

Bethe Center for Theoretical Physics

Masaki Asano

(Bonn University)

Is Dark Matter Elementary or Composite or **Partially Composite?**

Dark Matter

In this talk

Elementary

Partially Composite

I discuss possibilities Beyond the vanilla WIMP DM from model building side.

Mini-workshop on "Beyond the WIMP paradigm"

Neutralino in SUSY: Thermal relic can be consistent with observations.

But,

□ Gravitino (and/or moduli) can spoil the BBN and/or usual WIMP scenario in SUSY.

Thermal Neutralino WIMP scenario restricts the SUSY breaking and mediation scenario.

For example, gauge mediation cannot be such a thermal neutralino WIMP scenario?

Neutralino in SUSY: Thermal relic can be consistent with observations.

But,

Gravitino (and/or moduli) can spoil the BBN and/or usual WIMP scenario in SUSY.
 Thermal Neutralino WIMP scenario restricts

the SUSY breaking and mediation scenario.

We discuss

Gauge mediation with a 100 TeV Gravitino

Very heavy gravitino

□ Neutralino LSP

Gauge mediation can suppress dangerous FCNCs.

Gravity mediation does not spoil this advantage, if

Small gravitino mass

□ Only O(1) eV gravitino is allowed.

Such a low-scale mediation is constrained from LHC results and vacuum instability.

Gauge mediation with a 100 TeV Gravitino

Scherk-Schwarz SUSY breaking

• flat 5D space & y is compactified on an S^1/Z_2 orbifold.

4D Planck:
$$M_4^2 = 2\pi R M_5^3 = L M_5^3$$

5D Planck: $M_5 \approx 3.9 \times 10^{17} \text{GeV} \left(\frac{L^{-1}}{10^{16} \text{ GeV}}\right)^{1/3}$

Scherk-Schwarz SUSY breaking ←> radion Fterm breaking

• flat 5D space & y is compactified on an S¹/Z₂ orbifold.

4D Planck:
$$M_4^2 = 2\pi R M_5^3 = L M_5^3$$

5D Planck: $M_5 \approx 3.9 \times 10^{17} \text{GeV} \left(\frac{L^{-1}}{10^{16} \text{ GeV}}\right)^{1/3}$

Scherk-Schwarz SUSY breaking ←> radion Fterm breaking

• flat 5D space & y is compactified on an S^1/Z_2 orbifold.

4D Planck:
$$M_4^2 = 2\pi R M_5^3 = L M_5^3$$

5D Planck: $M_5 \approx 3.9 \times 10^{17} \text{GeV} \left(\frac{L^{-1}}{10^{16} \text{ GeV}}\right)^{1/3}$

Scherk-Schwarz SUSY breaking ←> radion Fterm breaking

Scherk-Schwarz SUSY breaking ↔ radion Fterm breaking

Even if large gravitino mass $m_{3/2} = \frac{C^*}{M_*^2} = \frac{F_T}{L}$ No large anomaly mediation.

(Note that 5D gravitational multiplet in the bulk mediate SUSY.)

Scherk-Schwarz SUSY breaking

Scherk-Schwarz SUSY breaking

Scherk-Schwarz SUSY breaking

Scherk-Schwarz SUSY breaking

Scherk-Schwarz SUSY breaking Gauge mediation sector Hidden SU(N) charged **Radion T** nessenger $W = \lambda_1 X Q Q$ Hidden $+\lambda_m X\Psi\bar{\Psi} + \frac{\kappa}{2}X^3$ MSSN SU(N) Scalar Q&Qbar mass Hidden gaugino mass $V = -|m_X^2||X|^2 + ...$ X has negative soft mass X gets non-zero VEV and F

Scherk-Schwarz SUSY breaking

MA, Nakai, Yokozaki '15

Elementary DM

Localized SUSY breaking is also OK.

By assuming a shift symmetry of a SUSY field Z, → Z dependence in the superpotential vanishes → Compensator F term become zero as in the Scherk-Schwarz case.

Gauge mediation with a 100 TeV Gravitino is possible!! Description USP Soft masses of MSSM are the same as usual gauge mediation

But,

There are several possibilities of how to get the 125 GeV Higgs mass, neutralino LSP and correct thermal relic.Viable neutralino DM scenario would require extensions from the simple messenger multiplet.

Dark Matter

In this talk

Elementary

Composite

Partially Composite

Is there DM candidates?

Composite DM

Composite DM $\Lambda QCD \equiv Proton, ρ, ...$ For example, possibilities are Additional pseudo-NG boson e.g., singlet η from O(6)/O(5) with parity(η) in O(6) $m_{DM} \sim O(100) \text{ GeV}$ Frigerio, Pomarol, Riva, Urbano '12; Skyrmion

topological stable configuration in π_3 (G/H) $\neq 0$ case m_{DM} ~ O(1-10) TeV

. . .

e.g., Murayama, Shu '09 (for little higgs);

Dark Matter

In this talk

Elementary

DM plays an important role also for EWSB: DM produces the Higgs potential like top!!

At first, we discuss how to make the Higgs potential in the composite Higgs model \rightarrow

Composite Higgs

- Higgs boson is a pseudo-NG boson.
 - Higgs potential is protected by the Global Symmetry.
 - EWSB scale is produced
 by the Explicit Breaking.
 (Yukawa & gauge couplings)

[Next] How implement the top quark? \rightarrow

Composite Higgs

Composite Higgs

Yukawa coupling

Higgs potential

For current study with m_h~ 125GeV, e.g., Matsedonskyi, Panico, Wulzer '12; Marzocca, Serone, Shu '12 ;...

[Next] How to get vev ~ 246 GeV? \rightarrow

Potential

O_t: spinorial rep. 4 of SO(4) $h \rightarrow 2h$

$$V(h) \simeq \alpha_t \cos \frac{h}{f} - \beta_t \sin^2 \frac{h}{f}$$

O _t : spinorial re	ep. 4 c	of SO(4)
$V(h) \simeq \alpha_t \cos$	$\frac{h}{f} - \mu$	$\beta_t \sin^2 \frac{h}{f}$

Potential

To solve the tension,

People consider, for example, another representations,

4 -> 5 or 10 or 14 ←...

Panico, Redi Tesi, Wulzer '12

The situation can change by considering Dark matter!

 We know "WIMP Miracle"
 Observed DM relic can be explained by a DM has weak scale mass & weak coupling
 Possibility:

DM also couple to Higgs weakly.

The situation can change by considering Dark matter!

 We know "WIMP Miracle"
 Observed DM relic can be explained by a DM has weak scale mass & weak coupling
 Possibility:
 DM else environments to this environments (is entropy of the second secon

DM also couple to Higgs (i.e. strong sector) weakly.

Partially Composite DM !!

MA, Kitano '14

Partially Composite DM

DM is also a partially composite fermion & the explicit breaking also contributes to Higgs potential!

MA, Kitano '14

Partially Composite DM

Partially Composite DM If O_{DM} is in SO(5) vector representation, 5, the leading Dark sector contribution is $\propto \sin^2(h/f)$. Ot: spinorial rep. 4 of SO(4) Pseudo-NG boson V(h) ∕ $V(h) = \alpha_t \cos \frac{h}{f} - (\beta + \beta_t) \sin^2 \frac{h}{f}$ $v/f = \sqrt{1 - \frac{\alpha_t^2}{4\beta_t^2}} \equiv \epsilon$ $\epsilon \equiv v/f < \mathbf{1} \mid \alpha_t \simeq 2\beta_t$ $\alpha_t \gg \beta_t$ NDA

Partially Composite DM If O_{DM} is in SO(5) vector representation, 5, the leading Dark sector contribution is $\propto \sin^2(h/f)$. Ot: spinorial rep 4 of SO(4) Pseudo-NG boson V(h) **↑** $V(h) = \alpha_t \cos\frac{h}{f} - (\beta + \beta_t) \sin^2\frac{h}{f}$ $v/f = \sqrt{1 - \frac{\alpha_t^2}{4(\beta + \beta_t)^2}} \equiv \epsilon$ $\epsilon \equiv v/f < \mathbf{1} \mid \beta \simeq \alpha_t \gg \beta_t$ $\alpha_t \gg \beta_t$ NDA

Partially Composite DM If O_{DM} is in SO(5) vector representation, 5, the leading Dark sector contribution is $\propto \sin^2(h/f)$. Ot: spinorial rep. 4 of SO(4) Pseudo-NG boson V(h) **↑** DM/ $V(h) = \alpha_t \cos\frac{h}{f} - (\beta + \beta_t) \sin^2\frac{h}{f}$ $v/f = \sqrt{1 - \frac{\alpha_t^2}{4(\beta + \beta_t)^2}} \equiv \epsilon$ $\epsilon \equiv v/f < \mathbf{1} \mid \beta \simeq \alpha_t \gg \beta_t$ $\alpha_t \gg \beta_t$ NDA

It's also consistent with DM relic!

MA, Kitano '14

Dark matter phenomenology

After integrating out Composite O, we obtain the low-energy effective theory as

$$\mathcal{L}_{\text{eff}} = -\frac{m_{\text{DM}}}{2}\bar{\psi}_S\psi_S + \frac{\kappa}{2}\bar{\psi}_S\psi_S\sin^2\frac{h}{f} + \frac{i\kappa_5}{2}\bar{\psi}_S\gamma_5\psi_S\sin^2\frac{h}{f}$$

This is similar to "Higgs portal DM model". $m_{\rm DM} \sim \kappa \sim \kappa_5 = c \left(\frac{\lambda}{4\pi}\right)^2 m_{\mathcal{O}}$

- DM also contribute making Higgs potential.
- Parameter space consists with both Higgs & DM observables.
- It would be measure by DM DD in near future.

Summary

Is Dark Matter Elementary or Composite or **Partially Composite?**

I have no idea.

Summary

but also EWSB physics model search.

Annihilation cross section

$$\langle \sigma_{\rm ann.} v \rangle \propto (\kappa^2 v^2 \text{ term}) + \kappa_5^2$$

Direct detection cross section

$$\sigma_{\rm SI}$$
 \propto κ^2 + (κ_5^2 v² term)

$$\left(\mathcal{L}_{\text{eff}} = -\frac{m_{\text{DM}}}{2}\bar{\psi}_{S}\psi_{S} + \frac{\kappa}{2}\bar{\psi}_{S}\psi_{S}\sin^{2}\frac{h}{f} + \frac{i\kappa_{5}}{2}\bar{\psi}_{S}\gamma_{5}\psi_{S}\sin^{2}\frac{h}{f}\right)$$

Annihilation cross section

$$\langle \sigma_{\rm ann.} v \rangle \propto (\kappa^2 v^2 \text{ term}) + \kappa_5^2$$

Direct detection cross section

$$\sigma_{
m SI}$$
 \propto $\kappa^2_{
m SI}$ + (κ^2_5 v² term)

If \mathscr{O} in strong sector, $\mathcal{K} \sim \mathcal{K}_5$, large \mathcal{K} is not required to explain observed DM relic, then, constraints from direct detection can be mild.

If it is kinematically allowed,

$$\rho^{\mu} \sim \mathcal{O}_{4} \sim g_{\rho}$$