Zurab Tavartkiladze (Ilia State Univ, Georgia)

Predicting Leptonic CP Violation and Leptogenesis

with A. Achelashvili Int.J.Mod.Phys. A31 (2016) 1650077 K.S. Babu, Y. Meng arXiv:0812.4419

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

May 30- June 10 2016

Exploring the Energy Ladder of the Universe

Aim & motivation Baryon asym. via Leptogenesis

- Build predictive neutrino models
 [predictive relations between nautrino parameters]
- Relate v-oscil CP viol. (δ) to leptonic CP asymmetry,
 i.e. have single CP phase.
 Perhaps predict phase δ
- Work within framework which avoids various phen./cosm. difficulties

[like gravitino problem etc.]

Outline:

- Motivated by above, consider system with two quasi-degenerate RHNs →
 - → resonant leptogenesis allowing low $M_R \le 10^7 \text{GeV}$

Flanz et al'96 Pilaftsis'97 Pilaftsis, underwood'03

- Classify experimentally viable texture zero Dirac Yukawas leading to (testable) predictions
- Cospological CP is related with neutrino osc. δ -phase *
 - * Idea: with hier. 2 RHNs by:
 - Frampton, Glashow, Marfatia, PLB 536 (2002) 79 Frampton, Glashow, Yanagida'02

SUSY setup

Successful Coupling Unification good for GUT

low SUSY scale → Stab. Hierarchy
 stab. LSP → Dark Matter Candidate

MSSM: Lepton and sLepton Numbers

With discrete R-parity:

$$R = (-1)^{3(B-L)+2S}$$

no L and B violation at d < 5 level , LSP is stabile.

i.e. No $\Delta L \neq 0$ superpotential couplings:

SUSY $d = 5 \Delta L = 2$ operator:

 $\frac{\mathbf{1}}{\mathbf{M}_*}(ll)h_uh_u$

With
$$M_* \sim M_{Pl}$$
: $m_\nu \sim \frac{M_{EW}^2}{M_{Pl}} \leftarrow \mathbf{m}_\nu \lesssim \mathbf{10}^{-4} \text{ eV}$

Neutrino Data: Three-flavor oscillation parameters

1409.5439: M. C. Gonzalez-Garcia,^{*a,b*} Michele Maltoni,^{*c*} Thomas Schwetz

	Normal Orde	ring $(\Delta \chi^2 = 0.97)$	Inverted Ordering (best fit)		
	bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range	
$\sin^2 \theta_{12}$	$0.304_{-0.012}^{+0.013}$	$0.270 \rightarrow 0.344$	$0.304_{-0.012}^{+0.013}$	$0.270 \rightarrow 0.344$	
$\theta_{12}/^{\circ}$	$33.48^{+0.78}_{-0.75}$	$31.29 \rightarrow 35.91$	$33.48^{+0.78}_{-0.75}$	$31.29 \rightarrow 35.91$	
$\sin^2 \theta_{23}$	$0.452_{-0.028}^{+0.052}$	$0.382 \rightarrow 0.643$	$0.579_{-0.037}^{+0.025}$	$0.389 \rightarrow 0.644$	
$\theta_{23}/^{\circ}$	$42.3^{+3.0}_{-1.6}$	$38.2 \rightarrow 53.3$	$49.5^{+1.5}_{-2.2}$	$38.6 \rightarrow 53.3$	
$\sin^2 \theta_{13}$	$0.0218\substack{+0.0010\\-0.0010}$	$0.0186 \rightarrow 0.0250$	$0.0219\substack{+0.0011\\-0.0010}$	$0.0188 \rightarrow 0.0251$	
$\theta_{13}/^{\circ}$	$8.50^{+0.20}_{-0.21}$	$7.85 \rightarrow 9.10$	$8.51^{+0.20}_{-0.21}$	$7.87 \rightarrow 9.11$	
$\delta_{\rm CP}/^{\circ}$	306^{+39}_{-70}	$0 \rightarrow 360$	254_{-62}^{+63}	$0 \rightarrow 360$	
$\frac{\Delta m_{21}^2}{10^{-5} \ \mathrm{eV}^2}$	$7.50_{-0.17}^{+0.19}$	$7.02 \rightarrow 8.09$	$7.50_{-0.17}^{+0.19}$	$7.02 \rightarrow 8.09$	
$\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$+2.457^{+0.047}_{-0.047}$	$+2.317 \rightarrow +2.607$	$-2.449^{+0.048}_{-0.047}$	$-2.590 \rightarrow -2.30$	

Evidences for New Physics:

Atmospheric & Solar Neutrino 'scales' $\Delta m_{\rm atm}^2 = 2.4 \cdot 10^{-3} \text{eV}^2 \qquad \Delta m_{\rm sol}^2 = 7.5 \cdot 10^{-5} \text{eV}^2$

• Origin of these scales and mixings?

Unexplained in SM/MSSM $\leftarrow m_{\nu} \lesssim 10^{-4} \text{ eV}$ Without New Physics $m_{\nu} \sim \frac{M_{EW}^2}{M_{Pl}}$

Extensions for neutrino masses

- -- Type I See-Saw with SM singlet N matter
- -- Type II See-Saw with SU(2) triple scalars (with hypercharge Y=2)
- Type III See-Saw with SU(2) triplet matter (with Y=0)
 ... other possibilities: radiative, inverse see-saw, etc

Extending SM - Neutrino masses via type I see-saw \rightarrow nu-masses, oscillations SM singlet $M \nu^c \nu^c \rightarrow \Delta L=2$ Lepton number viol. $l v^{c} H$ Mν Μ $egin{pmatrix} \mathbf{0} & \langle \pmb{H}
angle \ \langle \pmb{H}
angle & \pmb{M} \end{pmatrix} \qquad m_{
u} \sim rac{\langle H
angle^2}{M}$

 $M_N \simeq M$

 $M \sim 10^{14} \text{ GeV} \rightarrow m_{\nu} \sim \text{few} \cdot 0.01 \text{ eV}$

Baryon asymmetry: $\frac{n_B - n_{\overline{B}}}{n_{\gamma}} \square 10^{-10}$

Also requires some extension

Th. model giving predictive v masses/mixing -symmetry principle?

Extension with Right handed neutrinos:

v masses/mixing → neutrino oscillations
 & B-asym. Through leptogenesis

Neutrino parameters

Basis: $Y_e = \text{Diag}(\lambda_e, \lambda_\mu, \lambda_\tau)$ \rightarrow Lepton mixing matrix from neutrino matrix $M_\nu = PU^*P'M_\nu^{\text{diag}}U^+P$ $U = \begin{pmatrix} c_{13}c_{12} & c_{13}s_{12} & s_{13}e^{-i\delta} \\ -c_{23}s_{12} - s_{23}s_{13}c_{12}e^{i\delta} & c_{23}c_{12} - s_{23}s_{13}s_{12}e^{i\delta} & s_{23}c_{13} \\ s_{23}s_{12} - c_{23}s_{13}c_{12}e^{i\delta} & -s_{23}c_{12} - c_{23}s_{13}s_{12}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$ $M_\nu^{\text{diag}} = (m_1, m_2, m_3)$ \leftarrow Entering in oscillations

$$P' = \text{Diag}(1, e^{i\rho_1}, e^{i\rho_2}) \quad \xleftarrow{} \text{Unknown}$$

Entering in double $\beta - decay$

 $P = \text{Diag}(e^{i\omega_1}, e^{i\omega_2}, e^{i\omega_3})$

• SUSY setup. Extension of MSSM with 2 RHNs N1,2

$$W_e = l^T Y_e e^c h_d$$
, $W_\nu = l^T Y_\nu N h_u - \frac{1}{2} N^T M_N N$

Basis:
$$Y_e = \operatorname{Diag}(\lambda_e, \ \lambda_\mu, \ \lambda_\tau)$$
 _K

K.S. Babu, Y. Meng, ZT arXiv:0812.4419

Degenerate RHNs:
$$M_N = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} M$$

Consider all possible textures for Y_V :

- 2 or more texture zeros do not work;
- 1 texture zero: 3 possibility
- Texture without zero(s) can give only fit no prediction(s)

One Texture Zeros in Y_V

Texture A:
$$Y_{\nu} = \begin{pmatrix} x\alpha_{1} & 0\\ x\alpha_{2} & b\\ xe^{i\phi} & 1 \end{pmatrix} \cdot \bar{\beta}$$
$$B_{1}: \quad Y_{\nu} = \begin{pmatrix} x\alpha_{1} & b\\ x\alpha_{2} & 0\\ xe^{i\phi} & 1 \end{pmatrix} \cdot \bar{\beta}$$
$$B_{2}: \quad Y_{\nu} = \begin{pmatrix} x\alpha_{1} & b\\ x\alpha_{2}e^{i\phi} & 1\\ x & 0 \end{pmatrix} \cdot \bar{\beta}$$

Build v Mass matrix:

$$M_{\nu} = Y_{\nu} \frac{1}{M_N} Y_{\nu}^T \left\langle h_u^0 \right\rangle^2$$

$$\begin{pmatrix} a_1 e^{i\alpha_1} & b_1 e^{i\beta_1} \\ a_2 e^{i\alpha_2} & 0 \\ a_3 e^{i\alpha_3} & b_3 e^{i\beta_3} \end{pmatrix} = \begin{pmatrix} e^{ix} & 0 & 0 \\ 0 & e^{iy} & 0 \\ 0 & 0 & e^{iz} \end{pmatrix} \begin{pmatrix} a_1 & b_2 \\ a_2 & 0 \\ a_3 & b_3 e^{i\phi} \end{pmatrix} \begin{pmatrix} e^{i\omega} & 0 \\ 0 & e^{i\rho} \end{pmatrix}$$

$$\begin{array}{c} \text{Never matter} \\ \text{due to} \\ \text{N's degeneracy!} \\ \begin{pmatrix} e^{i\omega} & 0 \\ 0 & e^{i\rho} \end{pmatrix} M_N^{-1} \begin{pmatrix} e^{i\omega} & 0 \\ 0 & e^{i\rho} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} e^{i(\omega+\rho)}$$

$$\begin{array}{c} \text{Overall /non-physical} \\ \end{pmatrix}$$

Single physical phase ϕ

Texture A \rightarrow Normal Hier.

$$M_{\nu} = \begin{pmatrix} 0 & \alpha_1 b & \alpha_1 \\ \alpha_1 b & 2\alpha_2 b & \alpha_2 + be^{i\phi} \\ \alpha_1 & \alpha_2 + be^{i\phi} & 2e^{i\phi} \end{pmatrix} \frac{x\bar{\beta}^2}{M} (v\sin\beta)^2$$

Prediction:

$$\tan\theta_{13} = \sin\theta_{12} \sqrt{\frac{m_2}{m_3}}$$

→ $sin^2 θ_{13} \approx 0.05$ Too large, Excluded.

Texture B1
$$\sin^2 \theta_{12} \simeq \frac{1}{2} - \frac{\sin \theta_{13} \tan \theta_{23} \cos \delta}{|\tan^2 \theta_{23} \sin^2 \theta_{13} + e^{2i\delta}|} + \frac{1}{8} \frac{\Delta m_{sol}^2}{|\Delta m_{atm}^2|}$$

δ	$sin^2 \theta_{12}$	$sin^2\theta_{23}$	$sin^2 \theta_{13}$
≈ 0.2	0.33 (+2 <i>σ</i>)	0.604 (+1 <i>σ</i>)	0.0219
≈ 0.4	0.33 (+2 <i>σ</i>)	0.629 (+2 <i>σ</i>)	0.0219
≈ 0.72	0.344 (+2 <i>σ</i>)	0.664 (+3 <i>σ</i>)	0.0251 (+3σ)

Resonant Leptogenesis

With degenerate N's, CP asymmetry:

$$\epsilon_1 = \frac{\operatorname{Im}(\hat{Y}_{\nu}^{\dagger}\hat{Y}_{\nu})_{21}^2}{(\hat{Y}_{\nu}^{\dagger}\hat{Y}_{\nu})_{11}(\hat{Y}_{\nu}^{\dagger}\hat{Y}_{\nu})_{22}} \frac{(M_2^2 - M_1^2) M_1 \Gamma_2}{(M_2^2 - M_1^2)^2 + M_1^2 \Gamma_2^2}$$

Pilaftsis & Underwood'03

Has maximum with $M_1 = M | 1 - \delta_N |$, $M_2 = M | 1 + \delta_N |$, $\delta_N \square | 1$

For arbitrary M !

Needed: 1) to generate δ_N ; 2) $(\hat{Y}_{\nu}^+ \hat{Y}_{\nu})_{21}$ Complex- CP viol

In considered framewrok:

1) δ_N emerges at 1-loop;

2) Complex $(\hat{Y}_{\nu}^{+}\hat{Y}_{\nu})_{21}$ at 2-loop & related to δ

1-loop RG:
$$16\pi^2 \frac{d}{dt} M_N = 2M_N Y_{\nu}^{\dagger} Y_{\nu} + 2Y_{\nu}^T Y_{\nu}^* M_N$$

$$\delta M_N^{1-\text{loop}} \simeq -\frac{1}{8\pi^2} \left(M_N Y_\nu^{\dagger} Y_\nu + Y_\nu^T Y_\nu^* M_N \right)_{\mu=M_G} \ln \frac{M_G}{M}$$

$$\mu = M \qquad M_N = M \begin{pmatrix} -\delta_N & 1\\ 1 & -\delta_N^* \end{pmatrix}$$

At 1-loop, phases are correlated and drop out ! No CP at this level

$$Y_{\nu} = \mathcal{U} \begin{pmatrix} 0 & 0 \\ \hat{a}_2 & 0 \\ \hat{a}_3 & \hat{b}_3 \end{pmatrix} \tilde{P} \quad \tilde{P} = \text{Diag} (1, e^{i\xi})$$

Drops out from 1-loop RG

2-loop RG:
$$16\pi^2 \frac{d}{dt} M_N = 2M_N Y_{\nu}^{\dagger} Y_{\nu} - \frac{1}{8\pi^2} M_N \left(Y_{\nu}^{\dagger} Y_e Y_e^{\dagger} Y_{\nu} + \cdots M_N = M \left(\begin{array}{cc} -\delta_N & 1 \\ 1 & -\delta_N^* \end{array} \right)$$

$$\delta_N \simeq \left(b\alpha_2 + e^{i\phi} - \frac{\lambda_{\tau}^2}{16\pi^2} e^{i\phi} \right) \frac{x\bar{\beta}^2}{4\pi^2} \ln \frac{M_G}{M}$$

$$B_1: \quad Y_{\nu} = \left(\begin{array}{c} x\alpha_1 & b \\ x\alpha_2 & 0 \\ xe^{i\phi} & 1 \end{array} \right) \cdot \bar{\beta} \quad \text{At 1-loop} \qquad \text{At 2-loop}$$

All Yukawa parameters, besides one (x), are calculated in terms of observables and M;

For fixed M & δ NB/S vs. x can be plotted

Baryon Asymmetry: Inverted Hierarchical Case (texture B1)

 $M = 10^4 \text{ GeV}$

B₂:
$$Y_{\nu} = \begin{pmatrix} x\alpha_1 & b \\ x\alpha_2 e^{i\phi} & 1 \\ x & 0 \end{pmatrix} \cdot \bar{\beta}$$

Does not work. λ_{τ} do not hit CP phase

With this setup, only one 1 texture zero works (not well..)

Situation will change..

Some assumptions & simplifications

- a) \mathcal{N} 's are much heavy than $N_{1,2}$ do not contribute to leptogenesis
- b) \mathcal{N} 's do not spoil degeneracy of $N_{1,2}$
- c) Integration of $\mathcal{N} \rightarrow d=5$ ops, improve neutrino sector and keep predictions

$$\mathcal{O}_{ij}^5 \equiv \frac{\tilde{d}_5 e^{ix_5}}{2M_*} l_i l_j h_u h_u$$

Setup:

(A. Achelashvili, ZT ' 2016)

- 1. Two deg. RHNs (& Ye=diag) $M_N = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} M$
 - 2. two texture zero Yukawas + single d=5 op.

Helps classification:

$$T_{1} = \begin{pmatrix} \times & 0 \\ \times & 0 \\ \times & \times \end{pmatrix}, \quad T_{2} = \begin{pmatrix} \times & 0 \\ \times & \times \\ \times & 0 \end{pmatrix}, \quad T_{3} = \begin{pmatrix} \times & \times \\ \times & 0 \\ \times & 0 \end{pmatrix}$$
$$T_{4} = \begin{pmatrix} 0 & 0 \\ \times & \times \\ \times & \times \end{pmatrix}, \quad T_{5} = \begin{pmatrix} \times & 0 \\ 0 & \times \\ \times & \times \end{pmatrix}, \quad T_{6} = \begin{pmatrix} \times & 0 \\ \times & \times \\ 0 & \times \end{pmatrix}$$
$$T_{7} = \begin{pmatrix} \times & \times \\ 0 & 0 \\ \times & \times \end{pmatrix}, \quad T_{8} = \begin{pmatrix} \times & \times \\ \times & 0 \\ 0 & \times \end{pmatrix}, \quad T_{9} = \begin{pmatrix} \times & \times \\ \times & \times \\ 0 & 0 \end{pmatrix}$$

$$T_{3} = \begin{pmatrix} a_{1}e^{i\alpha_{1}} & b_{1}e^{i\beta_{1}} \\ a_{2}e^{i\alpha_{2}} & 0 \\ a_{3}e^{i\alpha_{3}} & 0 \end{pmatrix} = \begin{pmatrix} e^{ix} & 0 & 0 \\ 0 & e^{iy} & 0 \\ 0 & 0 & e^{iz} \end{pmatrix} \begin{pmatrix} a_{1} & b_{1} \\ a_{2} & 0 \\ a_{3} & 0 \end{pmatrix} \begin{pmatrix} e^{i\omega} & 0 \\ 0 & e^{i\rho} \end{pmatrix}$$
$$T_{4} = \begin{pmatrix} 0 & 0 \\ a_{2}e^{i\alpha_{2}} & b_{2}e^{i\beta_{2}} \\ a_{3}e^{i\alpha_{3}} & b_{3}e^{i\beta_{3}} \end{pmatrix} = \begin{pmatrix} e^{ix} & 0 & 0 \\ 0 & e^{iy} & 0 \\ 0 & 0 & e^{iz} \end{pmatrix} \begin{pmatrix} 0 & 0 \\ a_{2} & b_{2} \\ a_{3} & b_{3}e^{i\phi} \end{pmatrix} \begin{pmatrix} e^{i\omega} & 0 \\ 0 & e^{i\rho} \end{pmatrix}$$

•••

$$M_{\nu} = \langle h_{u}^{0} \rangle^{2} Y_{\nu} M_{N}^{-1} Y_{\nu}^{T} + \frac{\tilde{d}_{5} e^{ix_{5}}}{2M_{*}} l_{i} l_{j} h_{u} h_{u}$$

Examples:

$$M_{T_4}^{(11)} = \begin{pmatrix} d_5 & 0 & 0\\ 0 & 2a_2b_2 & a_3b_2 + a_2b_3e^{i\phi} \\ 0 & a_3b_2 + a_2b_3e^{i\phi} & 2a_3b_3e^{i\phi} \end{pmatrix} \bar{m}$$
$$M_{T_4}^{(12)} = \begin{pmatrix} 0 & d_5 & 0\\ d_5 & 2a_2b_2 & a_3b_2 + a_2b_3e^{i\phi} \\ 0 & a_3b_2 + a_2b_3e^{i\phi} & 2a_3b_3e^{i\phi} \end{pmatrix} \bar{m}$$
$$M_{T_4}^{(13)} = \begin{pmatrix} 0 & 0 & d_5 \\ 0 & 2a_2b_2 & a_3b_2 + a_2b_3e^{i\phi} \\ d_5 & a_3b_2 + a_2b_3e^{i\phi} & 2a_3b_3e^{i\phi} \end{pmatrix} \bar{m}$$

Obtained neutrino matrices

$$P_{2} = \begin{pmatrix} 0 & 0 & \times \\ 0 & \times & \times \\ \times & \times & \times \end{pmatrix}$$

$$P_{1} = \begin{pmatrix} 0 & \times & 0 \\ \times & \times & \times \\ 0 & \times & \times \end{pmatrix}$$

$$P_{4} = \begin{pmatrix} \times & \times & 0 \\ \times & \times & \times \\ 0 & \times & 0 \end{pmatrix}$$

$$P_{3} = \begin{pmatrix} \times & 0 & \times \\ 0 & 0 & \times \\ \times & \times & \times \end{pmatrix}$$

$$P_{5} = \begin{pmatrix} 0 & \times & \times \\ \times & \times & \times \\ \times & \times & \times \end{pmatrix}, \quad P_{6} = \begin{pmatrix} \times & \times & \times \\ \times & 0 & \times \\ \times & \times & \times \end{pmatrix}, \quad P_{7} = \begin{pmatrix} \times & \times & \times \\ \times & \times & \times \\ \times & \times & 0 \end{pmatrix}$$

 $P_{1}\text{-type:} \quad M_{T_{4}}^{(12)}, \qquad P_{2}\text{-type:} \quad M_{T_{4}}^{(13)}, \qquad P_{3}\text{-type:} \quad M_{T_{7}}^{(23)}, \qquad P_{4}\text{-type:} \quad M_{T_{9}}^{(23)}$ $P_{5}\text{-type:} \quad M_{T_{5}}^{(22)}, \qquad M_{T_{6}}^{(33)}, \qquad P_{6}\text{-type:} \quad M_{T_{5}}^{(11)} M_{T_{8}}^{(33)} \qquad P_{7}\text{-type:} \quad M_{T_{6}}^{(11)}, \qquad M_{T_{8}}^{(22)}$

One example (for demonstration)

$$M_{T_4} = \begin{pmatrix} 0 & d_5 & 0 \\ d_5 & 2a_2b_2 & a_3b_2 + a_2b_3e^{i\phi} \\ 0 & a_3b_2 + a_2b_3e^{i\phi} & 2a_3b_3e^{i\phi} \end{pmatrix} \bar{m}$$

$$m_3^2 = \frac{\Delta m_{atm}^2 + \Delta m_{sol}^2 c_{12}^2}{1 - s_{13}^2 \cot_{23}^2 (1 + t_{13}^2)^2 - t_{13}^4}$$

$$m_1 = 0.00613 \text{ eV}, \quad m_2 = 0.0106 \text{ eV}, \quad m_3 = 0.0499 \text{ eV}$$

$$\cos \rho_1 = \frac{m_3^2 t_{13}^4 - m_1^2 c_{12}^4 - m_2^2 s_{12}^4}{2m_1 m_2 c_{12}^2 s_{12}^2} \Rightarrow \rho_1 = \pm 3.036$$

 $\delta = \arg[m_1 c_{12}^2 + m_2 s_{12}^2 e^{i\rho_1}] - \arg[m_1 - m_2 e^{i\rho_1}] \quad \delta = \pm 0.378$

 $\phi = \pm 1.287$

Preliminary numerical results (for P1 texture)

Resonant leptogenesis works with:

e۱

М	$\tan \beta_{min}$	a_2	a_3	b_2	b_3	d_5
10^{16}	3.615	76.43×10^{-6}	88.8×10^{-6}	59.18×10^{-6}	57.28×10^{-6}	3.78×10^{-9}
10^{15}	3.601	24.19×10^{-6}	28.11×10^{-6}	18.73×10^{-6}	18.1×10^{-6}	3.79×10^{-10}
10^{14}	3.597	7.65×10^{-6}	8.89×10^{-6}	5.92×10^{-6}	5.72×10^{-6}	3.79×10^{-11}
10^{13}	3.603	2.421×10^{-6}	2.81×10^{-6}	1.87×10^{-6}	1.81×10^{-6}	3.78×10^{-12}

Summary

- With 2 deg. RHNs (& Ye=diag) neutrino Dirac Yukawas only one 1 texture zero works for neutrinos & resonant leptogenesis
- With 2 deg. RHNs (& Ye=diag)
 2 texture zero neutrino Dirac Yukawas + single d=5 op. Many scenarios are working for neutrinos and also for resonant leptogenesis
- Future work: To justify textures by symmetries (flavor sym.)