RADIATIVE ACTIVE-STERILE NEUTRINO MASS WITH DARK MATTER

Debasish Borah

Indian Institute of Technology Guwahati

MITP Workshop on Exploring the Energy Ladder of the Universe

OUTLINE

1 INTRODUCTION

2 MODEL BUILDING

3 CONCLUSION

< □ > < @ > < 클 > < 클 > 클 → 의 ↔ ↔ 2 / 50

ACTIVE NEUTRINOS: PRESENT STATUS

Parameters	Normal Hierarchy (NH)	Inverted Hierarchy (IH)
$\frac{\Delta m_{21}^2}{10^{-5} \text{gV}^2}$	7.02 - 8.09	7.02 - 8.09
$\frac{ \Delta m_{31}^2 }{10^{-3} eV^2}$	2.317 - 2.607	2.307 - 2.590
$\sin^2 \theta_{12}$	0.270 - 0.344	0.270 - 0.344
$\sin^2 \theta_{23}$	0.382 - 0.643	0.389 - 0.644
$\sin^2 heta_{13}$	0.0186 - 0.0250	0.0188 - 0.0251
δ	$0-2\pi$	$0-2\pi$

3 / 50

TABLE: Global fit 3σ values of neutrino oscillation parameters (M. C. Gonzalez-Garcia, M. Maltoni and T. Schwetz, JHEP 2014)

ACTIVE NEUTRINOS: PRESENT STATUS

Parameters	Normal Hierarchy (NH)	Inverted Hierarchy (IH)
$\frac{\Delta m_{21}^2}{10^{-5} \text{gV}^2}$	7.11 - 8.18	7.11 - 8.18
$\frac{ \Delta m_{31}^2 }{10^{-3} eV^2}$	2.30 - 2.65	2.20 - 2.54
$\sin^2 \theta_{12}$	0.278 - 0.375	0.278 - 0.375
$\sin^2 \theta_{23}$	0.393 - 0.643	0.403 - 0.640
$\sin^2 heta_{13}$	0.0190 - 0.0262	0.0193 - 0.0265
δ	$0-2\pi$	$0-2\pi$

TABLE: Global fit 3σ values of neutrino oscillation parameters (D. V. Forero, M. Tortola and J. W. F. Valle, PRD 2014)

<ロ> (四) (四) (注) (日) (三)

ACTIVE NEUTRINOS: KNOWN UNKNOWNS

- The lightest neutrino mass.
- The neutrino mass hierarchy: Normal $(m_1 < m_2 < m_3)$ or Inverted $(m_3 < m_1 < m_2)$.
- Octant of atmospheric mixing angle: $\theta_{23} > \pi/4$ or $\theta_{23} < \pi/4$.
- Leptonic Dirac CP phase δ^{-1} .
- Majorana or Dirac.

EXISTENCE OF A FOURTH LIGHT NEUTRINO?

2

EXISTENCE OF A FOURTH LIGHT NEUTRINO?

Searches for Sterile Neutrinos with the IceCube Detector

The IceCube Collaboration

(Submitted on 6 May 2016)

The IceCube neutrino telescope at the South Pole has measured the atmospheric muon neutrino spectrum as a function of zenith angle and energy in the approximate 320 GeV to 20 TeV range, to search for the oscillation signatures of light sterile neutrinos. No evidence for anomalous ν_{μ} or $\bar{\nu}_{\mu}$ disappearance is observed in either of two independently developed analyses, each using one year of atmospheric neutrino data. New exclusion limits are placed on the parameter space of the 3+1 model, in which muon antineutrinos would experience a strong MSW-resonant oscillation. The exclusion limits extend to $\sin^2 20_{24} \leq 0.02$ at $\Delta m^2 \sim 0.3 \text{ eV}^2$ at the 90\% confidence level. The allowed region from global analysis of appearance experiments, including LSND and MiniBooNE, is excluded at approximately the 99\% confidence level for the global best fit value of $IU_{ed}I^2$.

