, the field S sits (on average) at the value which minimizes

the potential energy for every h ≡
√
2H0, where H0 is the neutral component of the Higgs

doublet. As mentioned before, we are going to assume that m2
S < 0, which means that

this minimum happens for S2 #= 0. Notice that in principle the Higgs field could also be

stabilized with m2
S > 0 (with S = 0 at the minimum), but in this case the valley supporting

inflation would not extend to large values of h. Inflation would then be exclusively driven

by the field S alone (as in a standard independent single-field model) with no role played

by the Higgs.6 We will later see that for m2
S < 0 successful inflation is actually mostly

driven by S as well, however the couplings of the effective potential that drives inflation in

a single field approximation to the dynamics are affected by those of the Higgs in that case.

After these considerations, the matching of the parameters in the potential can be

done in practice by considering the potential V when the field S is set at the value Smin

that satisfies
dV

dS

∣∣∣∣
S=Smin(h)

= 0 , (2.2)

and demanding

V SM (h; δ̃) = V (h, Smin(h); δ) +O(h6/|m2
S |). (2.3)

In other words, the (one-dimensional) potential in the SM should be understood as the

value of the SMS potential along a line which follows the minima with respect to the field

S. This is the usual basic procedure for integrating out the heavy field at low-energies.

Notice that we denote SM quantities (low-energy) with a tilde to distinguish them from

the SMS ones (high-energy). As indicated, the equality in (2.3) is valid up to terms that

are suppressed by inverse powers of the heavy mass, corresponding to non-renormalizable

terms in a polynomial expansion of the SMS potential.

At tree-level, and writing the SM potential as

V SM = m̃2
H H†H +

λ̃

2
(H†H)2 , (2.4)

taking derivatives of (2.3) with respect to the fields gives the following matching conditions,

m̃2
H = m2

H − 3λSH
λS

m2
S , λ̃ = λ− 3λ2SH

λS
, (2.5)

6If m2
S > 0, successful inflation in the SMS with S playing the role of the inflation would then addition-

ally require a non-minimal coupling to gravity, in order to satisfy current CMB limits [39] on primordial

gravitational waves.
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Stability bounds are usually obtained by demanding absolute stability, i.e. that the

potential does not become smaller than the Higgs vacuum anywhere. Therefore, for the

discussion that follows, we will say that the potential is stable if the minimum correspond-

ing to the Higgs vacuum is the one of lowest potential energy and if the potential does not

develop a runaway behaviour in any direction in field space. If there are other vacua (dif-

ferent from the Higgs one) with higher energy, those minima will be unstable with respect

to the Higgs vacuum (since tunneling to lower energies is always possible, in principle) but

the potential as a whole is deemed stable. By Higgs vacuum we normally refer to the min-

imum of the potential which corresponds to the standard electroweak symmetry breaking

vacuum with v = 246GeV in the low-energy model. Since we arranged for the Higgs vac-

uum to have zero cosmological constant (because for our purposes this makes no practical

difference), the condition of absolute stability is equivalent to requiring that the potential

should be positive (or zero) at all points. With this criterion, we recall that the instability

scale, ΛI , can be defined in the SM with the value of µ = h at which the potential of the

Higgs crosses zero towards negative values, i.e. ΛI ! 5 · 1011GeV as mentioned before.

The stability in the SMS was already discussed in [28, 29]. It was found there that in

addition to the possible stabilizing effect of λSH via the RG running that we mentioned

above, there is a tree-level effect which may be sufficient on its own to guarantee stability

at large h values. The threshold correction

δth = 3
λ2SH
λS

(5.19)

appearing in the matching of the Higgs quartic coupling, see (2.5) and (3.22), plays a key

role in this mechanism.

Concretely, it was argued in [28, 29] that any potential with λSH > 0 (which is the case

of interest for us) can be stabilized by a sufficiently large δth, provided that |m2
S | is smaller

than (roughly) the instability scale (squared) at which the (low-energy) potential becomes

negative. Being careful with factors involving dimensionless couplings, the threshold effect

would stabilize the potential if the scale

Λ2
th ∼ 6

λSH
λSλ

|m2
S | (5.20)

is smaller than Λλ, which is the scale at which the quartic coupling λ̃ becomes negative.18

It was concluded in [29] that in order to have absolute stability from this mechanism, the

quartic coupling λ(µ) should satisfy the following condition19

λ(µ) >

{
δth

0
for

µ ! Λth

µ # Λth

. (5.21)

18The SM instability scale, ΛI , is larger than Λλ. At one-loop order in perturbation theory and taking

the physical Higgs and top masses to be mh = 125.09GeV and mt = 173.15GeV we find ΛI = 5 ·1011 GeV,

whereas Λλ = 8 · 1010 GeV. Clearly, the physically meaningful scale for the stability is ΛI , and the scale Λλ

appears as a consequence of using the approximation of the (RG-improved) tree-level potential.
19In [29] the condition was actually formulated assuming Λth ∼ |m2

S |1/2. Note that this only holds if

6λSH ∼ λSλ, but the meaning of the two scales is different in general. While |m2
S |1/2 gives an estimate of

the regime of validity of the SM (as a low-energy theory), the scale Λth puts a bound to the range where

λ > δth is needed for stability.
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Inflation with a new singlet

symmetry read

L ��

Yuijqi✏Huj + YdijqiH

†dj +GijLiH
†Ej + FijLi✏HNj +

1

2
Yij�NiNj

+y Q̃�Q+ yQd i�Qdi + h.c.
i
,

(1) {lyukseesaw}

and

V (H,�) = �H

✓
H†H � v2

2

◆2

+ ��

✓
|�|2 � v2�

2

◆2

+ 2�H�

✓
H†H � v2

2

◆✓
|�|2 � v2�

2

◆
, (2) {scalar_potential}

where we have included also the Higgs field H. Here, Li are the left-handed lepton doublets of the
SM and Ei left-handed fields related to the conjugates of the usual right-handed leptons.

The self couplings in the scalar potential are assumed to satisfy �H ,�� > 0 and �2
H� < �H�� , to

ensure that the minimum of the scalar potential is attained at the VEVs

hH†Hi = v2/2, h|�|2i = v2�/2 , (3)

where v = 246GeV and v� is expected to be at a high energy scale, very roughly v� ⇠ 1011 GeV
although we will explore all possible working values. The hidden scalar –the particle excitation ⇢ of
the modulus of the hidden scalar field � in the expansion around the VEV,

�(x) =
1p
2

⇥
v� + ⇢(x)

⇤
eiA(x)/v� , (4) {sigma:}

– gets a mass from symmetry breaking and the same happens for the other new fields, Ni and Q

Mij =
Yijp
2
v� +O

✓
v

v�

◆
, m⇢ =

p
2�� v� +O

✓
v

v�

◆
, mQ =

yp
2
v� +O

✓
v

v�

◆
. (5) {eq:masses}

As long as the dimensionless couplings Yij , ��, and y are sizeable these masses will be large so, as
far as physics at the electroweak scale or below is concerned, these heavy particles can be integrated
out. The emerging low-energy e↵ective field theory only contains a new field, the axion A, and
automatically solves the neutrino mass and the strong CP problem, as reviewed in the next subsection.

2.1 Solving the active neutrino mass problem and the strong CP problem

The two last terms in the first row of Eq. (1) give rise to a neutrino mass matrix of the form

M⌫ =

✓
0 MD

MT
D MM

◆
=

1p
2

✓
0 Fv

F T v Y v�

◆
, (6)

realizing the see-saw mechanism [19–22], i.e. explaining the smallness of the masses of the left-handed
SM active neutrinos by the hierarchy between v and v�,

m⌫ = �MDM
�1
M MT

D = �F Y �1 F T

p
2

v2

v�
= 0.04 eV

✓
1011GeV

v�

◆✓�F Y �1 F T

10�4

◆
. (7) {seesaw}

The unavoidable Nambu-Goldstone boson (NGB) arising from the breaking of the global U(1)
symmetry, corresponding to the particle excitation of the real scalar field A parametrizing the phase in
equation (4), plays at the same time the role of a KSVZ-type [28,29] axion [31,32] and of the majoron,
the NGB of spontaneous global lepton number breaking [23–25], which is usually called J . In fact,
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3 Inflation {inflation}

In this section we discuss inflation in SMASH, which in principle may occur with the Higgs (Higgs
Inflation, HI), the hidden scalar (HSI) or a mixture of both (HHSI) playing the role of the inflaton.
We will see that HI should be discarded in favour of HSI and HHSI for reasons related to the violation
of perturbative unitarity at large field values in HI, as anticipated in the Introduction. Throughout
the section we assume that the potentials are absolutely stable and find the relevant parameters to
fit cosmological observations. In the next section we will investigate the stability issues and construct
explicit models that give successful inflation as described here.

3.1 Two-field inflation with non-minimal couplings to R

Our analysis builds upon Higgs Inflation [7], realizing (in a particularly well motivated model) the
ideas of e.g. [125–132] for two fields non-minimally coupled to gravity. Including gravity, the most
general SMASH action at operator dimension four4 is completed (in the Jordan frame) by including
a term

S � �
Z

d4x
p�g


M2

2
+ ⇠H H†H + ⇠� �

⇤�

�
R , (48) {Lmain}

where ⇠H and ⇠� are dimensionless non-minimal couplings to the curvature scalar R, and the mass
scale M is related to the actual Planck mass by

M2
P = M2 + ⇠Hv2 + ⇠�v

2
�. (49) {eq:MMP}

We recall that these non-minimal couplings are generated radiatively, even if they are set to zero at
some scale, and therefore they should be included in a general analysis. As we will only be interested
in inflation for absolutely stable potentials, we point out that the non-minimal couplings ⇠� and ⇠H
will not a↵ect our considerations on the stability.

In the following, we will assume that both non-minimal couplings are positive. We will also
require that �H� > �p

�H��, which is needed for tree-level absolute stability. As far as the tree-level
dynamics is concerned, it is su�cient to consider the Higgs in the unitary gauge and the modulus of
the hidden scalar, which we will often discuss two components of a vector field � ,

|H(x)| = 1p
2

✓
0

h(x)

◆
, |�(x)| = ⇢(x)p

2
, �(x) = (h(x), ⇢(x)) . (50) {choiceg}

Performing a Weyl transformation to the Einstein frame, in which the metric is

g̃µ⌫(x) = ⌦2(h(x), ⇢(x)) gµ⌫(x), (51) {weyl}

where ⌦2 is defined as

⌦2 = 1 +
⇠H(h2 � v2) + ⇠�(⇢2 � v2�)

M2
P

, (52) {conf_fac}

we get that the relevant part of the action reads

S(E)
SMASH �

Z
d4x

p
�g̃

2

4�M2
P

2
R̃+

1

2

1,2X

i,j

Gij g̃
µ⌫@µ�i@⌫�j � Ṽ

3

5 , (53) {Eact}

4Notice, however, that once the graviton is properly normalized by giving it dimensions of mass, the operators
⇠H H†H R and ⇠� �⇤� R have dimension five by power-counting.
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where Gij is an induced metric in field space, given by

Gij =
�ij
⌦2

+
3M2

P

2

@ log⌦2

@�i

@ log⌦2

@�j
. (54) {imet}

The potential in this frame is the same as the original one of SMASH, but rescaled by an appropriate
power of ⌦:

Ṽ (h, ⇢) =
1

⌦4(h, ⇢)


�H

4

�
h2 � v2

�2
+

��

4

�
⇢2 � v2�

�2
+

�H�

2

�
h2 � v2

� �
⇢2 � v2�

��
. (55) {VEpot}

It is this ⌦�4 factor in the Einstein frame potential that is responsible for its flattening at large field
values. For instance, if we assume that the Higgs field is the relevant one at large field values, we see
that ⌦4 grows as h4, which asymptotically compensates the term h4 in the numerator of (55) coming
from the original (Jordan frame) potential, thus leading to a constant at large h values. The same
kind of behaviour is also possible along other directions in the two-dimensional field space of h and
⇢, as we will now discuss.

For the relatively large values of the fields that we will need, it is useful to neglect the VEVs v, v�,
which will not play any role in the following. This can be tested a posteriori.

Let us consider a general straight direction in field space using polar field-space coordinates,5

|�| =
p
h2 + ⇢2 and ', defined as follows:

h = |�| sin' , ⇢ = |�| cos' . (56)

In order to make use of the flatness of the potential, we have to assume that ⌦ � 1 so (⇠H sin2 ' +
⇠� cos2 ')|�|2 � M2

P . In this case, the potential is approximately a function of ' alone:

Ṽ ' �H sin4 '+ �� cos4 '+ 2�H� cos2 ' sin2 '

4
�
⇠H sin2 '+ ⇠� cos2 '

�2 M4
P . (57) {vlim}

The function (57) has extrema for ' = 0 (|�| = h, HI), ' = ⇡/2 (|�| = ⇢, HSI) and also for

sin2 ' =
�

H + �
(HHSI), (58) {threethetas}

with
H ⌘ �H�⇠H � �H⇠� , � ⌘ �H�⇠� � ��⇠H . (59) {kappadef}

Whether the directions h, ⇢ and (58) correspond to approximate asymptotic valleys or ridges of
the potential depends on the signs of H and �, which determine the sign of the second derivative
of (57) on its extrema. We are interested in valleys because they will act as attractors of inflationary
trajectories. Concretely, if H > 0 the direction ' = h is a valley (which can support Higgs inflation
(HI)) and, vice versa, if H < 0 it is a ridge. Similarly, if � > 0 the direction of ' = ⇢ is a valley,
along which one may have Hidden Scalar Inflation (HSI), and it is instead a ridge if � < 0. The
sign of the second derivative of (57) along the direction defined by the angle (58) is equal to the
sign of �H�(H⇠� + �⇠H). Therefore, if both H and � are positive, (58) is a ridge. Instead, if
both � and H are negative, (58) is a valley, which can support mixed Higgs-Hidden Scalar inflation
(HHSI). Finally, if only one among � and H is positive, the direction (58) does not extremize the
expression (57) because the equation (58) has no real solution for ✓. In that case this direction plays
no special role for inflation. The di↵erent directions that, a priori, may support successful inflation
within SMASH are summarized in Table 2. Some concrete examples of such inflationary potentials
are represented in Figure 4.
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of the Lagrangian, involving both non-minimal couplings. To see if such a direction exists, it is
convenient to use polar field-space coordinates,16 ' and ✓, defined as follows:

h = ' cos ✓ , ⇢ = ' sin ✓ . (51)

For large values of the radial field ', assuming that we can neglect simultaneously the VEVs of h
and ⇢ and assuming also that M2

P /'
2 ⌧ ⇠H cos2 ✓ + ⇠� sin2 ✓, the potential can be approximated by

a function of ✓ alone:

Ṽ ' �H cos4 ✓ + �� sin4 ✓ + 2�H� cos2 ✓ sin
2 ✓

4
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�2 M4
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Since the potential (43) is symmetric under h ! �h and ⇢ ! �⇢, we can restrict our attention to
h > 0 and ⇢ > 0. The function (52) has extrema for ✓ equal to zero (corresponding to ' = h), ⇡/2
(giving ' = ⇢) and also for
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which defines a unique angle, with

H ⌘ �H�⇠H � �H⇠� , � ⌘ �H�⇠� � ��⇠H . (55) {kappadef}
Whether the directions h, ⇢ and (53) correspond to approximate asymptotic valleys or ridges of

the potential depends on the signs of H and �, which determine the sign of the second derivative
of (52) on its extrema. We are interested in valleys because they will act as attractors of inflationary
trajectories. Concretely, if H > 0 the direction ' = h is a valley (which can support Higgs inflation
(HI)) and, vice versa, if H < 0 it is a ridge. Similarly, if � > 0 the direction of ' = ⇢ is a valley,
along which one may have Hidden Scalar Inflation (HSI), and it is instead a ridge if � < 0. The sign
of the second derivative of (52) along the direction defined by the angle (53) is equal to the sign of
�H�(H⇠� + �⇠H). Therefore, if both H and � are positive, (53) is a ridge. Instead, if both �
and H are negative, (53) is a valley, which can support mixed Higgs-Hidden Scalar inflation (HHSI).
Finally, if only one among � and H is positive, the direction (53) does not extremize the expression
(52) because the equation (53) has no real solution for ✓. In that case this direction plays no special
role for inflation. It is important to stress that these considerations about directions in field space are
valid not only for the large non-minimal coupling limit, but also for the small non-minimal coupling
limit. The di↵erent directions that, a priori, may support successful inflation within SMASH are
summarized in Table 3. Some concrete examples of such inflationary potentials are represented in
Figure 11.

In order to study inflation along the direction (54), we can parametrize it by ⇢ and obtain an
e↵ective action that only depends on this field.17 Neglecting ⇠H completely in (45) and imposing
(54), the kinetic term can be canonically normalized defining a new field �̃⇢ which is given by an
equation similar to those of (44):

⌦2d�̃⇢

d⇢
=

s

a⌦2 + 6 ⇠2�
⇢2

M2
P

, (56) {chi_hs}

16Analogous results can be achieved with a slightly di↵erent choice of variables, see [121], where the fields tan ✓ and
log(⇠hh

2 + ⇠�⇢
2) are used.

17This reduction of the dynamics is consistent if the trajectory lies at the bottom of a su�ciently straight valley, with
very massive orthogonal directions that can be integrated out [166].
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Amplitude of primordial perturbations

sign(H) sign(�) Inflation

+ + HI or HSI

+ � HI

� + HSI

� � HHSI

Table 3:
tab:summa

The inflaton may in principle be the neutral component h of the Higgs (HI), the modulus ⇢ of the

Hidden Scalar (HSI) or a combination of both (HHSI) depending on the signs of the parameters H and �

defined in Eq. (55).

in which the plateau is approached is di↵erent, and this changes the predicted primordial spectrum,
as we will discuss below in detail.

Generically, the direction orthogonal to the inflaton gets an e↵ective mass squared ⇠ 4�H� M2
P /⇠�,

that is heavy compared to the Hubble expansion rate –see also [116,121]– and prevents uphill motion
transverse to the rolling of the fields. Generically, in all the cases that we have discussed (HI, HSI
and HHSI) inflation proceeds towards a single-field attractor along the valleys in field space for a
large spectrum of initial conditions. If the initial conditions are chosen so that the fields are set atop
a ridge with some velocities, they will eventually roll into a neighbouring valley. For moderate initial
velocities, the last stages of inflation (which are those relevant for the observations) will take place
along a valley for which the single field slow-roll approximation can be applied [119, 120]. Motion in
field space in the direction orthogonal to the valley gets damped away (thanks to Hubble friction).
As we have seen, this general attractor behaviour easily reproduces the latest CMB data. These
considerations apply to the two regimes of non-minimal couplings that we have discussed.

In summary, the directions of the potential in field space that may support inflation are determined
as described in Table 3 by the parameters H and �, defined in (55). Besides, the shape of the
e↵ective potential along those directions essentially depends on the size of the relevant non-minimal
coupling along that direction. If this coupling is much larger than 1, the form of the potential is like
in standard Higgs Inflation, see (49). However, if it is smaller than ⇠ 1/6, the potential approaches
the Einstein frame plateau at large field values with a di↵erent functional form, given by (63).

The distinction between small and large non-minimal coupling limits is important not only for
the predictions of the spectrum of primordial perturbations, but also for their actual reliability. As
we will later see, the small ⇠� limits of HSI and HHSI are of special relevance to ameliorate the issue
of unitarity violation and predictiveness of inflation with the Higgs field.

4.3 Inflationary predictions in the large non-minimal coupling limit

In this limit, the e↵ective single-field potential after canonical normalization is given by

Ṽe↵ ' �̃e↵
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"
1� exp

 
�
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|�e↵|
MP

!#2
, (64) {Vgen}

where �e↵ is the (canonically normalized) inflaton and �̃e↵ is an e↵ective coupling, that depends on
the specific direction for which the large non-minimal coupling limit applies, see (49), (50) and (60).
Indeed, this is the shape of the potential for the three directions we consider (HI, HSI and HHSI) if
one of the non-minimal couplings is su�ciently large. With this potential, the inflationary predictions
appear to be universal in the sense that they do not depend (in a first approximation) on the concrete
nature of the inflaton field. However, as we will discuss later in more detail, the actual degree of trust
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inflation ends (assuming this occurs when (V 0/V )2 ⇠ 2M2
P ), obtaining:
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A numerical evaluation of Ne, following the method of [122] based on the integration of the equation
of motion with the number of e-folds as time variable, shows that this expression is accurate to
the 0.5% level or better. Figures 12 and 13 show, for the potential (64), the relations between the
various parameters of the spectrum of primordial perturbations, the number of e-folds and the value
of the inflaton in the slow-roll approximation used to obtain the previous expressions. We can give a
numerical example imposing ns ' 0.967 (corresponding approximately to the current central value at
0.002 Mpc�1 [126]) for which we obtain that the initial value of the canonically normalized inflaton
field is �e↵|in = 5.42MP , and (using the technique of [122]) inflation ends for �e↵|end = 0.94MP ,
producing a total of Ne = 59.70 e-folds. The values of the other primordial parameters evaluated
at this number of e-folds before the end of inflation are r = 3.11 ⇥ 10�3 and ↵ = �5.51 ⇥ 10�4.
All of these have an excellent compatibility with the most recent CMB measurements from the
Planck [84, 126–128] and BICEP2/Keck [129] collaborations, which show a preference for plateau-
like inflationary potentials. See [130] for a Bayesian approach to inflationary model comparison in
agreement with this conclusion.22

These results have been obtained using only the tree-level form of the action for inflation. A more
detailed analysis should in principle include radiative corrections from matter and graviton loops.
The generic form of these corrections for matter (which are the least suppressed) has been studied
in [132,133] and their estimated numerical value does not change significantly the results.

We stress that the previous (tree-level) results are independent of �̃e↵, whose value can only be
determined from the amplitude of the primordial spectrum:

As ' �̃e↵

128⇡2

(x� 1)4

x2
. (68)

Requiring inflation to last 50–60 e-folds and taking into account that As ' 2 ⇥ 10�9 (at a scale of
0.002 Mpc�1) [126], we see that the e↵ective coupling �̃e↵ is constrained to be of the order

�̃e↵ ⇠ 10�10 . (69) {ct}

Depending on the specific realization of inflation that occurs among the various possibilities of SMASH
listed in Table 3, this relation constrains the relative values of di↵erent couplings of the actual e↵ective
potential of the model (43).

In the case in which inflation proceeds along the Higgs direction (HI) the e↵ective coupling of
(64), which can be read e.g. from (52), is:

�̃e↵ =
�H

⇠2H
, (70) {eq:lambdaeffHI}

which implies that
⇠H ⇠ 105

p
�H ⇠ 104, (71) {ampl_constr_HI}

which is the usual result for standard Higgs inflation.23

21See footnote 20.
22Other plateau-like models not included in [130], such as the general formulation of [131] for renormalizable potentials,

are also able to fit well the data, supporting further this conclusion.
23The relevant value of �H is the one evaluated at the field value of the Higgs during inflation, roughly an order of

magnitude smaller than it is at the electroweak scale.
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Recall also: if the potential is unstable, no inflation at large field



Loss of unitarity

inflation ends (assuming this occurs when (V 0/V )2 ⇠ 2M2
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A numerical evaluation of Ne, following the method of [122] based on the integration of the equation
of motion with the number of e-folds as time variable, shows that this expression is accurate to
the 0.5% level or better. Figures 12 and 13 show, for the potential (64), the relations between the
various parameters of the spectrum of primordial perturbations, the number of e-folds and the value
of the inflaton in the slow-roll approximation used to obtain the previous expressions. We can give a
numerical example imposing ns ' 0.967 (corresponding approximately to the current central value at
0.002 Mpc�1 [126]) for which we obtain that the initial value of the canonically normalized inflaton
field is �e↵|in = 5.42MP , and (using the technique of [122]) inflation ends for �e↵|end = 0.94MP ,
producing a total of Ne = 59.70 e-folds. The values of the other primordial parameters evaluated
at this number of e-folds before the end of inflation are r = 3.11 ⇥ 10�3 and ↵ = �5.51 ⇥ 10�4.
All of these have an excellent compatibility with the most recent CMB measurements from the
Planck [84, 126–128] and BICEP2/Keck [129] collaborations, which show a preference for plateau-
like inflationary potentials. See [130] for a Bayesian approach to inflationary model comparison in
agreement with this conclusion.22

These results have been obtained using only the tree-level form of the action for inflation. A more
detailed analysis should in principle include radiative corrections from matter and graviton loops.
The generic form of these corrections for matter (which are the least suppressed) has been studied
in [132,133] and their estimated numerical value does not change significantly the results.

We stress that the previous (tree-level) results are independent of �̃e↵, whose value can only be
determined from the amplitude of the primordial spectrum:
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Requiring inflation to last 50–60 e-folds and taking into account that As ' 2 ⇥ 10�9 (at a scale of
0.002 Mpc�1) [126], we see that the e↵ective coupling �̃e↵ is constrained to be of the order

�̃e↵ ⇠ 10�10 . (69) {ct}

Depending on the specific realization of inflation that occurs among the various possibilities of SMASH
listed in Table 3, this relation constrains the relative values of di↵erent couplings of the actual e↵ective
potential of the model (43).

In the case in which inflation proceeds along the Higgs direction (HI) the e↵ective coupling of
(64), which can be read e.g. from (52), is:

�̃e↵ =
�H

⇠2H
, (70) {eq:lambdaeffHI}

which implies that
⇠H ⇠ 105

p
�H ⇠ 104, (71) {ampl_constr_HI}

which is the usual result for standard Higgs inflation.23

21See footnote 20.
22Other plateau-like models not included in [130], such as the general formulation of [131] for renormalizable potentials,

are also able to fit well the data, supporting further this conclusion.
23The relevant value of �H is the one evaluated at the field value of the Higgs during inflation, roughly an order of

magnitude smaller than it is at the electroweak scale.
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To restore unitarity something must occur at or below ⇤U ,
very likely altering the inflationary dynamics

Roles of the Higgs in the SM

Unitarize gauge boson scattering 

Give masses by SSB

Inflation??



Loss of unitarity
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Free the Higgs from the burden of inflating!

⇤U =
M2 + ⇠� v2� + 6⇠2� v

2
�

⇠�
p

M2 + ⇠� v2�
, M2

P ' M2 + ⇠� v
2
�

⇠� � 1 and ⇠�v
2
� ⇠ M2

P /6 ! ⇤U ⇠ MP

v� . 1015GeV � 1012GeV

Instead: ⇠H ⌧ ⇠� . 1 ! MP ⇠ M and ⇤U ⇠ MP

� ⇠ MP as in usual “large field” models

⇠� Ne �e↵
�
max

MP
(Jordan) �

max

MP
(Einstein) r E

end

MP
= (Ṽ

end

)1/4

MP

104 51-81 0.02-0.06 0.08-0.1 5.2-5.7 0.002-0.004 2⇥ 10�3-3⇥ 10�3

1 50-76 (3-7)⇥10�10 7.7-9.5 5.8-6.4 0.002-0.005 3⇥ 10�3

0.1 51-78 (0.7-1.6)⇥10�11 16-20 8.5-9.3 0.005-0.01 2⇥ 10�3-4⇥ 10�3

0.01 55-83 (0.4-1.0)⇥10�12 20-25 14.8-16.7 0.03-0.06 1⇥ 10�3-5⇥ 10�3

0.001 67-99 (0.6-1.7)⇥10�13 23-28 21.4-25.3 0.09-0.16 1⇥ 10�3-6⇥ 10�3

Table 4: Example scenarios, beyond the large ⇠� approximation. The intervals correspond to varying ns and

As within one-sigma intervals, taking ns = 0.967± 0.007, As = (2.142± 0.049)⇥ 10�9 [126]. {tab:small_xi}

Therefore, the consistency and predictive power of inflation in SMASH is considerably better than in
any other minimal extension of the SM in which the inflaton is identified with the Higgs, as for e.g.
in [3, 4] supplemented by Higgs inflation [7]; see also [45].

4.6 Inflationary predictions in the small non-minimal coupling limit

As we have mentioned above, since inflation in the regime of small ⇠� is not driven by a potential
analogous to that of standard Higgs Inflation, the predictions for inflation in SMASH are bound to be
di↵erent. This makes the approach of small ⇠� distinct from that of [116], which purposefully aimed
to have a primordial spectrum like the one of Higgs Inflation.26 Indeed, for very small values of ⇠� the
flattening of the potential in the Einstein frame goes away and inflation tends to be like for a chaotic
quartic potential, which is known to be excluded by CMB observations The numerical predictions
in the ns – r plane for the intermediate regime between quartic inflation and dynamics à la Higgs
Inflation are shown in Figure 15. For instance, ⇠� ⇠ 10�2 is perfectly compatible with current bounds
(and it gives an adequate number of e-folds and normalization of the power spectrum). This figure
answers the natural question of how low can ⇠� be and still reproduce the primordial parameters
required to fit the CMB..

The e↵ective inflationary HHSI potential in SMASH for 0 . ⇠� . 1 (keeping for simplicity ⇠H = 0)
can be analytically approximated by (63):

Ṽe↵ ' �̃e↵

4
M4

P

"
tanh

 r
⇠�
a

|�⇢|
MP

!#4
, (79) {Vgen_small_xi}

with �̃e↵ given by (74) and a = 1 + |�H�/�H |. The potential in the HSI limit is obtained by simply
taking �H� = 0 in these expressions.

Unlike in HI, the inflationary predictions for ns, ↵, and r now depend explicitly on ⇠�. Using the
standard slow-roll formulae, we obtain

ns ' 1 +
8⇠�
a

�
sech2u� 3 csch2u

�
, ↵ ' 64 ⇠2�

a2
�
sech4u� 3 csch4u

�
, r ' 512 ⇠�

a
csch2(2u),

As ' a�e↵

768⇡2⇠�
sinh4u tanh2u , Ne ' a

16 ⇠�

 
cosh(2u)�

r
1 +

32⇠�
a

!
,

(80) {eq:slowrollxill1}

where u ⌘ p
⇠�/a�e↵ . A numerical analysis using the general solution (58), going beyond the

approximations (64) and (79), reveals that, for example, ⇠� ⇠ 0.1 and �̃e↵ ⇠ 10�9 are perfectly

26See [168] for another proposal that does not su↵er from a the unitarity problem and has similar predictions to Higgs
Inflation, even if slightly di↵erent in the fine detail.
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Figure 15:
fig:r_vs_ns
Values of r vs ns in HSI, or HHSI with |�H�/�H | ⌧ 1. The number of e-folds before the end of

inflation and the non-minimal coupling ⇠� are shown by solid and dashed lines, respectively. We also show one
and two-sigma contours from Planck, taken from [126].

maximum temperature after inflation are typically in the window of 1014-1015 GeV. As noted in [136]
for Higgs inflation, this knowledge allows to constrain the prediction for the number of e-folds, and
with that the values of ns, r in the model. Indeed, considering a mode with momentum k, and
assuming that the inflaton’s oscillations behave as pressureless matter –as happens in a quadratic
potential– the number of e-folds between the time of the mode’s horizon crossing and the end of
inflation is [138]

Nquad = 62� log
k

a0H0
� log

1016GeV

V 1/4
k

+
1

4
log

Vk

Vend
� 1

12
log

Vend

⇢(TR)
, (82) {eq:Reheatquad}

where Vk, Vend and ⇢(TR) denote, respectively, the energy density at the time of the mode’s horizon
crossing, at the time of inflation and at the beginning of the era of radiation domination. Vk and
Vend can be calculated from inflation, while ⇢(TR) can be estimated from the energy density when
reheating is more e�cient. This will be when the particle production rate overcomes the decay rate of
the produced particles, allowing for resonant production. Here we will also consider the possibility of
inflaton oscillations behaving as a radiation bath –corresponding to reheating in a quartic potential–
in which case the analogue of (82) is

Nquart = 62� log
k

a0H0
� log

1016GeV

V 1/4
k

+
1

4
log

Vk

Vend
, (83) {eq:Reheatquart}

which does not depend on the details of reheating.
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Axion dark-matter

1. PQ symmetry restored after inflation

- vacuum misalignment
- decay of strings and domain walls

where !̄ is a proper average energy for the radiated axions, which is close to the Hubble scale
(momenta close to the causal cut-o↵) !̄ ⌘ ✏2⇡/t. The integral is mildly dominated by times close to
t1, so that early produced axions are not as relevant as those produced close to the QCD confining
transition when axions become more massive. The density of axions radiated turns out to be four
times the energy density in dressed strings at t1 divided by the typical average radiated energy.
Around t1 axions become massive, !̄ starts to grow enormously and the number of axions radiated
cannot grow at the same rate. The contribution to the axion dark matter density today is thus given
by the number density diluted by the expansion multiplied by the mass that each acquires from QCD
e↵ects, ⇢a,s = maNa(t1)/R3

0, which turns out to be

⇢A,s ⇠ �0
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68
C 0(n), (37)

where we have used ✏ ' 4 and ⇣ = 1 as suggested by the simulations of [77]. This contribution is
typically ⇠ 5 times larger than the misalignment contribution but has O(1) uncertainties. Interest-
ingly, the uncertainty in n scales almost parallel to the misalignment contribution. There is another
dangerous hidden assumption, which is that the relevant time is t1 given by 3H(T1) = ma(T1). If we

instead take t1 defined with 3H(T1)� = ma(T1), we get an overall factor of �
2

4+n , which is another
moderate uncertainty.

Finally, after t1 the remaining strings collapse very fast, in around one Hubble time, accelerated
by the fastly growing energy per area of the domain walls attached to them. Here the energy density
is emitted in the form of axions again. Since the total energy in the network at that time is around 1/4
of the energy in axions and the quanta become more and more massive the number of axions radiated
is not large. Indeed, the numerical simulations show that the contribution of the final cataclysm is
⇠ 1/2 of the string radiations [77], which is admittedly within the uncertainties of the estimation.

Finally note that the logarithm term in (36) depends on ��. Varying it in the range �� = 10�10�1
leads to a maximum O(20%) suppression of the string density and radiation and thus, according to
our assumptions, to the dark matter density.

Adding both contributions we find the correct axion dark matter abundance setting ⌦A,mish2 +
⌦A,sh2 = 0.12, which is nicely approximated by

fA(⌦A,ch
2 = 0.12) ' 7.0⇥ 1010GeV ⇥ 1� 0.084(n� 8)

(n/8)1.1
(38)

for �� = 10�10. We show it in Fig. 2 with error bars corresponding to ⇣ = 1 ± 0.5, ✏ = 4.0 ± 0.7,
� 2 (0.5, 2) and the misalignment contribution scaled within a factor 0.5�1 (not added in quadrature).
They correspond to a multiplicative uncertainty on fA of a factor 0.6 � 2 around the central value.
For n ⇠ 8 we find fA ⇠ 7 ⇥ 1010 GeV while for n ⇠ 3, fA ⇠ 3 ⇥ 1011 GeV. Given the uncertainties,
axion dark matter in the PQ symmetry restoration after inflation in SMASH can be realised in the
range

3⇥ 1010GeV . fA . 5⇥ 1011GeV , 10�5 eV . mA . 2⇥ 10�4 eV, (39) {farangePQrestoration}
which will be narrowed when the uncertainties in the temperature dependence of the topological
susceptibility and the axions radiated from strings are under control.

On the other hand, if the PQ symmetry is broken during inflation and never restored afterwards,
only the misalignment contribution contributes to the dark matter density, strings are typically

13

5⇥ 1010 GeV < fA < 5⇥ 1011 GeV

n depends on the behaviour of the axion mass with temperature and
can be between ~2 and ~10

T
max

> fA > Tc



Axion dark-matter

2. PQ symmetry NOT restored after inflation

- vacuum misalignment

Isocurvature perturbations below current bounds (~3%) if 

fA < 1014GeV

T
max

< Tc



Conclusion
Solving

the strong CP problem, by the KSVZ axion
and explaining

the smallness of neutrino masses, by the see-saw,
we can identify

the dark matter, which is the QCD axion,
obtain 

baryogenesis, via leptogenesis
and explain

and the origin of primordial inflation. 

a complex singlet, a heavy quark and three RH neutrinos 
All we need is to extend the SM with:


