Gravitational lenses as a probe of dark matter models

Ayuki Kamada (University of California, Riverside)

9 Jun 2016 @ MITP workshop "Exploring the Energy Ladder of the Universe"

based on collaborations with Akira Harada (The University of Tokyo), Kaiki Taro Inoue (Kindai University), Ken Osato (The University of Tokyo), Toyokazu Sekiguchi (Institute for Basic Science, Korea), Masato Shirasaki (National Astronomical Observatory of Japan), Tomo Takahashi (Saga University), and Naoki Yoshida (Kavli Institute for the Physics and Mathematics of the Universe)

Brief introduction of structure formation

History of the Universe

(Early) Sachs-Wolfe Effect

(Linear) Matter density fluctuations

$$\begin{aligned} & \text{matter density fluctuations} \\ & \delta(\mathbf{x}) \equiv \frac{\delta\rho}{\rho}(\mathbf{x}) = \int \frac{\mathrm{d}\mathbf{k}^3}{(2\pi)^3} \delta(\mathbf{k}) e^{i\mathbf{k}\mathbf{x}} \\ & < \delta(\mathbf{k})\delta^*(\mathbf{k}') > = (2\pi)^3 \delta^3(\mathbf{k} - \mathbf{k}') \mathbf{P}(\mathbf{k}) \end{aligned}$$

CMB anisotropies

→ matter distribution at 100 Mpc-10 Gpc (cosmic horizon) scales

Limitation of CMB: Silk damping

Success of ACDM model in CMB

CMB observations of undamped modes (*ℓ* <2500) simultaneously determine six parameters of ΛCDM model and are well-reproduced

Non-linear evolution of matter distribution

Large scale structure of the Universe

ACDM model reproduces large scale (>Mpc) structure of the Universe well

Cold Dark Matter?

Notes on use of large scale structure

Observation

Indirect measurement only luminous objects (baryons) can be detected → After structure formation (non-linear evolution), baryons may not follow DM distribution → Difficult to detect halos that host faint objects

Theory

Non-linear evolution - perturbation theory breaks down

 time/resource-consuming *N*-body simulations
 (and detailed comparison with analytic approach)
 - co-evolution of DM halos and baryon processes
 (supernova explosions, galaxy formation...)
 State-of-art hydrodynamic simulations and elaborate
 modeling of baryon processes

Advantage of gravitational lenses

Observation

Direct measurement -

gravitational potentials: matter (DM+baryons) distribution

Theory

- Non-linear evolution perturbation theory breaks down
- → time/resource-consuming *N*-body simulations (and detailed comparison with analytic approach)
- co-evolution of DM halos and baryon processes (supernova explosions, galaxy formation...)
 - → state-of-art hydrodynamic simulations and elaborate modeling of baryon processes

Gravitational lens I

Gravitational lens II

Sources in this talk

Constraints on light gravitino mass

based on

AK, M. Shirasaki, and N. Yoshida, JHEP, 2014 K. Osato, T. Sekiguchi, M. Shirasaki, **AK**, N. Yoshida, JCAP, 2016

Supersymmetry (SUSY)

Nontrivially extended Poincaré symmetry -Boson (spin integer) ↔ Fermion (spin half-integer)

> graviton (spin 2) ↔ gravitino (spin 3/2)

supersymmetric extension \rightarrow achieve grand unification of Standard Model: MSSM \rightarrow solve the hierarchy problem 50F Martin, arXiv:hep-ph/9709356 40F $m_{h^0}^2 = m_{h^0,0}^2 + \Delta(m_{h^0}^2)$ SU(2 α^{-1} 30 model 20 quantum prediction **GUT** model 10 SU(3) correction (126 GeV)² parameter $0^{17} \, \text{GeV})^2$ 12 16 18 14 6 10 Log₁₀(Q/GeV)

SUSY phenomenology

Gauge-mediated SUSY breaking(GMSB)

Messenger fields - SM gauge interaction - coupling to SUSY breaking field

naturally ensures that flavor-blindness of SUSY breaking in MSSM

superpotential of minimal model Φ_n : messenger superfields N_5 : # of messengers $W = (\lambda S + M_{\text{mess}}) \sum \Phi_n \bar{\Phi}_n$ $M_{\rm mess}$: messenger mass n=1sfermion mass squared $S\left(\langle S \rangle = \theta^2 F\right)$ $m_{\phi_i}^2 = 2\Lambda^2 N_5 \sum_{1}^{3} C_a(i) \left(\frac{g_a^2}{16\pi^2}\right)^2 f(x)$: SUSY-breaking (goldstino) field gaugino mass F: SUSY-breaking scale $M_a = \frac{g_a^2}{16\pi^2} \Lambda N_5 g(x)$ $\Lambda(=\lambda F/M_{\rm mess})$: MSSM SUSYgravitino mass breaking scale $m_{3/2} = \frac{r}{\sqrt{3}M_{\rm pl}}$ $x = \Lambda / M_{\rm mess} \le 1$ $f(x) = \frac{1+x}{x^2} \left| \ln(1+x) - 2\operatorname{Li}_2\left(\frac{x}{1+x}\right) + \frac{1}{2}\operatorname{Li}_2\left(\frac{2x}{1+x}\right) \right| + (x \to -x)$ $g(x) = \frac{1}{x^2}(1+x)\ln(1+x) + (x \to -x)$

Light gravitino in cosmology

Thermal history

Produced and thermalized just after the reheating of the Universe

$$(1 + z_{\rm nr3/2}) \simeq 1 \times 10^4 (m_{3/2}/1 \,\mathrm{eV}) (g_{*s3/2}/90)^{1/3}$$

Contribute to the mass density of the Universe

Light gravitino as "hot" component

Relic gravitino

<u>Cosmological data</u>

Planck TT, TE, EE+lowP - constraint ACDM model parameters

Canada France Hawaii Lensing Survey (CFHTLenS) + BOSS

Results

 $m_{3/2} \lesssim 5\,\mathrm{eV}$ is consistent with the lens data at 95% CL

Implications

Some modification is needed for GMSB models to reproduce simultaneously the observed Higgs mass and gravitational lens measurements

- extension of the Higgs sector: NMSSM

Yanagida *et al.*, JHEP, 2012

non-perturbative GMSB
 -- hidden baryons as good candidate for cold and stable particle

- non-standard cosmological history -- low reheating temperature $T_{\rm RH} \lesssim m_{
m NLSP}/20$ -- entropy production after the gravitino decoupling

Small scale crisis vs Quadruple lens system

based on

A. Harada, **AK**, JCAP, 2016 **AK**, K.T. Inoue, T. Takahashi, arXiv:1604.01489

Small scale crisis I

When *N*-body simulations in ACDM model and observations are compared, problems appear at (sub-)galactic scales: small scale crisis

Small scale crisis II

cusp vs core problem

Small scale crisis (III)

too big to fail problem

N-body (DM-only) simulations in ∧CDM model → ~10 subhalos with deepest potential wells in Milky Way-size halos do not have observed counterparts (dwarf spheroidal galaxies)

Possible solution I

 heating from ionizing photons - ionizing photons emitted and spread around reionization of the Universe heat and evaporate gases

 mass loss by supernova explosions - supernova explosions blow gases from inner region -> DM redistribute along shallower potential

Possible solution II

Above Discussions are based on *N*-body (DM-only) simulations in **ACDM model**

alternative models ↔ nature of DM

 warmness - thermal velocities induce pressure of DM fluid and prevent gravitational growth (Jeans analysis)

- interactions with SM particles - DM fluid couples to photons/neutrinos (moving with speed of light) in a direct/indirect manner.

- **self-interaction** - induced heat transfer of DM fluid heats DM particles in inner region and flatten inner profile

Warmness of DM: sterile neutrino

May sterile neutrino DM reconcile missing satellite problem and anomalous X-ray line simultaneously?

Sterile neutrino as mixed dark matter

sterile neutrino radiative decay as an origin of 3.5 keV anomaly

large lepton asymmetry $n_L/n_Y \sim 10^{-4}$ (c.f. $n_B/n_Y \sim 10^{-10}$)

Kamada *et al.*, JCAP, 2016

sterile neutrino (WDM) relic accounts for 20-60% of DM mass density (rest: CDM) \rightarrow CDM+WDM=MDM

Missing satellite problem in MDM models

Anomalous Flux Ratio

Line-of-sight matter density fluctuations

Likelihood

Conclusions and Prospects

Conclusions

- Through the small-scale matter distribution, we can explore the existence of long-lived particles produced in the early Universe (being careful of baryonic processes)

- Gravitational lens is a powerful tool to probe the (relatively) small-scale clustering property of the Universe

- To be compatible with the very light gravitino and the Higgs mass, GMSB is needed to have an extended Higgs sector or some non-standard thermal history of the Universe

 3.5 keV-line motivated (sterile neutrino) mixed DM model can reproduce simultaneously the small number of the observed dwarf spheroidal galaxies and anomalous flux in QSO quadrupole lens systems

Prospects

- Weak lens surveys are now on-going (DES, HSC-Wide, ...) and higher-quality data will be available soon

- SMG lens samples are expected to be found in on-going ALMA data

- In any case, more precise understanding of structure formation (non-linear evolution) in non-CDM models is indispensable

-- need a help of analytic approach