Comments: 9 pages, 5 figures Subjects: High Energy Physics - Experiment (hep-ex); High Energy Astrophysical Phenomena (astro-ph.HE) arXiv:1605.01990 [hep-ex] (or arXiv:1605.019901 [hep-ex] for this version)

3

<ロト < 団 > < 巨 > < 巨 > 三 の Q () 7 / 50

³Also see Danny's talk tomorrow

HINT OF A LIGHT STERILE NEUTRINO

- LSND (Liquid Scintillator Neutrino Detector) accelerator experiment, designed to study $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ transitions, reported an excess of $\bar{\nu}_{e}$ events at 3.8 σ level (PRD 64, 112007; PRL 75, 2650).
- Such accelerator experiments with baseline L of few tens of meters and neutrino energies E of few tens of MeV are sensitive to neutrino oscillations occurring at $\Delta m^2 \sim 1 \text{eV}^2$.
- MiniBooNE also observed excess of $\bar{\nu}_e$ and ν_e events at 3.8 σ level consistent with neutrino oscillations in the range $0.01 < \Delta m^2 < 1 \text{eV}^2$ (PRL 110, 161801).
- LSND, KARMEN, MiniBooNE and ICARUS data restrict the allowed mass-mixing parameters to a small region around $\Delta m^2 \sim 0.5 {\rm eV}^2, \sin^2 2\theta \sim 5 \times 10^{-3}$

⁴Light Sterile Neutrinos: A White Paper, arXiv:1204.5379; Also see C. Giunti, arXiv:1512.04758

HINT OF A LIGHT STERILE NEUTRINO

- Short baseline reactor neutrino experiments also observed similar anomalies, about 2.8σ deficit of the rate of ν
 _e (PRD 83, 073006).
- The Gallium neutrino anomaly was also observed in short baseline disappearance of ν_e in GALLEX and SAGE experiments with statistical significance of about 2.9 σ (PRC 73, 045805; PRC 83, 065504; PRC 80, 015807).
- The nine year WMAP data also suggested additional light species $N_{\rm eff}=3.84\pm0.40~(95\%~{\rm CL})({\rm arXiv:1212.5226}).$
- The 2013 Planck data however, favour the standard three neutrino picture $N_{\rm eff} = 3.30^{+0.54}_{-0.51}$ (95% CL)(arXiv:1303.5076) which gets updated to 3.15 ± 0.23 in 2015 Planck data (arXiv:1502.01589).
- Global fit data of sterile neutrinos can be found in arXiv:1303.3011 (Kopp et al).

STERILE NEUTRINO GLOBAL FIT

v	$\sin^2 2\theta_{14}$	$\Delta m^2_{41} [\mathrm{eV^2}]$	$\chi^2_{ m min}/ m dof~(m GOF)$	$\Delta \chi^2_{\rm no-osc}/{\rm dof}~({\rm CL})$
SBL rates only	0.13	0.44	11.5/17 (83%)	11.4/2 (99.7%)
SBL incl. Bugey3 spectr.	0.10	1.75	58.3/74~(91%)	9.0/2~(98.9%)
SBL + Gallium	0.11	1.80	64.0/78 (87%)	14.0/2 (99.9%)
SBL + LBL	0.09	1.78	93.0/113 (92%)	9.2/2 (99.0%)
global ν_e disapp.	0.09	1.78	403.3/427 (79%)	12.6/2 (99.8%)

Table 4. Best fit oscillation parameters and χ^2_{\min} values as well as $\Delta\chi^2_{no-osc} \equiv \chi^2_{no-osc} - \chi^2_{\min}$ within a 3+1 framework. Except in the row labeled "SBL rates only", we always include spectral data from Bugey3. The row "global ν_e disapp." includes the data from reactor experiments (see Tab. 3) as well as Gallium data, solar neutrinos and the LSND/KARMEN ν_e disappearance data from $\nu_e^{-12}C$ scattering. The CL for the exclusion of the no oscillation hypothesis is calculated assuming 2 degrees of freedom ($|U_{e4}|$ and Δm^2_{11}).

FIGURE: Global fit from Kopp et. al., 1303.3011

LIGHT STERILE NEUTRINO

- Global fit data however, suffer from the tension between antineutrino appearance signals and bounds from antineutrino appearance experiments (NPB 643, 321; PLB 539, 91; NPB 708, 215). A consistent interpretation of all experimental data suggesting a sub-eV sterile neutrino is still missing!
- IceCube also rules out most part of Global fit data in their latest results (arXiv:1605.01990).

HINT OF A LIGHT STERILE NEUTRINO

- Even if all the anomalies at neutrino experiments go away in future, a light keV sterile neutrino can still be interesting from Cosmology point of view ⁵.
- keV sterile neutrinos can give rise to Warm DM. This can provide a solution to the small scale structure problem.
- keV sterile neutrino DM can rise to the 3.55 keV X-ray line observed in the data taken by XMM-Newton and Chandra from several galaxy clusters (ApJ 789, 13; PRL 113, 251301; PRL 115, 161301).
- A 7.1 keV sterile neutrino having mixing with active neutrinos of the order $\sin^2 2\theta \approx 10^{-11} 10^{-10}$ can fit the data.

⁵Alex, Kevork and Marco's talks yesterday

STERILE NEUTRINO MODEL BUILDING

- Generating a sub-eV to keV scale sterile neutrino in generic tree level seesaw models require some amount of fine-tuning.
- Several interesting possibilities have appeared recently: Merle & Niro'2011; Barry, Rodejohann & Zhang'2011-12; Bhupal Dev & Pilaftsis'2013 etc. For a review, see A. Merle, IJMPD 22, 1330020 (2013); White paper, 1602.04816.
- Our approach is to forbid the tree level active-sterile mixing term as well as bare mass term of sterile neutrino and allow them to be generated at one loop level.
- Consider a similar radiative mass generation mechanism for active neutrinos.
- Check if a stable dark matter candidate can also be embedded within such frameworks: in *scotogenic* fashion (E. Ma, PRD 73, 077301).

Scotogenic Model

The original *Scotogenic* model has an additional Higgs doublet η and three singlet neutrinos N_k odd under a Z_2 symmetry. The light neutrino mass arise only at one loop level:

The lightest Z_2 odd particle is stable and can be a dark matter candidate.

Abelian Version of Scotogenic Model

- In order to have light active and sterile neutrinos at one-loop level, a symmetry higher than Z_2 is required, as Z_2 itself can not prevent a tree level sterile neutrino mass term.
- We choose an extra $U(1)_X$ gauge symmetry which gets spontaneously broken down at a high scale to the standard model gauge symmetry.
- The extra fermion content is chosen in a *minimal* way required to cancel the gauge anomalies.
- The transformations of the fields under the $U(1)_X$ symmetry are chosen in such a way that three active and one sterile neutrino masses arise only at one loop level.
- It is also made sure that there remains an unbroken remnant Z_2 symmetry which stabilises the dark matter candidate.

Abelian Version of Scotogenic Model

- Let the $U(1)_X$ charges of $(u, d)_L$, u_R , d_R , $(\nu, e)_L$, e_R be $n_{1,2,3,4,5}$ respectively.
- Consider n_N copies of singlet fermion N and n_{Σ} copies of $SU(2)_L$ triplet fermions Σ such that $n_N + n_{\Sigma} = 3$, minimum required to give rise to three light active neutrinos in both tree level as well as radiative seesaw.
- Both N and Σ are assumed to transform as n₆ under U(1)_X and have zero U(1)_Y hypercharges.

ANOMALY CANCELATIONS

With this choice of $U(1)_X$ charges, one can write the anomaly cancelation conditions as (Adhikari, Erler, Ma, PLB 2009)

$$[SU(3)_{c}]^{2}U(1)_{X} : 2n_{1} - n_{2} - n_{3} = 0$$

$$[SU(2)_{L}]^{2}U(1)_{X} : \frac{9}{2}n_{1} + \frac{3}{2}n_{4} - 2n_{\Sigma}n_{6} = 0$$

$$[U(1)_{Y}]^{2}U(1)_{X} : \frac{1}{6}n_{1} - \frac{4}{3}n_{2} - \frac{1}{3}n_{3} + \frac{1}{2}n_{4} - n_{5} = 0$$

$$U(1)_{Y}[U(1)_{X}]^{2} : n_{1}^{2} - 2n_{2}^{2} + n_{3}^{2} - n_{4}^{2} + n_{5}^{2} = 0$$

$$[U(1)_{X}]^{3} : 3(6n_{1}^{3} - 3n_{2}^{3} - 3n_{3}^{3} + 2n_{4}^{3} - n_{5}^{2}) - (3n_{\Sigma} + n_{N})n_{6}^{3} = 0$$

$$[U(1)_{X}] : 3(6n_{1} - 3n_{2} - 3n_{3} + 2n_{4} - n_{5}) - (3n_{\Sigma} + n_{N})n_{6} = 0$$

Solving the first four equations allows one to write $n_{2,3,5,6}$ in terms of n_1 and n_4 with $3n_1 + n_4 \neq 0$.

ANOMALY CANCELATIONS

- All anomalies are cancelled if $n_N = 0$, $n_{\Sigma} = 3$. This gives rise to the usual type III seesaw model.
- If $n_N = 0$, $n_{\Sigma} = 2$, then in the units of $(3n_1 + n_4)/8$, the $[U(1)_X]^3$ anomaly gives -90 whereas $[U(1)_X]$ anomaly cancels out.
- This can be cancelled by three singlet fields with $U(1)_X$ charges (3, 2, -5) or (-6, 1, 5). Both of them allow the possibility of radiative neutrino mass and a remnant Z_2 symmetry.
- The other possibilities with $n_{\Sigma} \neq 2$ give tree level neutrino masses from a combination of type I and type III seesaw without any remnant Z_2 symmetry.

MODELS WITH $U(1)_X$ CHARGES (3, 2, -5)

Particle	$SU(3)_c imes SU(2)_L imes U(1)_Y$	$U(1)_X$	<i>Z</i> ₂
$(u,d)_L$	$(3, 2, \frac{1}{6})$	<i>n</i> ₁	+
u _R	$(\bar{3}, 1, \frac{2}{3})$	$\frac{1}{4}(7n_1 - 3n_4)$	+
d _R	$(\bar{3}, 1, -\frac{1}{3})$	$\frac{1}{4}(n_1+3n_4)$	+
$(\nu, e)_L$	$(1, 2, -\frac{1}{2})$	<i>n</i> ₄	+
e _R	$(1,1,-ar{1})$	$\frac{1}{4}(-9n_1+5n_4)$	+
N _R	(1,1,0)	$\frac{3}{8}(3n_1+n_4)$	-
$\Sigma_{1R,2R}$	(1,3,0)	$\frac{3}{8}(3n_1+n_4)$	-
S_{1R}	(1, 1, 0)	$\frac{2}{8}(3n_1+n_4)$	+
S_{2R}	(1, 1, 0)	$-\frac{5}{8}(3n_1+n_4)$	-
$(\phi^+, \phi^0)_1$	$(1, 2, -\frac{1}{2})$	$\frac{3}{4}(n_1 - n_4)$	+
$(\phi^+, \phi^0)_2$	$(1, 2, -\frac{1}{2})$	$\frac{1}{4}(9n_1 - n_4)$	+
$(\phi^+, \phi^0)_3$	$(1,2,-rac{1}{2})$	$\frac{1}{8}(9n_1-5n_4)$	-
χ1	(1,1,0)	$-\frac{1}{2}(3n_1+n_4)$	+
χ3	(1,1,0)	$-\frac{3}{8}(3n_1+n_4)$	-
χ4	(1,1,0)	$-\frac{3}{4}(3n_1+n_4)$	+

⁶DB, R Adhikari, PLB 2014

6

・ロト・西ト・西ト・西・ うんの

The Model

- The additional fermionic fields in the model are just sufficient to cancel anomalies.
- The vacuum expectation values (vev) of the Higgs fields are denoted as $\langle \phi^0_{1,2} \rangle = v_{1,2}, \ \langle \chi^0_{1,4} \rangle = u_{1,4}.$
- Assuming no mixing between the electroweak gauge bosons and the extra $U(1)_X$ boson gives rise to

$$3(n_4 - n_1)v_1^2 = (9n_1 - n_4)v_2^2$$

which implies $1 < n_4/n_1 < 9$.

• For zero mixing, the $U(1)_X$ gauge boson mass is

$$M_X^2 = 2g_X^2(-\frac{3M_W^2}{8g_2^2}(9n_1 - n_4)(n_1 - n_4) + \frac{1}{16}(3n_1 + n_4)^2(4u_1^2 + 9u_4^2))$$

THE YUKAWA LAGRANGIAN

The relevant part of the Yukawa Lagrangian is

$$\mathcal{L}_{Y} \supset y \bar{L} \Phi_{1}^{\dagger} S_{1R} + h_{N} \bar{L} \Phi_{3}^{\dagger} N_{R} + h_{\Sigma} \bar{L} \Phi_{3}^{\dagger} \Sigma_{R} + f_{N} N_{R} N_{R} \chi_{4} + f_{S} S_{1R} S_{1R} \chi_{1}$$
$$+ f_{\Sigma} \Sigma_{R} \Sigma_{R} \chi_{4} + f_{12} S_{1R} S_{2R} \chi_{3}^{\dagger} \tag{1}$$

< □ > < 部 > < 書 > < 書 > 書 の Q () 21 / 50

TREE LEVEL NEUTRINO MASS

The tree-level neutrino mass matrix in the basis $(\nu_e, \nu_\mu, \nu_\tau, S_{1R}, S_{2R}, N_R)$ is

One of the light neutrinos will acquire a tree level mass given by

$$m_{\nu3}\approx\frac{2y^2v_1^2}{f_Su_1}$$

(2)

ACTIVE NEUTRINO MASS AT LOOP LEVEL

FIGURE: One-loop contribution to active neutrino mass, as 3 = -22

ACTIVE NEUTRINO MASS AT LOOP LEVEL

The one-loop contribution $(M_{\nu})_{ij}$ to 3×3 neutrino mass matrix is given by

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ○ ○

24/50

$$(M_{\nu})_{ij} \approx \frac{f_3 f_5 v_1 v_2 u_1 u_4}{16\pi^2} \sum_{k} h_{N, \Sigma_{ik}} h_{N, \Sigma_{jk}} \left(A_k + (B_k)_{ij} \right)$$

where k = 1, 2, 3 corresponds to different N_R

ACTIVE NEUTRINO MASS AT LOOP LEVEL

$$A_{k} = (M_{N,\Sigma})_{k} \left[I\left(m_{\phi_{3R}^{0}}, m_{\phi_{3R}^{0}}, (M_{N,\Sigma})_{k}, m_{\chi_{3R}}\right) - I\left(m_{\phi_{3I}^{0}}, m_{\phi_{3I}^{0}}, (M_{N,\Sigma})_{k}, m_{\chi_{3R}}\right) \right],$$

$$(B_{k})_{ij} = -(2 - \delta_{ij})(M_{N,\Sigma})_{k} I\left(m_{\phi_{3R}^{0}}, m_{\phi_{3I}^{0}}, (M_{N,\Sigma})_{k}, m_{\chi_{3I}}\right),$$

$$I(a, a, b, c) = \frac{(a^4 - b^2 c^2) \ln(a^2/c^2)}{(b^2 - a^2)^2 (c^2 - a^2)^2} + \frac{b^2 \ln(b^2/c^2)}{(c^2 - b^2)(a^2 - b^2)^2} - \frac{1}{(a^2 - b^2)(a^2 - c^2)},$$

$$I(a, b, c, d) = \frac{1}{a^2 - b^2} \left[\frac{1}{a^2 - c^2} \left(\frac{a^2}{a^2 - d^2} \ln(a^2/d^2) - \frac{c^2}{c^2 - d^2} \ln(c^2/d^2) \right) - \frac{1}{b^2 - c^2} \left(\frac{b^2}{b^2 - d^2} \ln(b^2/d^2) - \frac{c^2}{c^2 - d^2} \ln(c^2/d^2) \right) \right]$$

4 ロ ト 4 部 ト 4 差 ト 4 差 ト 差 の 4 (%) 25 / 50

ACTIVE NEUTRINO MASS AT LOOP LEVEL

If all the scalar masses in the loop diagram are almost degenerate and written as $m_{\rm sc}$ then

$$A_k + (B_k)_{ij} pprox m_{2k} \left[rac{m_{sc}^2 + m_{2k}^2}{m_{sc}^2 \left(m_{sc}^2 - m_{2k}^2
ight)^2} - rac{\left(2 - \delta_{ij}
ight) m_{2k}^2}{\left(m_{sc}^2 - m_{2k}^2
ight)^3} \ln\left(m_{sc}^2/m_{2k}^2
ight)
ight],$$

where $m_{2k} = (M_{N,\Sigma})_k$. And if all scalar and fermion masses in the loop are almost degenerate and written as m_{deg} then

$$A_k + (B_k)_{ij} pprox rac{(2-\delta_{ij})}{6m_{deg}^3}$$
 .

ACTIVE NEUTRINO MASS AT LOOP LEVEL

In this simplest approximation, the one loop contribution to neutrino mass is

$$(M_{\nu})_{ij} \approx \frac{f_3 f_5 v_1 v_2 u_1 u_4}{16\pi^2} \sum_k h_{N, \Sigma_{ik}} h_{N, \Sigma_{jk}} \frac{(2 - \delta_{ij})}{6m_{deg}^3}$$

Taking $v_1, v_2 \sim 10^2$ GeV, one can have TeV scale $U(1)_X$ gauge symmetry $u_1 \sim u_4 \sim m_{deg} \sim 10^3$ GeV and correct order of neutrino mass $M_\nu \sim 0.1$ eV if

$$f_3 f_5 h_{N,\Sigma_{ik}} h_{N,\Sigma_{jk}} \sim 10^{-9}$$

Much better than TeV scale type I seesaw where Dirac Yukawa couplings are fine tuned to $Y_D Y_D \sim 10^{-11}!$

STERILE NEUTRINO MASS AT LOOP LEVEL

FIGURE: One-loop contribution to sterile neutrino mass

STERILE NEUTRINO MASS AT LOOP LEVEL

Since S_{2R} corresponds to the fifth entry in the mass matrix shown earlier, we denote its mass term as $(M_f)_{55}$. The one-loop contribution to its mass can be written as

$$(M_f)_{55} \approx \frac{f_{12}^2 f_3 f_5 v_1 v_2 u_1 u_4}{16\pi^2} (A + B)$$
(3)

where A and B can be obtained by replacing $(M_{N,\Sigma})_k$ by $M_{S_{1R}}$ in A_k and B_k respectively. Constraints on the couplings are similar to the ones for active neutrinos.

ACTIVE-STERILE MIXING AT LOOP LEVEL

- For the minimal field content shown earlier, the sterile neutrino S_{2R} acquires a small mass at loop level but does not have any mixing with the active neutrinos at tree/loop level.
- Such a sterile neutrino can still contribute to the radiation content of the Universe, but won't show up in neutrino oscillation experiments.
- Since S_{2R} is Z₂-odd, the only way it can mix with the active neutrinos is by breaking the remnant Z₂ symmetry.
- We introduce a new scalar singlet field ζ with $U(1)_X$ charge $\frac{5}{8}(3n_1 + n_4)$ which a tree level mixing term of N_R and S_{1R} which effectively allow one loop mixing between active and sterile neutrino.

ACTIVE-STERILE MIXING AT LOOP LEVEL

FIGURE: One-loop contribution to active-sterile neutrino mixing

= →) Q (* 31 / 50

ACTIVE-STERILE MIXING AT LOOP LEVEL

The mixing term corresponding to the above diagram can be estimated as

$$(M_f)_{5j} = (M_f)_{j5}^* \approx \sum_k \frac{f_{12} f_5 v_2 u_4(h_{N,\Sigma})_{kj} M_X}{16\pi^2} \left[I\left(m_{\chi_{3R}}, m_{\phi_{3R}^0}, M_X\right) - I\left(m_{\chi_{3I}}, m_{\phi_{3I}^0}, M_X\right) \right]$$

<ロ> (四) (四) (三) (三) (三) (三)

32 / 50

where j, k = 1, 2, 3 and k corresponds to different N_R . M_X is the $U(1)_X$ symmetry breaking scale and we have assumed $M_{S_{1R}} \sim M_{N_R} \sim M_{\Sigma_R} \sim M_X$ and

$$I(a, b, c) = \frac{a^2b^2\ln(a^2/b^2) + b^2c^2\ln(b^2/c^2) + c^2a^2\ln(c^2/a^2)}{(a^2 - b^2)(b^2 - c^2)(c^2 - a^2)}$$

ACTIVE-STERILE MIXING AT LOOP LEVEL

If we consider $m_{\chi_{3R}} \sim m_{\phi_{3R}^0}$ and/or $m_{\chi_{3I}} \sim m_{\phi_{3I}^0}$ then to get $(M_f)_{5j}$ one is required to consider I(a, a, c) which is given by

$$I(a, a, c) = \frac{1}{(a^2 - c^2)^2} \left(a^2 - c^2 - c^2 \ln(a^2/c^2) \right)$$

Assuming $m_{\chi_{3R}} \sim m_{\chi_{3I}} \ll M_X$, we have

$$(M_f)_{5j} \approx \sum_k \frac{f_{12} f_5 v_2 u_4(h_{N,\Sigma})_{kj} M_X}{16 \pi^2 M_X^4} \left[m_{\chi_{3R}}^2 - m_{\chi_{3I}}^2 - M_X^2 \ln(m_{\chi_{3R}}^2/m_{\chi_{3I}}^2) \right]$$

◆□ → ◆□ → ◆注 → ◆注 → □ □

ACTIVE-STERILE MIXING AT LOOP LEVEL

Writing $m_{\chi_3} = (m_{\chi_{3R}} + m_{\chi_{3I}})/2$ and assuming the Yukawa couplings to be real

$$(M_f)_{15} \approx \sum_k \frac{f_{12} f_5 v_2 u_4 (h_{N,\Sigma})_{1k}}{16 \pi^2 M_X m_{\chi_3}^2} \left[m_{\chi_{3R}}^2 - m_{\chi_{3I}}^2 \right]$$

For $(M_f)_{25}$ in the above expression $(h_{N,\Sigma})_{1k}$ will be replaced by $(h_{N,\Sigma})_{2k}$. As $A + B \approx 1/(m_{\chi_3}^2 M_X)$

$$(M_f)_{55} \approx \frac{f_{12}^2 f_3 f_5 v_1 v_2 u_1 u_4}{16 \pi^2 m_{\chi_3}^2 M_X}$$

If we consider $(h_{N,\Sigma})_{1k}^2 \sim (h_{N,\Sigma})_{2k}^2 \ll f_{12}^2$ then $(M_f)_{11} \sim (M_f)_{22} \ll (M_f)_{55}$ and we can write the active sterile mixing angles as

$$\tan 2\theta_{e5} = \frac{2(M_f)_{15}}{(M_f)_{55}}; \quad \tan 2\theta_{\mu 5} = \frac{2(M_f)_{25}}{(M_f)_{55}}$$

ACTIVE-STERILE MIXING AT LOOP LEVEL

The (1,4) element of the mixing matrix as

$$|U_{e4}| \sim \sin heta_{e5} pprox rac{1}{2} \tan 2 heta_{e5} = \sum_k rac{(h_{N,\Sigma})_{1k}}{f_{12}f_3 v_1 u_1} \left[m_{\chi_{3R}}^2 - m_{\chi_{3I}}^2
ight]$$

To get $|U_{\mu4}|$ in the above expression $(h_{N,\Sigma})_{1k}$ is to be replaced by $(h_{N,\Sigma})_{2k}$. For $h_{N,\Sigma} \sim 1$, $f_{12}f_3 \sim 10^{-5}$, $v_1 \sim 10^2$ GeV, $u_1 \sim 1$ TeV, $(m_{\chi_{3R}}^2 - m_{\chi_{3I}}^2) \approx 0.1$ GeV² one can get $|U_{e4}| \sim 0.1$ as required from global fit data.

MODELS WITH $U(1)_X$ CHARGES (-6, 1, 5)

Deutiale	$CU(2) \rightarrow CU(2) \rightarrow U(1)$	11(1)	7
Particle	$5U(3)_c \times 5U(2)_L \times U(1)_Y$	$U(1)_X$	Z_2
N _R	(1, 1, 0)	$-\frac{6}{8}(3n_1+n_4)$	+
$\Sigma_{1R,2R}$	(1,3,0)	$\frac{3}{8}(3n_1+n_4)$	-
S_{1R}	(1, 1, 0)	$\frac{5}{8}(3n_1+n_4)$	-
S_{2R}	(1, 1, 0)	$\frac{1}{8}(3n_1+n_4)$	-
$(\phi^+, \phi^0)_1$	$(1, 2, -\frac{1}{2})$	$\frac{3}{4}(n_1 - n_4)$	+
$(\phi^+,\phi^0)_2$	$(1, 2, -\frac{1}{2})$	$\frac{1}{4}(9n_1-n_4)$	+
$(\phi^+,\phi^0)_3$	$(1, 2, -\frac{1}{2})$	$\frac{1}{8}(9n_1-5n_4)$	-
ξ	(1,3,0)	$\frac{9}{8}(3n_1+n_4)$	-
χ_1	(1, 1, 0)	$-\frac{1}{2}(3n_1+n_4)$	+
χ2	(1, 1, 0)	$\left -\frac{1}{4}(3n_1 + n_4) \right $	+
χ3	(1, 1, 0)	$\left -\frac{3}{8}(3n_1+n_4) \right $	-
χ_4	(1, 1, 0)	$-\frac{3}{4}(3n_1+n_4)$	+
χ_5	(1, 1, 0)	$\frac{9}{4}(3n_1+n_4)$	+

7

⁷R Adhikari, DB, E Ma (2014)

Sterile Neutrino Mass

FIGURE: One-loop contribution to sterile neutrino mass

ACTIVE STERILE NEUTRINO MIXING

FIGURE: One-loop contribution to active-sterile neutrino mixing

MODELS WITH $U(1)_X$ CHARGES (-6, 1, 5)

particle	a ₁	a 4	<i>Z</i> ₂
$(u,d)_L$	1	0	+
u _R	7/4	-3/4	+
d_R	1/4	3/4	+
$(\nu, I)_L$	0	1	+
I _R	-9/4	5/4	+
$\Sigma_{1R,2R}$	9/8	3/8	-
N _R	-18/8	-6/8	+
S_{1R}	3/8	1/8	-
S_{2R}	15/8	5/8	-
ϕ	3/4	-3/4	+
η_1	3/8	-7/8	-
η_2	9/8	-5/8	-
χ_1^0	3/4	1/4	+
χ_2^0	9/4	3/4	+
χ_3^0	3/8	1/8	-
χ_4^{\mp}	3/8	-15/8	-
$\xi^{(++,+,0)}$	9/8	-13/8	-

TABLE: Particle content of proposed model with $U(1)_X$ assignment given by $a_1n_1 + a_4n_4$ where $3n_1 + n_4 \neq 0$ (R Adhikari, DB, E Ma, PLB 2016)

MODEL WITH RADIATIVE LEPTON MASSES

The relevant Yukawa couplings of the fermions can be written as a part of the Yukawa Lagrangian

$$\mathcal{L}_{Y} \supset y_{1i} \bar{S_{1R}} L_{i} \eta_{1} + y_{2i} \bar{\Sigma}_{R} L_{i} \eta_{2} + y_{3j} S_{2R} l_{jR} \chi_{4} + y_{4j} \Sigma_{R} l_{jR} \xi + f_{1} \Sigma_{R} \Sigma_{R} \bar{\chi}_{2}$$
$$+ f_{2} S_{1R} S_{1R} \bar{y}_{1} + f_{2} S_{1R} S_{2R} \bar{y}_{2} + f_{4} N_{R} S_{2R} y_{2}$$

The part of the scalar Lagrangian relevant for discussion on lepton masses is

$$\begin{split} V_{s} &\supset \mu_{1} \Phi^{\dagger} \eta_{2} \bar{\chi}_{3} + \mu_{2} \Phi^{\dagger} \eta_{1} \chi_{3} + \mu_{3} \chi_{3} \chi_{3} \bar{\chi}_{1} + \lambda_{1} \Phi^{\dagger} \eta_{1} \chi_{1} \bar{\chi}_{3} + \lambda_{2} \Phi^{\dagger} \eta_{1}^{\dagger} \chi_{4} \chi_{1} \\ &+ \lambda_{3} \Phi^{\dagger} \eta_{2}^{\dagger} \xi \chi_{1} \end{split}$$

ヘロン 人間と 人間と 人間と

ACTIVE NEUTRINO MASSES

ACTIVE NEUTRINO MASSES

<ロ > < 部 > < 書 > < 書 > 書 の Q (や 42 / 50

Sterile Neutrino Mass

ACTIVE-STERILE NEUTRINO MIXING

CHARGED LEPTON MASSES

・ロ > ・ () 、 () ,

CHARGED LEPTON MASSES

・ロト (部) (音) (音) (音) (音) (音) (46 / 50 46 / 50

Concluding Remarks

- Abelian versions of scotogenic models can naturally accommodate light sterile neutrinos and their mixing with active neutrinos at one loop level.
- Similar ideas can also be implemented in non-abelian gauge extensions of the standard model say, Left-Right Symmetric Models.
- The sterile neutrinos at eV scale can have interesting implications at neutrino oscillation experiments if they sufficiently mix with the active neutrinos.
- Sterile neutrinos at keV scale can be a good warm dark matter candidate.
- In both of these cases, the lightest Z₂ odd particle can always be a cold dark matter candidate.
- Such mixed dark matter scenario could be interesting from structure formation point of view.

Concluding Remarks

- Light Sterile neutrinos can significantly affect the predictions for neutrinoless double beta decay (Giradi, Meroni & Petcov'2013).
- Light Sterile neutrinos can also affect the predictions for usual thermal leptogenesis (Hannestad, Hansen & Tram'2013).
- Light Sterile neutrinos also allow more possibilities of texture zeros in the light neutrino mass matrix. For example, in the 3 \times 3 active neutrino block, one can have three (Y. Zhang, PRD 2013) or four zero (arXiv:1606.02076) textures in the presence of sterile neutrinos whereas only upto two zero textures are allowed in three light neutrino scenarios.
- Scotogenic Models can also give new sources of lepton flavor violation (Toma & Vicente'2014; Vicente & Yaguna'2015)
- A viable model to implement TeV scale WIMPy Leptogenesis (arXiv:1605.01292).

Concluding Remarks

- Minimal scotogenic models suffer from a hierarchy type problem that can spoil the phenomenological success of the model: RGE contributions from heavy Majorana neutrinos to the mass parameters of the Z₂ odd scalar fields could turn them negative at some energy scale breaking the Z₂ symmetry and loss of CDM candidate (Merle & Platscher'2015).
- This can be prevented if the physical Z₂-odd scalar masses are restricted to a certain ranges, typically of the order of the heaviest Majorana neutrino: can be satisfied in our models as well.

THANK YOU

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □